Patchworking in higher codimension and oriented matroids

Kris Shaw University of Oslo

FPSAC 2024 - Ruhr University Bochum July 22-26, 2024

Viro's unimodular combinatorial patchworking

Input:

1) a **regular** unimodular subdivision of $d\Delta_{n+1}$ (the n+1 dim simplex of size d). 2) a choice of signs $\epsilon(a) \in \{+, -\}$ for each $a \in \mathbb{Z}^{n+1} \cap d\Delta_{n+1}$.

Output:

an *n*-dimensional polyhedral complex $\mathcal{P} \subset \mathbb{R} P^{n+1}$.

Viro's unimodular combinatorial patchworking

Input:

1) a **regular** unimodular subdivision of $d\Delta_{n+1}$ (the n+1 dim simplex of size d). 2) a choice of signs $\epsilon(a) \in \{+, -\}$ for each $a \in \mathbb{Z}^{n+1} \cap d\Delta_{n+1}$.

Output:

an *n*-dimensional polyhedral complex $\mathcal{P} \subset \mathbb{R} P^{n+1}$.

The patchworking theorem

Theorem (Viro 1984)

There exists a homogeneous polynomial $f(x_0, ..., x_{n+1})$ of degree d and a homeomorphism of pairs

Take t sufficiently large and f to be the homogenization of

$$F_t(x_0,\ldots,x_{n+1}) = \sum_{a\in\mathbb{Z}^{n+1}\cap d\Delta_{n+1}} \epsilon(a)t^{\alpha(a)}\underline{x}^a.$$

Topology of patchworked hypersurfaces

Theorem (Bertrand 2006)

If $\mathbb{R} V_f \subset \mathbb{R} P^{n+1}$ is obtained by unimodular patchworking then

$$\chi(\mathbb{R} V_f) = \sigma(\mathbb{C} V_f) := \sum_{n=p+q} (-1)^q \dim \mathrm{H}^{p,q}(\mathbb{C} V_f).$$

Theorem (Renaudineau-S. 2023)

If $\mathbb{R} V_f \subset \mathbb{R} P^{n+1}$ is obtained by unimodular patchworking then

$$b_q(\mathbb{R} V_f) \leq \sum_p \dim \mathsf{H}^{p,q}(\mathbb{C} V_f)$$

where $H^{n}(\mathbb{C} V_{f};\mathbb{C}) = \bigoplus_{q=0}^{n} H^{n-q,q}(\mathbb{C} V_{f})$ is the Hodge decomposition.

A tropical approach to patchworking

The family of hypersurfaces V_{F_t} has tropicalisation dual to the subdivision of $d\Delta_{n+1}$ and **real tropicalisation** (Jell-Scheiderer-Yu) homeomorphic to \mathcal{P} .

Motivational question: What encodes a real structure on a tropical variety?

For a tropical hypersurface: the sign choices $\epsilon : d\Delta_{n+1} \cap \mathbb{Z}^{n+1} \to \{+, -\}$. Similarly for transversal intersections of tropical hypersurfaces (Sturmfels 1994). Oriented matroids in tropical geometry

Oriented matroids

An oriented matroid \mathcal{M} on E is a collection $\mathcal{C} \subseteq \{0, +, -\}^{E}$ "covectors" satisfying some axioms.

The **topes** of \mathcal{M} are the covectors in $\{+, -\}^{\mathcal{E}}$.

Theorem (Folkman-Lawrence 1978)

Every oriented matroid can be represented by an arrangement of pseudohyperplanes.

From oriented matroids to matroids

Every oriented matroid \mathcal{M} has an underlying matroid $M = \underline{\mathcal{M}}$ with lattice of flats

$$\mathcal{L}_M = { Supp(C)^c \mid C \in C }.$$

- Graphs and vector configurations/hyperplane arrangements ~> matroids.

From oriented matroids to matroids

Every oriented matroid \mathcal{M} has an underlying matroid $M = \underline{\mathcal{M}}$ with lattice of flats

$$\mathcal{L}_M = \{ \mathsf{Supp}(C)^c \mid C \in \mathcal{C} \}.$$

- Graphs and vector configurations/hyperplane arrangements ~> matroids.
- Oriented graphs and vector configurations/hyperplane arrangements over R
 oriented matroids.

Not every matroid is orientable!

```
Theorem (Richter-Gebert 1999)
```

Determining orientability of a matroid is an NP-complete problem.

Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(M). The tropicalisation of a linear space $L \subset \mathbb{K}^N$ depends only on its matroid:

 $Trop(L) = Trop(M_L).$

Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(M). The tropicalisation of a linear space $L \subset \mathbb{K}^N$ depends only on its matroid:

 $Trop(L) = Trop(M_L).$

When $\mathbb{K}=\mathbb{C}$ or $\mathbb{R},$ the tropicalisation is

$$\mathsf{Trop}(L) := \lim_{t \to \infty} \mathsf{Log}_t(L),$$

where $\text{Log}_t(z_1, \ldots, z_N) = (log_t | z_1 |, \ldots, log_t | z_N |)$

Matroid fans

The set Trop(M) is the support of the Ardila-Klivans fan.

Definition (Ardila-Klivans 2006)

The Ardila-Klivans fan of M is the unimodular fan

$$\tilde{\Sigma}_{M} = \{\sigma_{\mathcal{F}} = \langle v_{F_{1}}, \dots, v_{F_{k}}, \pm v_{E} \rangle_{\geq 0}\}$$
 in \mathbb{R}^{E}

where $\mathcal{F} = \emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_k \subsetneq E$ is a chain of flats and $v_l = -\sum_{i \in I} e_i$.

The projective fan Σ_M is the image of $\tilde{\Sigma}_M$ in $\mathbb{R}^E / \langle v_E \rangle$.

The projective Ardila-Klivans fan Σ_M is a Minkowski weight (i.e. cohomology class) of the permutahedral toric variety Y_{Π_E} .

Encoding a matroid orientation

▶ If M is an orientation of M, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_M$

 $\mathcal{E}_{\mathcal{M}}(\sigma_{\mathcal{F}}) := \big\{ \text{topes of } \mathcal{M} \text{ adjacent to } \mathcal{F} \big\} \subset \{+,-\}^{\mathcal{E}}.$

Encoding a matroid orientation

• If \mathcal{M} is an orientation of M, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_M$

$$\mathcal{E}_{\mathcal{M}}(\sigma_{\mathcal{F}}):=ig\{ ext{topes of }\mathcal{M} ext{ adjacent to }\mathcal{F}ig\}\subset \{+,-\}^{E}ig\}$$

► For a linear space $L \subset \mathbb{R}^{E}$, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_{M_{L}}$

$$\mathcal{E}_{L}(\sigma_{\mathcal{F}}) = \{ \varepsilon \in \{+,-\}^{E} \mid \sigma_{\mathcal{F}} \subset \operatorname{Trop}(L \cap \mathbb{R}_{\varepsilon}^{E}) \},\$$

where $\mathbb{R}_{\varepsilon}^{E} = \{(\varepsilon_{1}x_{1}, \dots, \varepsilon_{|E|}x_{|E|}) \mid x_{i} > 0\} \subset \mathbb{R}^{E}$. See real tropicalization of Jell-Scheiderer-Yu.

Properties of \mathcal{E}

Identify $\{+,-\}$ with the field $\mathbb{Z}_2=\{0,1\}$ via:

 $+\mapsto 0$ and $-\mapsto 1.$

Then $\{+,-\}^{E}$ inherits the structure of a vector space.

Notice: $\mathcal{E}(\sigma_{1,123}) = \{+++,-++,---,+--\} \cong \langle v_1, v_E \rangle_{\mathbb{Z}_2}$ $\mathcal{E}(\sigma_{3,123}) = \{-+-,-++,-+-,+--\} \cong (1,0,1) + \langle v_3, v_E \rangle_{\mathbb{Z}_2}$

Properties of \mathcal{E}

Identify $\{+,-\}$ with the field $\mathbb{Z}_2=\{0,1\}$ via:

 $+\mapsto 0$ and $-\mapsto 1$.

Then $\{+,-\}^{E}$ inherits the structure of a vector space.

Notice: $\mathcal{E}(\sigma_{1,123}) = \{+++,-++,---,+--\} \cong \langle v_1, v_E \rangle_{\mathbb{Z}_2}$ $\mathcal{E}(\sigma_{3,123}) = \{-+-,-++,-+-,+--\} \cong (1,0,1) + \langle v_3, v_E \rangle_{\mathbb{Z}_2}$

Lemma

If $\sigma_{\mathcal{F}}$ is a facet of $\tilde{\Sigma}_M$, then $\mathcal{E}_{\bullet}(\sigma_{\mathcal{F}})$ is an affine subspace of $\{+,-\}^E \cong \mathbb{Z}_2^E$ and

$$\mathcal{E}_{\bullet}(\tau_{\mathcal{F}}) = \bigcup_{\substack{\tau_{\mathcal{F}} \subset \sigma_{\mathcal{F}'} \\ \sigma_{\mathcal{F}'} \in \mathsf{Facets}(\tilde{\Sigma}_{\mathcal{M}})}} \mathcal{E}_{\bullet}(\sigma_{\mathcal{F}'}).$$

Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a *d*-dimensional rational polyhedral fan $\Sigma \subset \mathbb{R}^N$ is a map:

$$\mathcal{E}: \mathsf{Facets}(\Sigma) \to \mathsf{Aff}_d((\mathbb{Z}_2)^N)$$

satisfying

Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a *d*-dimensional rational polyhedral fan $\Sigma \subset \mathbb{R}^N$ is a map:

$$\mathcal{E}: \mathsf{Facets}(\Sigma) \to \mathsf{Aff}_d((\mathbb{Z}_2)^N)$$

satisfying

- R1 $\forall \sigma \in \text{Facets}(\Sigma)$, $\mathcal{E}(\sigma)$ is parallel to $\langle \sigma \rangle_{\mathbb{Z}_2}$.
- R2 $\forall \tau$ of codimension 1 in Σ with facets $\sigma_1, \ldots, \sigma_k \supset \tau$, the multiset

$$\mathcal{E}(\sigma_1) \dot{\cup} \dots \dot{\cup} \mathcal{E}(\sigma_k)$$

is an even covering. "Real balancing condition".

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

To recover \mathcal{M} from a real phase structure \mathcal{E} on Σ_M , use the oriented matroid extension property and a deletion-contraction argument:

• \mathcal{E} induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M\setminus e}$,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

- ▶ \mathcal{E} induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M\setminus e}$,
- ▶ by induction these correspond to orientations of M/e and $M \setminus e$,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

- ▶ \mathcal{E} induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M\setminus e}$,
- ▶ by induction these correspond to orientations of M/e and $M \setminus e$,
- ▶ verify that the orientation of M/e is a quotient of the orientation of $M \setminus e$,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

- ▶ \mathcal{E} induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M\setminus e}$,
- ▶ by induction these correspond to orientations of M/e and $M \setminus e$,
- ▶ verify that the orientation of M/e is a quotient of the orientation of $M \setminus e$,
- \blacktriangleright use the corank one oriented matroid extension property to cook up an orientation ${\cal M}$ of ${\it M},$

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Proof.

The map $\mathcal{E}_{\mathcal{M}}$ satisfies R1 and also R2 by the diamond property of \mathcal{C} .

- ▶ \mathcal{E} induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M\setminus e}$,
- ▶ by induction these correspond to orientations of M/e and $M \setminus e$,
- ▶ verify that the orientation of M/e is a quotient of the orientation of $M \setminus e$,
- use the corank one oriented matroid extension property to cook up an orientation \mathcal{M} of M,
- show $\mathcal{E}_{\mathcal{M}} = \mathcal{E}$ (up to reorientation).

Patchworking the real part

For Σ equipped with a real phase structure \mathcal{E} , the **real part** is

Patchworking the real part

For Σ equipped with a real phase structure \mathcal{E} , the real part is

Proposition

If $M = M_L$ for $L \subset \mathbb{R}^N$, then $\mathbb{R}_{\mathcal{E}_I} \Sigma_{M_I}$ is the real tropicalisation of L

$$\mathit{Trop}_{\mathbb{R}}(\mathit{L}) := \bigsqcup_{arepsilon \in \mathbb{Z}_2^N} \mathit{Trop}(\mathit{L} \cap \mathbb{R}_{arepsilon}^N) \subset \bigsqcup_{arepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(arepsilon).$$

The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS) The positive part $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_{M} \cap \mathbb{R}^{\mathcal{E}}(+\cdots+)$ is homeomorphic to \mathbb{R}^{d+1} . The compactification $\overline{\mathbb{R}_{\mathcal{E}}} \tilde{\Sigma}_{M} \subset \mathbb{R}^{\mathcal{E}}$ is homeomorphic to \mathbb{R}^{d+1} . The subcomplexes $\overline{\mathbb{R}_{\mathcal{E}}} \tilde{\Sigma}_{M} \cap \{x_{i} = 0\}$ form a pseudohyperplane arrangement with associated oriented matroid $\mathcal{M}_{\mathcal{E}}$.

There is also a **valuated matroid** version (Celaya-Loho-Yuen 2022 and Olarte-Rincón-Smith 2024+).

The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS) The positive part $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_{M} \cap \mathbb{R}^{\mathcal{E}}(+\cdots+)$ is homeomorphic to \mathbb{R}^{d+1} . The compactification $\overline{\mathbb{R}_{\mathcal{E}}} \tilde{\Sigma}_{M} \subset \mathbb{R}^{\mathcal{E}}$ is homeomorphic to \mathbb{R}^{d+1} . The subcomplexes $\overline{\mathbb{R}_{\mathcal{E}}} \tilde{\Sigma}_{M} \cap \{x_{i} = 0\}$ form a pseudohyperplane arrangement with associated oriented matroid $\mathcal{M}_{\mathcal{E}}$.

There is also a **valuated matroid** version (Celaya-Loho-Yuen 2022 and Olarte-Rincón-Smith 2024+).

Theorem (RRS 2023)

Let $M = M_L$ for a \mathbb{R} -linear space L, then

$$\overline{\mathbb{R}_{\mathcal{E}}\,\Sigma_M}_{\geq 0} \subset \mathbb{R}\,P^N_{\geq 0}$$

is a standard pair of discs. (Similarly for $\overline{\mathbb{R}_{\mathcal{E}} \Sigma_M}_{\geq 0} \subset \mathbb{R} Y_{\Sigma \geq 0}$ when Σ_M is a union of cones of Σ .)

Question: Do there exist wild embeddings $\overline{\mathbb{R}_{\mathcal{E}} \Sigma}_M \subseteq \overline{\mathbb{R}_{\mathcal{E}'} \Sigma}_{M'}$?

The real part and real toric varieties

The space $\bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon)$ is homeomorphic to the real torus $(\mathbb{R}^*)^N$ which is a subset of a real toric variety $\mathbb{R} Y_{\Sigma'}$ from a fan Σ' in \mathbb{R}^N .

 $\mathsf{Consider} \bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon) \cong (\mathbb{R}^*)^N \subset \mathbb{R} \; Y_{\Sigma'} \text{ and the closure } \overline{\mathbb{R}_{\mathcal{E}} \; \Sigma} \subset \mathbb{R} \; Y_{\Sigma'}.$

E.g. Obtain closures of $\mathbb{R}_{\mathcal{E}} \Sigma$ in \mathbb{R}^N , $\mathbb{R} P^N$, $(\mathbb{R} P^1)^N$, $\mathbb{R} Y_{\Pi_E} \dots$

The real part and real toric varieties

The space $\bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon)$ is homeomorphic to the real torus $(\mathbb{R}^*)^N$ which is a subset of a real toric variety $\mathbb{R} Y_{\Sigma'}$ from a fan Σ' in \mathbb{R}^N .

 $\mathsf{Consider} \bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon) \cong (\mathbb{R}^*)^N \subset \mathbb{R} \; Y_{\Sigma'} \text{ and the closure } \overline{\mathbb{R}_{\mathcal{E}} \; \Sigma} \subset \mathbb{R} \; Y_{\Sigma'}.$

E.g. Obtain closures of $\mathbb{R}_{\mathcal{E}} \Sigma$ in \mathbb{R}^N , $\mathbb{R} P^N$, $(\mathbb{R} P^1)^N$, $\mathbb{R} Y_{\Pi_E} \dots$

Proposition (RRS 2022)

Suppose Σ is a d-dimensional subfan of Σ' and let \mathcal{E} be a real phase structure on Σ . Then $\mathbb{R}_{\mathcal{E}} \Sigma$ is a closed cellular chain in $C_d(\mathbb{R} Y_{\Sigma'}; \mathbb{Z}_2)$ and we have

 $[\mathbb{R}_{\mathcal{E}} \Sigma] \in H_d(\mathbb{R} Y_{\Sigma'}; \mathbb{Z}_2).$

Obstruction to matroid orientability from toric geometry

If *M* is a matroid on *E*, then Σ_M is a subfan of the permutahedral fan Π_E . There is an inclusion of toric varieties:

 $i: \mathbb{R} Y_{\Sigma_M} \to \mathbb{R} Y_{\Pi_E}.$

Theorem (S.)

Let $d = \dim \Sigma_M$. If the map

$$i_*: H_d(\mathbb{R} Y_{\Sigma_M}; \mathbb{Z}_2) \to H_d(\mathbb{R} Y_{\Pi_E}; \mathbb{Z}_2)$$

is 0 then M is not orientable.

Obstruction to matroid orientability from toric geometry

If *M* is a matroid on *E*, then Σ_M is a subfan of the permutahedral fan Π_E . There is an inclusion of toric varieties:

 $i: \mathbb{R} Y_{\Sigma_M} \to \mathbb{R} Y_{\Pi_E}.$

Theorem (S.)

Let $d = \dim \Sigma_M$. If the map

$$i_*: H_d(\mathbb{R} Y_{\Sigma_M}; \mathbb{Z}_2) \to H_d(\mathbb{R} Y_{\Pi_E}; \mathbb{Z}_2)$$

is 0 then M is not orientable.

- The image of i_{*} is either 0 or 1 dimensional.
- The map is 0 for the Fano matroid (first known non-orientable matroid).
- Unknown if the converse holds!

Patchworking beyond codimension one

Patchworking for locally matroidal spaces

A real phase structure on a *d*-dimensional polyhedral complex X in \mathbb{R}^N is a map

$$\mathcal{E}: \mathsf{Facets}(X) \to \mathsf{Aff}_d(\mathbb{Z}_2^N)$$

satisfying R1 and R2.

Theorem (RRS 2023)

Let X be a locally matroidal tropical variety equipped with a real phase structure \mathcal{E} . Then $\mathbb{R}_{\mathcal{E}} X$ is a PL-manifold.

Moreover,

$$b_q(\mathbb{R}_{\mathcal{E}} X) \leq \sum \dim H^{trop}_{p,q}(X;\mathbb{Z}_2),$$

where $H_{p,q}^{trop}(X; \mathbb{Z}_2)$ are tropical homology groups.

Proof summary

1) Rewrite the cellular chain groups

$$C_{\bullet}(\mathbb{R}_{\mathcal{E}} X; \mathbb{Z}_2) = \bigoplus_{\sigma \in X} (\bigoplus_{\varepsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2),$$

and identify $(\bigoplus_{\epsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_{σ} .

Proof summary

1) Rewrite the cellular chain groups

$$C_{\bullet}(\mathbb{R}_{\mathcal{E}} X; \mathbb{Z}_2) = \bigoplus_{\sigma \in X} (\bigoplus_{\varepsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2),$$

and identify $(\bigoplus_{\epsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_{σ} .

2) Adapt Quillen's filtration to the tope space of a matroid, or equivalently Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).

Proof summary

1) Rewrite the cellular chain groups

$$C_{\bullet}(\mathbb{R}_{\mathcal{E}} X; \mathbb{Z}_2) = \bigoplus_{\sigma \in X} (\bigoplus_{\varepsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2),$$

and identify $(\bigoplus_{\epsilon \in \mathcal{E}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_{σ} .

2) Adapt Quillen's filtration to the tope space of a matroid, or equivalently Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).

3) Identity the first page of this spectral sequence as the tropical homology groups of X:

$$E^1_{p,q} = H^{trop}_{p,q}(X;\mathbb{Z}_2).$$

[In the case of hypersurfaces we can prove that

$$\dim H^{trop}_{p,q}(X;\mathbb{Z}_2) = \dim H^{trop}_{p,q}(X;\mathbb{Q}) = \dim H^{p,q}(\mathbb{C} V_f)$$

using (Arnal-Renaudineau-S. 2021) and (Itenberg-Katzarkov-Mikhalkin-Zharkov 2019). See also (Brugallé-López de Medrano-Rau 2022) for generalisations.]

A generalised patchworking homeomorphism

Let $\mathcal{X} \to \mathcal{D}^*$ be a real family of subvarieties of a toric variety Y_{Σ} over the punctured disc \mathcal{D}^* . If the tropicalisation $X = \operatorname{Trop}(\mathcal{X})$ is locally matroidal (or more generally weight 1), then it comes with a real phase structure \mathcal{E} .

Theorem (RRS 2023)

If Trop(X) = X is locally matroidal, then for t sufficiently large there is a homeomorphism of pairs

$$(\mathbb{R} Y_{\Sigma}, \mathbb{R} \mathcal{X}_t) \cong (\mathbb{R} Y_{\Sigma}, \mathbb{R}_{\mathcal{E}} X).$$

Moreover,

$$b_q(\mathbb{R} \ \mathcal{X}_t) \leq \sum \dim H^{trop}_{
ho,q}(X;\mathbb{Z}_2) \qquad ext{and} \qquad \chi(\mathbb{R} \ \mathcal{X}_t) = \sigma(\mathbb{C} \ \mathcal{X}_t).$$

Thank you!