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Outline 2|17

Our aim is a tableaux theoretic proof of∑
λ

Pλ(x; q, t)Pλ′(y; t, q) =
∏
i,j≥1

(1 + xiyj).

→ The Schur case – classical RSK∗

→ Macdonald polynomials

→ A probabilistic dual RSK correspondence: qtRSK∗
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Partitions Classical RSK∗ 3|17

→ A partition λ = (λ1, . . . , λn) is a weakly decreasing sequence of
positive integers. We identify partitions with their Young diagrams.

λ = (4, 3, 1) ↔

→ The conjugate λ′ = (λ′1, λ
′
2, . . . , λ

′
l) of a partition is obtained by

reflecting the Young diagram of λ along the line x = y .

λ′ = (3, 2, 2, 1) ↔

→ For µ ⊆ λ the skew diagram λ/µ is obtained by deleting all boxes of
µ from the Young diagram of λ.
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Schur polynomials Classical RSK∗ 4|17

A semistandard Young tableau (SSYT) is a filling of the cells of λ with
positive integers such that

→ rows are weakly increasing,

→ and columns are strictly
increasing. 1 2 2 3

2 3 4
4

The weight of an SSYT T is xT =
∏

i x
#i ’s in T
i . In the above examples,

we have xT = x1x
3
2 x

2
3 x

2
4 .

Let λ be a partition and x = (x1, . . . , xn). The Schur polynomial sλ(x) is
the multivariate generating function of all SSYT of shape λ and with
entries at most n

sλ(x) =
∑

T∈SSYTλ(n)

xT .
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Up and dual down operators Classical RSK∗ 5|17

We say that the diagram λ/µ is a

→ horizontal strip (µ ≺ λ) if it contains
at most one cell in each column,

→ vertical strip (µ ≺′ λ) if it contains at
most one cell in each row.

horizontal strip vertical strip

We define the up operator Ux and the dual down operator D∗
y as

Uxλ =
∑
ν≻λ

x |ν/λ|ν, D∗
y λ =

∑
µ≺′λ

y |λ/µ|µ.

The Schur polynomials can be rewritten as

sλ(x1, . . . , xn) = ⟨Uxn · · ·Ux1∅, λ⟩ ,

sλ′(y1, . . . , ym) =
〈
D∗

y1 · · ·D
∗
ymλ, ∅

〉
,

where ⟨λ, ρ⟩ := δλ,ρ for all partitions λ, ρ.

1 2 2 3
2 3 4
4

Ux4Ux3Ux2Ux1

∅
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Commutation relation Classical RSK∗ 6|17

Theorem
1. The up and dual down operator satisfy the commutation relation

D∗
yUx = (1 + xy)UxD

∗
y .

2. The commutation relation is equivalent to the skew version of the
dual Cauchy identity∏

1≤i≤n
1≤j≤m

(1 + xiyj)
∑
µ

sλ/µ(x)sρ′/µ′(y) =
∑
ν

sν/ρ(x)sν′/λ′(y).

.

→ Ad 2) This follows from a simple linear algebra argument.

→ Ad 1) We give a combinatorial proof via dual local growth rules.
Using dual growth diagrams, we obtain a combinatorial proof of the
dual Cauchy identity.
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Dual local growth rules Classical RSK∗ 7|17

Given two partitions λ, ρ, we count (in a refined way) how often we
obtain λ when applying both sides of

D∗
yUx = (1 + xy)UxD

∗
y

to ρ.

Uk(λ, ρ) := {ν : λ ≺′ ν ≻ ρ, |ν/(λ ∪ ρ)| = k},

Dk(λ, ρ) := {µ : λ ≻ µ ≺′ ρ, |(λ ∩ ρ)/µ| = k}.

ρ

λ

ν≺′

≺

µ ≺′

≺

Ux

D∗
y

Ux

D∗
y

It suffices to find a bijection

Fλ,ρ,k : Dk−1(λ, ρ) ∪ Dk(λ, ρ)→ Uk(λ, ρ),

for all λ, ρ and non-negative k . We call a family of such bijections a set
of dual local growth rules.
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Inner and outer corners Classical RSK∗ 8|17

An inner corner (resp., outer corner) of λ is a cell c which we can remove
(resp., add) and still obtain a partition.

→ An inner corner of λ ∩ ρ is called removeable if the obtained
partition µ satisfies λ ≻ µ ≺′ ρ.

→ An outer corner of λ ∪ ρ is called addable if the obtained partition ν
satisfies λ ≺′ ν ≻ ρ.

−
−

−

−

λ ∩ ρ F ∗row
λ,ρ,1

+
+

+
+

+
+

λ ∪ ρ

−

−

+

+

+

λ ∪ ρ

λ = (7, 7, 3, 2, 2) and ρ = (8, 5, 4, 2, 2, 1).
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Macdonald polynomials Macdonald polynomials 9|17

The (q, t)-up and dual down operator are defined as

Ux(q, t)λ =
∑
ν≻λ

x |ν/λ|ψν/λ(q, t)ν, D∗
y (q, t)λ =

∑
µ≺′λ

y |λ/µ|φ∗
λ/µ(q, t)µ,

where ψν/λ, φ
∗
λ/µ are products over terms of the form

1− qatb

1− qctd
.

The Macdonald polynomials Pλ(x; q, t) specialise to
→ Schur polynomials for q = t,
→ Hall–Littlewood polynomials for q = 0,
→ q-Whittaker polynomials for t = 0,
→ Jack polynomials for q = tα and taking the limit t → 1.
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(q, t)-commutation relation Macdonald polynomials 10|17

Theorem (Macdonald)

1. For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , ym) holds∏
i,j≥1

(1 + xiyj) =
∑
λ

Pλ(x; q, t)Pλ′(y; t, q).

2. The (q, t)-operators satisfy the commutation relation

D∗
y (q, t)Ux(q, t) = (1 + xy)Ux(q, t)D

∗
y (q, t).

The commutation relation is equivalent to the family of equations

for all partitions λ, ρ and non-negative integers k

where
(
X
k

)
the set of

k-subsets of X and

ωλ,ρ(µ) = ψλ/µ(q, t)φ
∗
ρ/µ(q, t),

ωλ,ρ(ν) = ψν/ρ(q, t)φ
∗
ν/λ(q, t).
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Probabilistic bijections Macdonald polynomials 11|17

Let A be an algebra and X ,Y be two sets equipped with weight functions

ω : X → A, ω : Y → A.

A probabilistic bijection from (X , ω) to (Y , ω) is a pair of A-valued
“probability distributions” P(x → y),P(x ← y) such that∑

y∈Y

P(x → y) = 1 ∀x ∈ X ,

∑
x∈X

P(x ← y) = 1 ∀y ∈ Y ,

ω(x)P(x → y) = ω(y)P(x ← y) ∀x ∈ X , y ∈ Y .

Lemma

If P,P is a probabilistic bijection from (X , ω) to (Y , ω), then
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Quebecois notation qtRSK∗ correspondence 12|17

Let λ, ρ be partitions and regard the removable and addable corners of
λ ∩ ρ and λ ∪ ρ respectively. Denote by d the number of removable
corners.

→ We regard the Young diagram
right-justified (Quebecois
notation).

→ We define the points Si ,Si for
i ∈ [0, d ] = {0, 1, . . . , d}.

→ We define the points Ri ,Ri for
i ∈ [d ] = {1, 2, . . . , d}.

→ We set Ii = Ri and Oj = Sj .

+

+

+ −

−

S0

S1

S2

R1

R2

We identify a point (x , y) with the monomial qx ty .
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The probabilities qtRSK∗ correspondence 13|17

Definition (Frieden-SA)

Let λ, ρ be partitions, d the number of removable corners of λ ∩ ρ.
For R ⊆ [d ] and S ⊆ [0, d ], we define the forward probability

Pλ,ρ(R→ S) =
∏
s∈S

∏
i∈[d ]\R

(Ss − Ii )∏
j∈[0,d ]\S

(Ss − Oj)

∏
r∈R

∏
j∈[0,d ]\S

(Rr − Oj)∏
i∈[d ]\R

(Rr − Ii )
,

and the backward probability

Pλ,ρ(R← S) =
∏
s∈S

∏
i∈[d ]\R

(S s − Ii )∏
j∈[0,d ]\S

(S s − Oj)

∏
r∈R

∏
j∈[0,d ]\S

(R r − Oj)∏
i∈[d ]\R

(R r − Ii )
.
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An example qtRSK∗ correspondence 14|17

Pλ,ρ(R→ S) =
∏
s∈S

∏
i∈[d ]\R

(Ss − Ii )∏
j∈[0,d ]\S

(Ss − Oj)

∏
r∈R

∏
j∈[0,d ]\S

(Rr − Oj)∏
i∈[d ]\R

(Rr − Ii )
.

→ Let λ = ρ = (2, 1). We have d = 2.

→ Remember Oi = Si .

+

+

+

−

−

S0

S1

S2

R1

R2

I1

I2

Pλ,ρ({2} → {0, 1}) =
(S0 − I1)(S1 − I1)

(S0 − O2)(S1 − O2)
· (R2 − O2)

(R2 − I1)

=
(1− t)(qt − t)(q2t − q2t2)

(1− q2t2)(qt − q2t2)(q2t − t)
= q

(1− q)(1− t)2

(1− q2)(1− qt)(1− q2t2)
.
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(Ss − Ii )∏
j∈[0,d ]\S

(Ss − Oj)

∏
r∈R

∏
j∈[0,d ]\S

(Rr − Oj)∏
i∈[d ]\R

(Rr − Ii )
.

→ Let λ = ρ = (2, 1). We have d = 2.

→ Remember Oi = Si .

+

+

+

−

−

S0

S1

S2

R1

R2

I1

I2

Pλ,ρ({2} → {0, 1}) =
(S0 − I1)(S1 − I1)

(S0 − O2)(S1 − O2)
· (R2 − O2)

(R2 − I1)

=
(1− t)(qt − t)(q2t − q2t2)

(1− q2t2)(qt − q2t2)(q2t − t)
= q

(1− q)(1− t)2

(1− q2)(1− qt)(1− q2t2)
.
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Results I qtRSK∗ correspondence 15|17

Theorem (Frieden–SA)

1. The probabilities Pλ,ρ and Pλ,ρ form a probabilistic bijection.

2. The probabilistic insertion algorithm, qtRSK∗, building on these
growth rules is a probabilistic bijection which allows to proof the
dual Cauchy identity for Macdonald polynomials.

→ By specialising to matrices with at most one nonzero entry in every
column we obtain a (q, t)-generalisation of RS for words.

→ By specialising to permutation matrices, we obtain the qRSt
correspondence, a (q, t)-generalisation of RS by Frieden and myself.

→ For q, t ∈ [0, 1) or q, t ∈ (1,∞) all probabilities have values in [0, 1].

Lemma (Frieden–SA)

The probabilities satisfy

Pλ,ρ(µ→ ν)[q−1, t−1] = Pρ′,λ′(µ′ → ν′)[t, q],

Pλ,ρ(µ← ν)[q−1, t−1] = Pρ′,λ′(µ′ ← ν′)[t, q].
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Results II - specialising q and t qtRSK∗ correspondence 16|17

Macdonald polynomials
qtRSK∗ (Frieden–SA)

t = 0 / t → ∞ q = 0 / q → ∞

q-Whittaker polynomials
row / col q-RSK∗ (Matveev–Petrov)

Hall–Littlewood polynomials
row / col t-RSK∗

q = 0 / q → ∞ t = 0 / t → ∞

Schur polynomials
row / col RSK∗

Jack polynomials

q = tα, t → 1

Theorem (Frieden–SA)

Restricting to matrices with at most one nonzero entry per column, the
P-tableaux distribution in the Jack limit (q = tα and t → 1) is invariant
under interchanging two columns.
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