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Viro's unimodular combinatorial patchworking

Input:
1) a regular unimodular subdivision of dA,.+1 (the n+ 1 dim simplex of size d).
2) a choice of signs e(a) € {+, —} for each a € Z™ NdAp41.

Output:
an n-dimensional polyhedral complex P C R P,
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The patchworking theorem

Theorem (Viro 1984)

There exists a homogeneous polynomial f(xo, ..., Xnt1) of degree d and a
homeomorphism of pairs

(RP™ R V;) = (RP™ P).

/_w . Vf

Take t sufficiently large and f to be the homogenization of

Ft(Xov"~aXn+l) = Z E(B)ta(a)la_

acZ"Ml NdA,



Topology of patchworked hypersurfaces

Theorem (Bertrand 2006)

IfR Vs C R P™ is obtained by unimodular patchworking then

X(R Vi) =o(CVy) = > (—1)7dimHP9(CVy).

n=p+q

Theorem (Renaudineau-S. 2023)

IfR Vs C RP™ is obtained by unimodular patchworking then

bg(R Vy) < > dimH”9(C Vj)

P

where H"(C Vf; C) = @;_, H" "9(C V¢) is the Hodge decomposition.



A tropical approach to patchworking

The family of hypersurfaces VF, has tropicalisation dual to the subdivision of
dA,1 and real tropicalisation (Jell-Scheiderer-Yu) homeomorphic to P.

&

Regular subdivision Trop( V&) Tropg(VF,)

Motivational question: What encodes a real structure on a tropical variety?

For a tropical hypersurface: the sign choices ¢ : dA 1 NZ" — {+,-}
Similarly for transversal intersections of tropical hypersurfaces (Sturmfels 1994).



Oriented matroids in tropical geometry



Oriented matroids

An oriented matroid M on E is a collection C C {0,+, —} “covectors”
satisfying some axioms.

1 2
+ 4+ d
Ca = {(sen(f(x)), - sen(fa(x)) | x € R}
-+ + -+
{000,0 + +, +0+,+ — 0,0 — —, —0—, — +0,
3 ++Htt—tt————— =+ —,—++}
-+ +- - The topes of M are the covectors in {+, —}F.

Theorem (Folkman-Lawrence 1978)

Every oriented matroid can be represented by an arrangement of
pseudohyperplanes.



From oriented matroids to matroids

Every oriented matroid M has an underlying matroid M = M with lattice of
flats
Lm = {Supp(C)° | C €C}.

\\// N/

» Graphs and vector configurations/hyperplane arrangements ~~ matroids.

» Oriented graphs and vector configurations/hyperplane arrangements over R
~- oriented matroids.
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» Graphs and vector configurations/hyperplane arrangements ~~ matroids.

» Oriented graphs and vector configurations/hyperplane arrangements over R
~- oriented matroids.

Not every matroid is orientable!

Theorem (Richter-Gebert 1999)

Determining orientability of a matroid is an NP-complete problem.



Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(M).
The tropicalisation of a linear space L C KV depends only on its matroid:

Trop(L) = Trop(M_).



Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(M).
The tropicalisation of a linear space L C KV depends only on its matroid:

Trop(L) = Trop(M_).

il Ao

When K = C or R, the tropicalisation is

Trop(L) := lim Log,(L),

where Log,(zi, ..., zn) = (logt|zi), - . ., logt|zn])



Matroid fans

The set Trop(M) is the support of the Ardila-Klivans fan.
Definition (Ardila-Klivans 2006)
The Ardila-Klivans fan of M is the unimodular fan

Ym= {oFr =(vR,..., VR, LtVE)>0} in RE
where F =0 C FL C--- C Fx C E is a chain of flatsand v, = — >

icl Gi-

The projective fan ¥y is the image of S in RE /{VE).

123
/N

1 2 3
N
0

The projective Ardila-Klivans fan X is a Minkowski weight (i.e. cohomology
class) of the permutahedral toric variety \GI



Encoding a matroid orientation

» If M is an orientation of M, define for o € iM

Em(or) := {topes of M adjacent to F} C {+, —}F.



Encoding a matroid orientation

» If M is an orientation of M, define for o € iM
Em(oF) == {topes of M adjacent to F} C {+,—}".
> For a linear space L C RE, define for o € iML
E(or) ={e € {+,—} | o C Trop(LNR?)},

where RE = {(e1x1,...,e/gXg|) | xi > 0} C RE. See real tropicalization
of Jell-Scheiderer-Yu.

1 2
ot
o o E(o123) = {all topes}
3 Eloras) ={+++,—++,———,+——}
E(oaam) ={—+——++ —+—+——}



Properties of £

Identify {4, —} with the field Z, = {0, 1} via:
+ =0 and — =1

Then {+, —} inherits the structure of a vector space.

Notice:
Elor3) ={+++,—++,—— -+ — =} = (v, vE)z,
E(ospos) ={—+—,—++,—+—+— =} =(1,0,1) + {v3, ve)z,



Properties of £

Identify {4, —} with the field Z, = {0, 1} via:
+ =0 and — =1

Then {+, —} inherits the structure of a vector space.

Notice:
Elor3) ={+++,—++,—— -+ — =} = (v, vE)z,
E(ospos) ={—+—,—++,—+—+— =} =(1,0,1) + {v3, ve)z,

Lemma
If o7 is a facet of ¥, then E4(07) is an affine subspace of {+, —}£ = 75 and

Eo(tr) = U EoloFr).

TFCOoxr
o x1 €Facets(X )



Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a d-dimensional rational polyhedral fan ¥ ¢ RV is a

map:
& : Facets(X) — Affy((Z2)")

satisfying



Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a d-dimensional rational polyhedral fan ¥ ¢ RV is a

map:
& : Facets(X) — Affy((Z2)")

satisfying

R1 Vo € Facets(X), (o) is parallel to (0)z,.

R2 V7 of codimension 1 in ¥ with facets o1,...,0k D 7, the multiset

E(o1)U. .. UE(o%)

is an even covering. “Real balancing condition”.

(Za)?




Real phase structures and matroid orientations

Theorem (RRS 2022)

A real phase structure on ¥ (or Xm) is cryptomorphic to an orientation of M.
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extension property and a deletion-contraction argument:
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Real phase structures and matroid orientations

Theorem (RRS 2022)

A real phase structure on ¥ (or Xm) is cryptomorphic to an orientation of M.

Proof.
The map £ satisfies R1 and also R2 by the diamond property of C.

To recover M from a real phase structure £ on X, use the oriented matroid
extension property and a deletion-contraction argument:

» & induces real phase structures on >/, and e,

» by induction these correspond to orientations of M/e and M\e,

> verify that the orientation of M/e is a quotient of the orientation of M\e,
>

use the corank one oriented matroid extension property to cook up an
orientation M of M,

v

show Eq = £ (up to reorientation).



Patchworking the real part
For X equipped with a real phase structure £, the real part is
Rex= || oe)C || R"(e)=®)".

o €Facets(X) SEZQ’
e€&(o)

PV [ J Ig



Patchworking the real part

For X equipped with a real phase structure £, the real part is

Rex= || oe)C || R"(e)=®)".

o €Facets(X) ggzé\’
e€&(o)
Xp [ ] I &

Proposition

IfM = M, for L C RV, then Re, X, is the real tropicalisation of L

Tropg(L) := |_| Trop(LNRY) ¢ |_| R"(e).

EEZQI EEZQ’



The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS)

The positive part Rg Sun RE(+ -+++) is homeomorphic to RI*
The compactification Re ¥4y C RE is homeomorphic to R,

The subcomplexes Re 5 N {x; = 0} form a pseudohyperplane arrangement
with associated oriented matroid Mg .

There is also a valuated matroid version (Celaya-Loho-Yuen 2022 and
Olarte-Rincén-Smith 2024+).



The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS)

The positive part Rg Sun RE(+ -+++) is homeomorphic to RI*
Rd+1_

The compactification Re ¥y C RE is homeomorphic to

The subcomplexes Re 5 N {x; = 0} form a pseudohyperplane arrangement
with associated oriented matroid Mg .

There is also a valuated matroid version (Celaya-Loho-Yuen 2022 and
Olarte-Rincén-Smith 2024+).

Theorem (RRS 2023)

Let M = M, for a R-linear space L, then
Re Tmso CRPY,

is a standard pair of discs.
(Similarly for Re ¥y>o C R Ys>0 when L is a union of cones of X..)

Question: Do there exist wild embeddings Re Xy C Rer Xy ?



The real part and real toric varieties

The space I_leezg/ R¥(¢) is homeomorphic to the real torus (R*)" which is a

subset of a real toric variety R Y5/ from a fan ¥’ in RV,
Consider |_|€€ZQ, RY(e) 2 (R*)V C R Yy and the closure Re © C R Ys.

E.g. Obtain closures of Re ¥ in RV, R PV, (R PI)N, RYn...



The real part and real toric varieties

The space I_leezg/ R¥(¢) is homeomorphic to the real torus (R*)" which is a

subset of a real toric variety R Y5/ from a fan ¥’ in RV,
Consider |_|€€Z£V RY(e) 2 (R*)V C R Yy and the closure Re © C R Ys.

E.g. Obtain closures of Re ¥ in RV, R PV, (R PI)N, RYn...

Proposition (RRS 2022)

Suppose ¥ is a d-dimensional subfan of ¥’ and let £ be a real phase structure
on X. Then Rg X is a closed cellular chain in C4(R Ys/;Z2) and we have

[Rg Z] (S Hd(R Y):/; Zg).



Obstruction to matroid orientability from toric geometry

If M is a matroid on E, then X is a subfan of the permutahedral fan MNg.
There is an inclusion of toric varieties:

I'ZRY):M—>RYHE.

Theorem (S.)
Let d = dimXy. If the map

[ Hd(R Y):M;Zz) — Hd(R YnE;Zz)

is 0 then M is not orientable.



Obstruction to matroid orientability from toric geometry

If M is a matroid on E, then X is a subfan of the permutahedral fan MNg.
There is an inclusion of toric varieties:

I'ZRY):M—>RYHE.

Theorem (S.)
Let d = dimXy. If the map

i* : Hd(R Y):M; Zz) — Hd(R YnE; Zz)
is 0 then M is not orientable.
» The image of i, is either 0 or 1 dimensional.

» The map is O for the Fano matroid (first known non-orientable matroid).

» Unknown if the converse holds!



Patchworking beyond codimension one



Patchworking for locally matroidal spaces

A real phase structure on a d-dimensional polyhedral complex X in R is a map
& : Facets(X) — Affy(Z5)

satisfying R1 and R2.

Theorem (RRS 2023)

Let X be a locally matroidal tropical variety equipped with a real phase
structure £. Then Re X is a PL-manifold.

Moreover,
bg(Re X) < dim Hy?(X; Z2),

where Hy%(X; Zz2) are tropical homology groups.



Proof summary

1) Rewrite the cellular chain groups

Co(Re X;Z2) = @( @ Z2),

oeX e€&(o)

and identify (€D ) Z2) as the “tope space” of an oriented matroid M,.
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2) Adapt Quillen’s filtration to the tope space of a matroid, or equivalently
Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).



Proof summary

1) Rewrite the cellular chain groups
Co(Re X;Z2) = @( @ Z2),
oeX e€&(o)

and identify (€D ) Z2) as the “tope space” of an oriented matroid M,.

e€€(o

2) Adapt Quillen’s filtration to the tope space of a matroid, or equivalently
Kalinin's or Gelfand-Varchenko's filtration (Yuen-S. 2024+).

3) Identity the first page of this spectral sequence as the tropical homology

groups of X:
1 ro,
Epq= Hftnqp(X;Zﬂ'

[In the case of hypersurfaces we can prove that

dim Hy?(X; Z2) = dim Hy' P (X; Q) = dim H?9(C V;)

using (Arnal-Renaudineau-S. 2021) and (ltenberg-Katzarkov-Mikhalkin-Zharkov

2019). See also (Brugallé-Lépez de Medrano-Rau 2022) for generalisations.]



A generalised patchworking homeomorphism

Let X — D* be a real family of subvarieties of a toric variety Ys over the
punctured disc D*.

If the tropicalisation X = Trop(X’) is locally matroidal (or more generally
weight 1), then it comes with a real phase structure £.

Theorem (RRS 2023)

If Trop(X') = X is locally matroidal, then for t sufficiently large there is a
homeomorphism of pairs

(R Ys, RXt) =~ (R Ys, Re X)
Moreover,

b(RX:) <> dimHy2(X;Z)  and  x(RX:) = o(CX).



Thank you!



