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Viro’s unimodular combinatorial patchworking

Input:
1) a regular unimodular subdivision of d�n+1 (the n+1 dim simplex of size d).
2) a choice of signs ✏(a) 2 {+,�} for each a 2 Zn+1 \d�n+1.

Output:
an n-dimensional polyhedral complex P ⇢ RP

n+1.
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The patchworking theorem

Theorem (Viro 1984)

There exists a homogeneous polynomial f (x0, . . . , xn+1) of degree d and a

homeomorphism of pairs

(RP
n+1,RVf ) ⇠= (RP

n+1,P).

RVf

Take t su�ciently large and f to be the homogenization of

Ft(x0, . . . , xn+1) =
X

a2Zn+1 \d�n+1

✏(a)t↵(a)
x
a.

L



Topology of patchworked hypersurfaces

Theorem (Bertrand 2006)

If RVf ⇢ RP
n+1

is obtained by unimodular patchworking then

�(RVf ) = �(CVf ) :=
X

n=p+q

(�1)q dimHp,q(CVf ).

Theorem (Renaudineau-S. 2023)

If RVf ⇢ RP
n+1

is obtained by unimodular patchworking then

bq(RVf ) 
X

p

dimHp,q(CVf )

where Hn(CVf ;C) =
Ln

q=0 H
n�q,q(CVf ) is the Hodge decomposition.



A tropical approach to patchworking

The family of hypersurfaces VFt has tropicalisation dual to the subdivision of
d�n+1 and real tropicalisation (Jell-Scheiderer-Yu) homeomorphic to P.

Regular subdivision Trop(VFt ) TropR(VFt )

Motivational question: What encodes a real structure on a tropical variety?

For a tropical hypersurface: the sign choices ✏ : d�n+1 \ Zn+1 ! {+,�}.
Similarly for transversal intersections of tropical hypersurfaces (Sturmfels 1994).



Oriented matroids in tropical geometry



Oriented matroids

An oriented matroid M on E is a collection C ✓ {0,+,�}E “covectors”
satisfying some axioms.
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CA = {(sgn(f1(x)), . . . , sgn(fn(x)) | x 2 Rd}

{000, 0 + +,+0+,+� 0, 0��,�0�,�+ 0,
+++,+�+,+��,���,�+�,�++}

The topes of M are the covectors in {+,�}E .

Theorem (Folkman-Lawrence 1978)

Every oriented matroid can be represented by an arrangement of

pseudohyperplanes.



From oriented matroids to matroids

Every oriented matroid M has an underlying matroid M = M with lattice of
flats

LM = {Supp(C)c | C 2 C}.

+0 �00+ 0�

��+� �+++

00

21

;

12

I Graphs and vector configurations/hyperplane arrangements  matroids.

I Oriented graphs and vector configurations/hyperplane arrangements over R
 oriented matroids.

Not every matroid is orientable!

Theorem (Richter-Gebert 1999)

Determining orientability of a matroid is an NP-complete problem.
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Tropicalisation of linear spaces and matroids

Theorem (Sturmfels 2002)

For every matroid M, there is a tropical variety Trop(M).
The tropicalisation of a linear space L ⇢ KN

depends only on its matroid:

Trop(L) = Trop(ML).

When K = C or R, the tropicalisation is

Trop(L) := lim
t!1

Logt(L),

where Logt(z1, . . . , zN) = (logt |z1|, . . . , logt |zN |)
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Matroid fans

The set Trop(M) is the support of the Ardila-Klivans fan.

Definition (Ardila-Klivans 2006)

The Ardila-Klivans fan of M is the unimodular fan

⌃̃M = {�F = hvF1 , . . . , vFk ,±vE i�0} in RE

where F = ; ( F1 ( · · · ( Fk ( E is a chain of flats and vI = �
P

i2I ei .

The projective fan ⌃M is the image of ⌃̃M in RE /hvE i.

2 31

123

;

z1

z2

z2 = �1 � z1

|z1|

|z2|

The projective Ardila-Klivans fan ⌃M is a Minkowski weight (i.e. cohomology
class) of the permutahedral toric variety Y⇧E .



Encoding a matroid orientation

I If M is an orientation of M, define for �F 2 ⌃̃M

EM(�F ) :=
�
topes of M adjacent to F

 
⇢ {+,�}E .

I For a linear space L ⇢ RE , define for �F 2 ⌃̃ML

EL(�F ) = {" 2 {+,�}E | �F ⇢ Trop(L \ RE
" )},

where RE
" = {("1x1, . . . , "|E |x|E |) | xi > 0} ⇢ RE . See real tropicalization

of Jell-Scheiderer-Yu.
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1 2

E(�123) = {all topes}
E(�1,123) = {+++,�++,���,+��}
E(�3,123) = {�+�,�++,�+�,+��}
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Properties of E

Identify {+,�} with the field Z2 = {0, 1} via:

+ 7! 0 and � 7! 1.

Then {+,�}E inherits the structure of a vector space.

Notice:
E(�1,123) = {+++,�++,���,+��} ⇠= hv1, vE iZ2

E(�3,123) = {�+�,�++,�+�,+��} ⇠= (1, 0, 1) + hv3, vE iZ2

Lemma

If �F is a facet of ⌃̃M , then E•(�F ) is an a�ne subspace of {+,�}E ⇠= ZE
2 and

E•(⌧F ) =
[

⌧F⇢�F0
�F02Facets(⌃̃M )

E•(�F0).
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Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a d-dimensional rational polyhedral fan ⌃ ⇢ RN is a
map:

E : Facets(⌃) ! A↵d((Z2)
N)

satisfying

R1 8� 2 Facets(⌃), E(�) is parallel to h�iZ2 .

R2 8⌧ of codimension 1 in ⌃ with facets �1, . . . ,�k � ⌧ , the multiset

E(�1)[̇ . . . [̇ E(�k)

is an even covering. “Real balancing condition”.

⌃U2,3 in R2

++ �+

+� ��

(Z2)2



Real phase structures on fans

Definition (Rau-Renaudineau-S. 2022)

A real phase structure on a d-dimensional rational polyhedral fan ⌃ ⇢ RN is a
map:

E : Facets(⌃) ! A↵d((Z2)
N)

satisfying

R1 8� 2 Facets(⌃), E(�) is parallel to h�iZ2 .

R2 8⌧ of codimension 1 in ⌃ with facets �1, . . . ,�k � ⌧ , the multiset

E(�1)[̇ . . . [̇ E(�k)

is an even covering. “Real balancing condition”.

⌃U2,3 in R2

++ �+

+� ��

(Z2)
2



Real phase structures and matroid orientations

Theorem (RRS 2022)

A real phase structure on ⌃̃M (or ⌃M) is cryptomorphic to an orientation of M.

Proof.

The map EM satisfies R1 and also R2 by the diamond property of C.

To recover M from a real phase structure E on ⌃M , use the oriented matroid
extension property and a deletion-contraction argument:

I E induces real phase structures on ⌃M/e and ⌃M\e ,

I by induction these correspond to orientations of M/e and M\e,
I verify that the orientation of M/e is a quotient of the orientation of M\e,
I use the corank one oriented matroid extension property to cook up an

orientation M of M,

I show EM = E (up to reorientation).
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Patchworking the real part

For ⌃ equipped with a real phase structure E , the real part is

RE ⌃ =
G

�2Facets(⌃)
"2E(�)

�(") ✓
G

"2ZN
2

RN(") ⇠= (R⇤)N .

⌃M
++ �+

+� ��

E

++

RE ⌃M

Proposition

If M = ML for L ⇢ RN
, then REL ⌃ML is the real tropicalisation of L

TropR(L) :=
G

"2ZN
2

Trop(L \ RN
" ) ⇢

G

"2ZN
2

RN(").
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The real part of a matroid fan

Theorem (Las Vergnas, Ardila-Klivans-Williams, Celaya, RRS)

The positive part RE ⌃̃M \ RE (+ · · ·+) is homeomorphic to Rd+1
.

The compactification RE ⌃̃M ⇢ RE
is homeomorphic to Rd+1

.

The subcomplexes RE ⌃̃M \ {xi = 0} form a pseudohyperplane arrangement

with associated oriented matroid ME .

There is also a valuated matroid version (Celaya-Loho-Yuen 2022 and
Olarte-Rincón-Smith 2024+).

Theorem (RRS 2023)

Let M = ML for a R-linear space L, then

RE ⌃M�0 ⇢ RP
N
�0

is a standard pair of discs.

(Similarly for RE ⌃M�0 ⇢ RY⌃�0 when ⌃M is a union of cones of ⌃.)

Question: Do there exist wild embeddings RE ⌃M ✓ RE0 ⌃M0?
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The real part and real toric varieties

The space
F

"2ZN
2
RN(") is homeomorphic to the real torus (R⇤)N which is a

subset of a real toric variety RY⌃0 from a fan ⌃0 in RN .

Consider
F

"2ZN
2
RN(") ⇠= (R⇤)N ⇢ RY⌃0 and the closure RE ⌃ ⇢ RY⌃0 .

E.g. Obtain closures of RE ⌃ in RN ,RP
N , (RP

1)N , RY⇧E . . .

Proposition (RRS 2022)

Suppose ⌃ is a d-dimensional subfan of ⌃0
and let E be a real phase structure

on ⌃. Then RE ⌃ is a closed cellular chain in Cd(RY⌃0 ;Z2) and we have

[RE ⌃] 2 Hd(RY⌃0 ;Z2).
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Obstruction to matroid orientability from toric geometry

If M is a matroid on E , then ⌃M is a subfan of the permutahedral fan ⇧E .
There is an inclusion of toric varieties:

i : RY⌃M ! RY⇧E .

Theorem (S.)

Let d = dim⌃M . If the map

i⇤ : Hd(RY⌃M ;Z2) ! Hd(RY⇧E ;Z2)

is 0 then M is not orientable.

I The image of i⇤ is either 0 or 1 dimensional.

I The map is 0 for the Fano matroid (first known non-orientable matroid).

I Unknown if the converse holds!
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Patchworking beyond codimension one



Patchworking for locally matroidal spaces

A real phase structure on a d-dimensional polyhedral complex X in RN is a map

E : Facets(X ) ! A↵d(ZN
2 )

satisfying R1 and R2.

Theorem (RRS 2023)

Let X be a locally matroidal tropical variety equipped with a real phase

structure E . Then RE X is a PL-manifold.

Moreover,

bq(RE X ) 
X

dimH
trop
p,q (X ;Z2),

where H
trop
p,q (X ;Z2) are tropical homology groups.



Proof summary

1) Rewrite the cellular chain groups

C•(RE X ;Z2) =
M

�2X

(
M

"2E(�)

Z2),

and identify (
L

"2E(�) Z2) as the “tope space” of an oriented matroid M�.

2) Adapt Quillen’s filtration to the tope space of a matroid, or equivalently
Kalinin’s or Gelfand-Varchenko’s filtration (Yuen-S. 2024+).

3) Identity the first page of this spectral sequence as the tropical homology
groups of X :

E
1
p,q = H

trop
p,q (X ;Z2).

[In the case of hypersurfaces we can prove that

dimH
trop
p,q (X ;Z2) = dimH

trop
p,q (X ;Q) = dimH

p,q(CVf )

using (Arnal-Renaudineau-S. 2021) and (Itenberg-Katzarkov-Mikhalkin-Zharkov
2019). See also (Brugallé-López de Medrano-Rau 2022) for generalisations.]
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2019). See also (Brugallé-López de Medrano-Rau 2022) for generalisations.]



A generalised patchworking homeomorphism

Let X ! D⇤ be a real family of subvarieties of a toric variety Y⌃ over the
punctured disc D⇤.
If the tropicalisation X = Trop(X ) is locally matroidal (or more generally
weight 1), then it comes with a real phase structure E .

Theorem (RRS 2023)

If Trop(X ) = X is locally matroidal, then for t su�ciently large there is a

homeomorphism of pairs

(RY⌃,RXt) ⇠= (RY⌃,RE X ).

Moreover,

bq(RXt) 
X

dimH
trop
p,q (X ;Z2) and �(RXt) = �(CXt).



Thank you!


