Patchworking in higher codimension and oriented matroids

Kris Shaw University of Oslo

FPSAC 2024 - Ruhr University Bochum July 22-26, 2024

Viro's unimodular combinatorial patchworking

Input:

1) a regular unimodular subdivision of $d\Delta_{n+1}$ (the $n+1$ dim simplex of size d). 2) a choice of signs $\epsilon(a) \in \{+, -\}$ for each $a \in \mathbb{Z}^{n+1} \cap d\Delta_{n+1}$.

Output:

an *n*-dimensional polyhedral complex $P \subset \mathbb{R} P^{n+1}$.

Viro's unimodular combinatorial patchworking

Input:

1) a regular unimodular subdivision of $d\Delta_{n+1}$ (the $n+1$ dim simplex of size *d*). 2) a choice of signs $\epsilon(a) \in \{+, -\}$ for each $a \in \mathbb{Z}^{n+1} \cap d\Delta_{n+1}$.

Output:

an *n*-dimensional polyhedral complex $P \subset \mathbb{R} P^{n+1}$.

The patchworking theorem

Theorem (Viro 1984)

There exists a homogeneous polynomial $f(x_0, \ldots, x_{n+1})$ *of degree d and a homeomorphism of pairs*

Take *t* sufficiently large and *f* to be the homogenization of

$$
F_t(x_0,\ldots,x_{n+1})=\sum_{a\in\mathbb{Z}^{n+1}\,\cap\, d\Delta_{n+1}}\epsilon(a)t^{\alpha(a)}\underline{x}^a.
$$

Topology of patchworked hypersurfaces

Theorem (Bertrand 2006)

If \mathbb{R} $V_f \subset \mathbb{R}$ P^{n+1} *is obtained by unimodular patchworking then*

$$
\chi(\mathbb{R} V_f) = \sigma(\mathbb{C} V_f) := \sum_{n=p+q} (-1)^q \dim \mathrm{H}^{p,q}(\mathbb{C} V_f).
$$

Theorem (Renaudineau-S. 2023)

If \mathbb{R} $V_f \subset \mathbb{R}$ P^{n+1} *is obtained by unimodular patchworking then*

$$
b_q(\mathbb{R} V_f) \leq \sum_p \dim H^{p,q}(\mathbb{C} V_f)
$$

where $H^n(\mathbb{C} V_f; \mathbb{C}) = \bigoplus_{q=0}^n H^{n-q,q}(\mathbb{C} V_f)$ *is the* **Hodge decomposition**.

A tropical approach to patchworking

The family of hypersurfaces V_{F_t} has tropicalisation dual to the subdivision of $d\Delta_{n+1}$ and **real tropicalisation** (Jell-Scheiderer-Yu) homeomorphic to \mathcal{P} .

Motivational question: What encodes a real structure on a tropical variety?

For a tropical hypersurface: the sign choices ϵ : $d\Delta_{n+1} \cap \mathbb{Z}^{n+1} \to \{+, -\}.$ Similarly for transversal intersections of tropical hypersurfaces (Sturmfels 1994). Oriented matroids in tropical geometry

Oriented matroids

An oriented matroid M on *E* is a collection $C \subseteq \{0, +, -\}^E$ "covectors" satisfying some axioms.

$$
\mathcal{C}_{\mathcal{A}} = \{(\textsf{sgn}(f_1(\underline{x})), \ldots, \textsf{sgn}(f_n(\underline{x})) \mid x \in \mathbb{R}^d\}
$$

$$
\{000, 0 + +, +0+, + -0, 0 - -, -0-, - +0, + + +, + - +, + - -, - - -, - + -, - + +\}
$$

The **topes** of *M* are the covectors in $\{+, -\}^E$.

Theorem (Folkman-Lawrence 1978)

Every oriented matroid can be represented by an arrangement of pseudohyperplanes.

From oriented matroids to matroids

Every oriented matroid M has an underlying matroid $M = M$ with lattice of flats

$$
\mathcal{L}_M = \{ \mathsf{Supp}(\mathsf{C})^c \mid \mathsf{C} \in \mathcal{C} \}.
$$

- **In Graphs and vector configurations/hyperplane arrangements** \rightsquigarrow **matroids.**
- \triangleright Oriented graphs and vector configurations/hyperplane arrangements over $\mathbb R$ \rightsquigarrow oriented matroids.

From oriented matroids to matroids

Every oriented matroid M has an underlying matroid $M = M$ with lattice of flats

$$
\mathcal{L}_M = \{ \mathsf{Supp}(\mathsf{C})^c \mid \mathsf{C} \in \mathcal{C} \}.
$$

- Graphs and vector configurations/hyperplane arrangements \rightsquigarrow matroids.
- \triangleright Oriented graphs and vector configurations/hyperplane arrangements over $\mathbb R$ \rightsquigarrow oriented matroids.

Not every matroid is orientable!

```
Theorem (Richter-Gebert 1999)
```
Determining orientability of a matroid is an NP-complete problem.

Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(*M*)*. The tropicalisation of a linear space* $L \subset \mathbb{K}^N$ *depends only on its matroid:*

 $Trop(L) = Trop(M_L)$.

Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(*M*)*. The tropicalisation of a linear space* $L \subset \mathbb{K}^N$ *depends only on its matroid:*

 $Trop(L) = Trop(M_L)$.

When $\mathbb{K} = \mathbb{C}$ or \mathbb{R} , the tropicalisation is

$$
\mathsf{Trop}(L) := \lim_{t \to \infty} \mathsf{Log}_t(L),
$$

 \mathcal{L} where $\text{Log}_t(z_1,\ldots,z_N) = (log_t|z_1|,\ldots,log_t|z_N|)$

Matroid fans

The set Trop(*M*) is the support of the Ardila-Klivans fan.

Definition (Ardila-Klivans 2006)

The Ardila-Klivans fan of *M* is the unimodular fan

 $\tilde{\Sigma}_M = \{\sigma_{\mathcal{F}} = \langle \mathsf{v}_{F_1}, \ldots, \mathsf{v}_{F_k}, \pm \mathsf{v}_{E}\rangle \geq 0\}$ in \mathbb{R}^E

where $\mathcal{F} = \emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_k \subsetneq E$ is a chain of flats and $v_I = -\sum_{i \in I} e_i$.

The projective fan Σ_M is the image of $\tilde{\Sigma}_M$ in $\mathbb{R}^E/\langle v_E \rangle$.

The projective Ardila-Klivans fan Σ_M is a Minkowski weight (i.e. cohomology class) of the permutahedral toric variety $Y_{\Pi_{\epsilon}}$.

Encoding a matroid orientation

If *M* is an orientation of *M*, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_M$

 $\mathcal{E}_{\mathcal{M}}(\sigma_{\mathcal{F}}) := \left\{ \text{topes of } \mathcal{M} \text{ adjacent to } \mathcal{F} \right\} \subset \left\{ +, - \right\}^E.$

Encoding a matroid orientation

If *M* is an orientation of *M*, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_M$

$$
\mathcal{E}_{\mathcal{M}}(\sigma_{\mathcal{F}}) := \big\{ \text{topes of } \mathcal{M} \text{ adjacent to } \mathcal{F} \big\} \subset \{+, -\}^E.
$$

For a linear space $L \subset \mathbb{R}^E$, define for $\sigma_{\mathcal{F}} \in \tilde{\Sigma}_{M_L}$

$$
\mathcal{E}_L(\sigma_{\mathcal{F}}) = \{ \varepsilon \in \{+, -\}^E \mid \sigma_{\mathcal{F}} \subset \mathsf{Trop}(L \cap \mathbb{R}_{\varepsilon}^E) \},
$$

 $\mathbb{R}^E = \{ (\varepsilon_1 x_1, \ldots, \varepsilon_{|E|} x_{|E|}) \mid x_i > 0 \} \subset \mathbb{R}^E$. See real tropicalization of Jell-Scheiderer-Yu.

Properties of *E*

Identify $\{+, -\}$ with the field $\mathbb{Z}_2 = \{0, 1\}$ via:

 $+ \mapsto 0$ and $- \mapsto 1$.

Then $\{+, -\}^E$ inherits the structure of a vector space.

Notice: $\mathcal{E}(\sigma_{1,123}) = \{+++,-++,---,+--\} \cong \langle v_1, v_E \rangle_{\mathbb{Z}_2}$ $\mathcal{E}(\sigma_{3,123}) = \{- + -,- + +,- + -,+- -\} \cong (1,0,1) + \langle v_3, v_4 \rangle_{\mathbb{Z}_2}$

Properties of *E*

Identify $\{+, -\}$ with the field $\mathbb{Z}_2 = \{0, 1\}$ via:

 $+ \mapsto 0$ and $- \mapsto 1$.

Then $\{+, -\}^E$ inherits the structure of a vector space.

Notice: $\mathcal{E}(\sigma_{1,123}) = \{+++,-++,---,+--\} \cong \langle v_1, v_E \rangle_{\mathbb{Z}_2}$ $\mathcal{E}(\sigma_{3,123}) = \{- + -,- + +,- + -,+- -\} \cong (1,0,1) + \langle v_3, v_4 \rangle_{\mathbb{Z}_2}$

Lemma

If σ *_F is a facet of* $\tilde{\Sigma}_M$ *, then* $\mathcal{E}_{\bullet}(\sigma_{\mathcal{F}})$ *<i>is an affine subspace of* $\{+,-\}^E\cong\mathbb{Z}_2^E$ *and*

$$
\mathcal{E}_{\bullet}(\tau_{\mathcal{F}}) = \bigcup_{\substack{\tau_{\mathcal{F}} \subset \sigma_{\mathcal{F}}' \\ \sigma_{\mathcal{F}} \in \text{Facets}(\tilde{\Sigma}_M)}} \mathcal{E}_{\bullet}(\sigma_{\mathcal{F}'}).
$$

Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a *d*-dimensional rational polyhedral fan $\Sigma \subset \mathbb{R}^N$ is a map:

$$
\mathcal{E}:\mathsf{Facets}(\Sigma)\to \mathsf{Aff}_d((\mathbb{Z}_2)^N)
$$

satisfying

Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a *d*-dimensional rational polyhedral fan $\Sigma \subset \mathbb{R}^N$ is a map:

$$
\mathcal{E} : \mathsf{Facets}(\Sigma) \to \mathsf{Aff}_d((\mathbb{Z}_2)^N)
$$

satisfying

- R1 $\forall \sigma \in \text{Facets}(\Sigma)$, $\mathcal{E}(\sigma)$ is parallel to $\langle \sigma \rangle_{\mathbb{Z}_2}$.
- R2 $\forall \tau$ of codimension 1 in Σ with facets $\sigma_1, \ldots, \sigma_k \supset \tau$, the multiset

 $E(\sigma_1)$ \cup \ldots \cup $E(\sigma_k)$

is an even covering. "Real balancing condition".

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ (or Σ_M) is cryptomorphic to an orientation of M.

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C}_M .

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C} .

To recover M from a real phase structure $\mathcal E$ on Σ_M , use the oriented matroid extension property and a deletion-contraction argument:

 \triangleright *E* induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M \setminus e}$,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C}_M .

- \triangleright *E* induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M \setminus e}$,
- \blacktriangleright by induction these correspond to orientations of M/e and $M\geq e$,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C}_M .

- \triangleright *E* induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M \setminus e}$,
- \blacktriangleright by induction these correspond to orientations of M/e and $M\geq e$,
- \triangleright verify that the orientation of M/e is a quotient of the orientation of $M\$ e,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C}_M .

- \triangleright *E* induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M \setminus e}$,
- by induction these correspond to orientations of M/e and M/e ,
- \triangleright verify that the orientation of M/e is a quotient of the orientation of $M\$ e,
- \triangleright use the corank one oriented matroid extension property to cook up an orientation *M* of *M*,

Theorem (RRS 2022)

A real phase structure on $\tilde{\Sigma}_M$ *(or* Σ_M *) is cryptomorphic to an orientation of M.*

Proof.

The map \mathcal{E}_M satisfies R1 and also R2 by the diamond property of \mathcal{C}_M .

To recover M from a real phase structure $\mathcal E$ on Σ_M , use the oriented matroid extension property and a deletion-contraction argument:

- \triangleright *E* induces real phase structures on $\Sigma_{M/e}$ and $\Sigma_{M \setminus e}$,
- by induction these correspond to orientations of M/e and M/e ,
- \triangleright verify that the orientation of M/e is a quotient of the orientation of $M\$ e,

П

- \triangleright use the corank one oriented matroid extension property to cook up an orientation *M* of *M*,
- In show $\mathcal{E}_M = \mathcal{E}$ (up to reorientation).

Patchworking the real part

For Σ equipped with a real phase structure \mathcal{E} , the real part is

Patchworking the real part

For Σ equipped with a real phase structure \mathcal{E} , the real part is

Proposition

If $M = M_L$ for $L \subset \mathbb{R}^N$, then $\mathbb{R}_{\mathcal{E}_L} \Sigma_{M_L}$ is the real tropicalisation of L

$$
\mathit{Trop}_{\mathbb{R}}(L):=\bigsqcup_{\varepsilon\in\mathbb{Z}_2^N}\mathit{Trop}(L\cap\mathbb{R}_{\varepsilon}^N)\subset\bigsqcup_{\varepsilon\in\mathbb{Z}_2^N}\mathbb{R}^N(\varepsilon).
$$

The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS) *The positive part* $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_M \cap \mathbb{R}^{\mathcal{E}}$ (+ ··· +) *is homeomorphic to* \mathbb{R}^{d+1} *. The compactification* $\overline{\mathbb{R}_{\mathcal{E}}\Sigma_M} \subset \mathbb{R}^E$ *is homeomorphic to* \mathbb{R}^{d+1} *. The subcomplexes* $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_M \cap \{x_i = 0\}$ *form a pseudohyperplane arrangement with associated oriented matroid ME.*

There is also a valuated matroid version (Celaya-Loho-Yuen 2022 and Olarte-Rincón-Smith 2024+).

The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS) *The positive part* $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_M \cap \mathbb{R}^{\mathcal{E}}$ (+ ··· +) *is homeomorphic to* \mathbb{R}^{d+1} . *The compactification* $\overline{\mathbb{R}_{\mathcal{E}}\Sigma_M} \subset \mathbb{R}^E$ *is homeomorphic to* \mathbb{R}^{d+1} *. The subcomplexes* $\mathbb{R}_{\mathcal{E}} \tilde{\Sigma}_M \cap \{x_i = 0\}$ *form a pseudohyperplane arrangement with associated oriented matroid ME.*

There is also a valuated matroid version (Celaya-Loho-Yuen 2022 and Olarte-Rincón-Smith $2024+$).

Theorem (RRS 2023)

Let $M = M_l$ *for a* \mathbb{R} *-linear space L, then*

$$
\overline{\R_{\mathcal{E}}\Sigma_M}_{\geq 0}\subset \R\,P^N_{\geq 0}
$$

is a standard pair of discs. (Similarly for $\overline{\mathbb{R}_{\mathcal{E}}\Sigma_M}{}_{>0} \subset \mathbb{R}$ *Y*_{$\Sigma>0$} when Σ_M *is a union of cones of* Σ *.)*

Question: Do there exist wild embeddings $\overline{\mathbb{R}_{\mathcal{E}}\Sigma_M} \subset \overline{\mathbb{R}_{\mathcal{E}'}\Sigma_M}$?

The real part and real toric varieties

The space $\bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon)$ is homeomorphic to the real torus $(\mathbb{R}^*)^N$ which is a subset of a real toric variety \mathbb{R} Y_{Σ} from a fan Σ' in \mathbb{R}^N .

 $\mathsf{Consider}\,\bigsqcup_{\varepsilon\in\mathbb{Z}_2^N}\mathbb{R}^N(\varepsilon)\cong \left(\mathbb{R}^*\right)^N\subset\mathbb{R}$ $\mathsf{Y}_{\Sigma'}$ and the closure $\overline{\mathbb{R}_\mathcal{E}\Sigma}\subset\mathbb{R}$ $\mathsf{Y}_{\Sigma'}.$

E.g. Obtain closures of $\mathbb{R}_{\mathcal{E}} \Sigma$ in $\mathbb{R}^N, \mathbb{R} P^N$, $(\mathbb{R} P^1)^N, \mathbb{R} Y_{\Pi_E} \dots$

The real part and real toric varieties

The space $\bigsqcup_{\varepsilon \in \mathbb{Z}_2^N} \mathbb{R}^N(\varepsilon)$ is homeomorphic to the real torus $(\mathbb{R}^*)^N$ which is a subset of a real toric variety \mathbb{R} Y_{Σ} from a fan Σ' in \mathbb{R}^N .

 $\mathsf{Consider}\,\bigsqcup_{\varepsilon\in\mathbb{Z}_2^N}\mathbb{R}^N(\varepsilon)\cong \left(\mathbb{R}^*\right)^N\subset\mathbb{R}$ $\mathsf{Y}_{\Sigma'}$ and the closure $\overline{\mathbb{R}_\mathcal{E}\Sigma}\subset\mathbb{R}$ $\mathsf{Y}_{\Sigma'}.$

E.g. Obtain closures of $\mathbb{R}_{\mathcal{E}} \Sigma$ in $\mathbb{R}^N, \mathbb{R} P^N$, $(\mathbb{R} P^1)^N, \mathbb{R} Y_{\Pi_E} \dots$

Proposition (RRS 2022)

Suppose Σ *is a d-dimensional subfan of* Σ' *and let* $\mathcal E$ *be a real phase structure on* Σ *. Then* $\mathbb{R}_{\mathcal{E}}$ Σ *is a closed cellular chain in* $C_d(\mathbb{R} Y_{\Sigma}$ *;* $\mathbb{Z}_2)$ *and we have*

 $[\mathbb{R}_{\mathcal{E}} \Sigma] \in H_d(\mathbb{R} Y_{\Sigma'}; \mathbb{Z}_2).$

Obstruction to matroid orientability from toric geometry

If *M* is a matroid on *E*, then Σ_M is a subfan of the permutahedral fan Π_E . There is an inclusion of toric varieties:

 $i : \mathbb{R} Y_{\Sigma_M} \to \mathbb{R} Y_{\Pi_{\mathcal{F}}}$.

Theorem (S.)

Let $d = \dim \Sigma_M$ *. If the map*

$$
i_*: H_d(\mathbb{R} Y_{\Sigma_M};\mathbb{Z}_2) \to H_d(\mathbb{R} Y_{\Pi_E};\mathbb{Z}_2)
$$

is 0 *then M is not orientable.*

Obstruction to matroid orientability from toric geometry

If *M* is a matroid on *E*, then Σ_M is a subfan of the permutahedral fan Π_E . There is an inclusion of toric varieties:

 $i : \mathbb{R} Y_{\Sigma_M} \to \mathbb{R} Y_{\Pi_{\mathcal{F}}}$.

Theorem (S.)

Let $d = \dim \Sigma_M$ *. If the map*

$$
i_*: H_d(\mathbb{R} Y_{\Sigma_M};\mathbb{Z}_2) \to H_d(\mathbb{R} Y_{\Pi_E};\mathbb{Z}_2)
$$

is 0 *then M is not orientable.*

- The image of i_* is either 0 or 1 dimensional.
- \blacktriangleright The map is 0 for the Fano matroid (first known non-orientable matroid).
- \blacktriangleright Unknown if the converse holds!

Patchworking beyond codimension one

Patchworking for locally matroidal spaces

A real phase structure on a d-dimensional polyhedral complex X in \mathbb{R}^N is a map

$$
\mathcal{E} : \mathsf{Facets}(X) \to \mathsf{Aff}_d(\mathbb{Z}_2^N)
$$

satisfying R1 and R2.

Theorem (RRS 2023)

Let X be a locally matroidal tropical variety equipped with a real phase structure \mathcal{E} *. Then* $\mathbb{R}_{\mathcal{E}}$ *X is a PL-manifold.*

Moreover,

$$
b_q(\mathbb{R}_{\mathcal{E}} X) \leq \sum \dim H_{p,q}^{trop}(X;\mathbb{Z}_2),
$$

where $H_{p,q}^{trop}(X;\mathbb{Z}_2)$ *are* tropical homology groups.

Proof summary

1) Rewrite the cellular chain groups

$$
C_{\bullet}(\mathbb{R}_{\mathcal{E}} X;\mathbb{Z}_2)=\bigoplus_{\sigma\in X}(\bigoplus_{\varepsilon\in \mathcal{E}(\sigma)}\mathbb{Z}_2),
$$

and identify $(\bigoplus_{\varepsilon \in {\mathcal{E}}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_σ .

Proof summary

1) Rewrite the cellular chain groups

$$
C_{\bullet}(\mathbb{R}_{\mathcal{E}} X;\mathbb{Z}_2)=\bigoplus_{\sigma\in X}(\bigoplus_{\varepsilon\in \mathcal{E}(\sigma)}\mathbb{Z}_2),
$$

and identify $(\bigoplus_{\varepsilon \in {\mathcal{E}}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_σ .

2) Adapt Quillen's filtration to the tope space of a matroid, or equivalently Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).

Proof summary

1) Rewrite the cellular chain groups

$$
C_{\bullet}(\mathbb{R}_{\mathcal{E}} X;\mathbb{Z}_2)=\bigoplus_{\sigma\in X}(\bigoplus_{\varepsilon\in \mathcal{E}(\sigma)}\mathbb{Z}_2),
$$

and identify $(\bigoplus_{\varepsilon \in {\mathcal{E}}(\sigma)} \mathbb{Z}_2)$ as the "tope space" of an oriented matroid \mathcal{M}_σ .

2) Adapt Quillen's filtration to the tope space of a matroid, or equivalently Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).

3) Identity the first page of this spectral sequence as the tropical homology groups of *X*:

$$
\mathsf{E}^1_{p,q} = \mathsf{H}^{trop}_{p,q}(X;\mathbb{Z}_2).
$$

[In the case of hypersurfaces we can prove that

$$
\dim H_{p,q}^{trop}(X;\mathbb{Z}_2) = \dim H_{p,q}^{trop}(X;\mathbb{Q}) = \dim H^{p,q}(\mathbb{C} V_f)
$$

using (Arnal-Renaudineau-S. 2021) and (Itenberg-Katzarkov-Mikhalkin-Zharkov 2019). See also (Brugallé-López de Medrano-Rau 2022) for generalisations.]

A generalised patchworking homeomorphism

Let $X \to \mathcal{D}^*$ be a real family of subvarieties of a toric variety Y_{Σ} over the punctured disc \mathcal{D}^* . If the tropicalisation $X = \text{Trop}(\mathcal{X})$ is locally matroidal (or more generally weight 1), then it comes with a real phase structure *E*.

Theorem (RRS 2023)

If Trop $(X) = X$ *is locally matroidal, then for t sufficiently large there is a homeomorphism of pairs*

$$
(\mathbb{R} Y_{\Sigma}, \mathbb{R} \mathcal{X}_t) \cong (\mathbb{R} Y_{\Sigma}, \mathbb{R}_{\mathcal{E}} X).
$$

Moreover,

$$
b_q(\mathbb{R} \mathcal{X}_t) \leq \sum \dim H_{p,q}^{trop}(X; \mathbb{Z}_2) \quad \text{and} \quad \chi(\mathbb{R} \mathcal{X}_t) = \sigma(\mathbb{C} \mathcal{X}_t).
$$

Thank you!