*qt*RSK*: A probabilistic dual RSK correspondence for Macdonald polynomials

Gabriel Frieden (McGill University), Florian Schreier-Aigner (University of Vienna)

arXiv: 2403.16243

@ FPSAC24 Bochum

Our aim is a tableaux theoretic proof of

$$\sum_{\lambda} P_{\lambda}(\mathbf{x};q,t) P_{\lambda'}(\mathbf{y};t,q) = \prod_{i,j\geq 1} (1+x_iy_j).$$

- \rightarrow The Schur case classical RSK*
- \rightarrow Macdonald polynomials
- \rightarrow A probabilistic dual RSK correspondence: $qt \mathrm{RSK}^*$

Partitions

 \rightarrow A partition $\lambda = (\lambda_1, \dots, \lambda_n)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

$$\lambda = (4, 3, 1) \qquad \leftrightarrow \qquad \square$$

Partitions

 \rightarrow A partition $\lambda = (\lambda_1, \dots, \lambda_n)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

→ The conjugate $\lambda' = (\lambda'_1, \lambda'_2, ..., \lambda'_l)$ of a partition is obtained by reflecting the Young diagram of λ along the line x = y.

$$\lambda' = (3,2,2,1) \qquad \leftrightarrow$$

Partitions

 \rightarrow A partition $\lambda = (\lambda_1, \dots, \lambda_n)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

→ The conjugate $\lambda' = (\lambda'_1, \lambda'_2, ..., \lambda'_l)$ of a partition is obtained by reflecting the Young diagram of λ along the line x = y.

→ For $\mu \subseteq \lambda$ the skew diagram λ/μ is obtained by deleting all boxes of μ from the Young diagram of λ .

A semistandard Young tableau (SSYT) is a filling of the cells of λ with positive integers such that

- $\rightarrow\,$ rows are weakly increasing,
- \rightarrow and columns are strictly increasing.

4			
2	3	4	
1	2	2	3

The weight of an SSYT T is $\mathbf{x}^T = \prod_i x_i^{\#i' \text{s in } T}$. In the above examples, we have $\mathbf{x}^T = x_1 x_2^3 x_3^2 x_4^2$.

A semistandard Young tableau (SSYT) is a filling of the cells of λ with positive integers such that

- \rightarrow rows are weakly increasing,
- \rightarrow and columns are strictly increasing.

The weight of an SSYT *T* is $\mathbf{x}^T = \prod_i x_i^{\#i' \text{s in } T}$. In the above examples, we have $\mathbf{x}^T = x_1 x_2^3 x_3^2 x_4^2$.

Let λ be a partition and $\mathbf{x} = (x_1, \dots, x_n)$. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is the multivariate generating function of all SSYT of shape λ and with entries at most n

$$s_{\lambda}(\mathbf{x}) = \sum_{T \in SSYT_{\lambda}(n)} \mathbf{x}^{T}$$

Classical RSK* 5|17

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- → vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

horizontal strip

vertical strip

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- → vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_v^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

rip vertical strip

We say that the diagram λ/μ is a

- → horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
- → vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_y^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$s_{\lambda}(x_1,\ldots,x_n) = \langle U_{x_n}\cdots U_{x_1}\emptyset,\lambda\rangle,$$

where
$$\langle \lambda, \rho \rangle := \delta_{\lambda,\rho}$$
 for all partitions λ, ρ .

Florian Schreier-Aigner

vertical strip

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- \rightarrow vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_v^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$s_{\lambda}(x_1,\ldots,x_n) = \langle U_{x_n}\cdots U_{x_1}\emptyset,\lambda\rangle,$$

where
$$\langle \lambda, \rho \rangle := \delta_{\lambda,\rho}$$
 for all partitions λ, ρ .

Florian Schreier-Aigner

 U_{X_1}

vertical strip

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- \rightarrow vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_v^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$s_{\lambda}(x_1,\ldots,x_n) = \langle U_{x_n}\cdots U_{x_1}\emptyset,\lambda\rangle,$$

where
$$\langle \lambda, \rho \rangle := \delta_{\lambda,\rho}$$
 for all partitions λ, ρ .

Florian Schreier-Aigner

 $U_{x_2}U_{x_1}\emptyset$

vertical strip

5 17

Classical RSK*

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- \rightarrow vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_v^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$s_{\lambda}(x_1,\ldots,x_n) = \langle U_{x_n}\cdots U_{x_1}\emptyset,\lambda\rangle,$$

where
$$\langle \lambda, \rho \rangle := \delta_{\lambda,\rho}$$
 for all partitions λ, ρ .

Florian Schreier-Aigner

 $U_{x_2} U_{x_2} U_{x_1} \emptyset$

horizontal strip

We say that the diagram λ/μ is a

- \rightarrow horizontal strip ($\mu \prec \lambda$) if it contains at most one cell in each column,
- \rightarrow vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_v^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$s_{\lambda}(x_1,\ldots,x_n) = \langle U_{x_n}\cdots U_{x_1}\emptyset,\lambda\rangle,$$

where $\langle \lambda, \rho \rangle := \delta_{\lambda,\rho}$ for all partitions λ, ρ .

Florian Schreier-Aigner

 $U_{x_1}U_{x_2}U_{x_2}U_{x_1}\emptyset$

vertical strip

5 17

horizontal strip

Classical RSK*

We say that the diagram λ/μ is a

- → horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
- → vertical strip ($\mu \prec' \lambda$) if it contains at most one cell in each row.

We define the up operator U_x and the dual down operator D_y^* as

$$U_x \lambda = \sum_{\nu \succ \lambda} x^{|\nu/\lambda|} \nu, \qquad D_y^* \lambda = \sum_{\mu \prec' \lambda} y^{|\lambda/\mu|} \mu.$$

The Schur polynomials can be rewritten as

$$\begin{split} s_{\lambda}(x_1, \dots, x_n) &= \langle U_{x_n} \cdots U_{x_1} \emptyset, \lambda \rangle \,, \\ s_{\lambda'}(y_1, \dots, y_m) &= \left\langle D_{y_1}^* \cdots D_{y_m}^* \lambda, \emptyset \right\rangle \,, \\ \text{where } \langle \lambda, \rho \rangle &:= \delta_{\lambda, \rho} \text{ for all partitions } \lambda, \rho. \end{split}$$

horizontal strip

vertical strip

Theorem

1. The up and dual down operator satisfy the commutation relation

$$D_y^* U_x = (1 + xy) U_x D_y^*.$$

Theorem

1. The up and dual down operator satisfy the commutation relation

$$D_y^* U_x = (1 + xy) U_x D_y^*.$$

2. The commutation relation is equivalent to the skew version of the dual Cauchy identity

$$\prod_{\substack{1 \leq i \leq n \\ \leq j \leq m}} (1 + x_i y_j) \sum_{\mu} s_{\lambda/\mu}(\mathbf{x}) s_{\rho'/\mu'}(\mathbf{y}) = \sum_{\nu} s_{\nu/\rho}(\mathbf{x}) s_{\nu'/\lambda'}(\mathbf{y}).$$

Theorem

1. The up and dual down operator satisfy the commutation relation

$$D_y^* U_x = (1 + xy) U_x D_y^*.$$

2. The commutation relation is equivalent to the skew version of the dual Cauchy identity

$$\prod_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} (1 + x_i y_j) \sum_{\mu} s_{\lambda/\mu}(\mathbf{x}) s_{\rho'/\mu'}(\mathbf{y}) = \sum_{\nu} s_{\nu/\rho}(\mathbf{x}) s_{\nu'/\lambda'}(\mathbf{y}).$$

- $\rightarrow\,$ Ad 2) This follows from a simple linear algebra argument.
- \rightarrow Ad 1) We give a combinatorial proof via dual local growth rules. Using dual growth diagrams, we obtain a combinatorial proof of the dual Cauchy identity.

Given two partitions λ, ρ , we count (in a refined way) how often we obtain λ when applying both sides of

$$D_y^* U_x = (1 + xy) U_x D_y^*$$

to ρ .

Given two partitions λ, ρ , we count (in a refined way) how often we obtain λ when applying both sides of

$$D_y^* U_x = (1 + xy) U_x D_y^*$$

to ρ .

Given two partitions λ , ρ , we count (in a refined way) how often we obtain λ when applying both sides of

 $D_y^* U_x = (1 + xy) U_x D_y^*$

to ρ .

$$\begin{aligned} \mathcal{U}^{k}(\lambda,\rho) &:= \{\nu : \lambda \prec' \nu \succ \rho, |\nu/(\lambda \cup \rho)| = k\}, \\ \mathcal{D}^{k}(\lambda,\rho) &:= \{\mu : \lambda \succ \mu \prec' \rho, |(\lambda \cap \rho)/\mu| = k\}. \end{aligned}$$

Given two partitions λ , ρ , we count (in a refined way) how often we obtain λ when applying both sides of

$$D_y^* U_x = (1 + xy) U_x D_y^*$$

to ρ .

$$\begin{aligned} \mathcal{U}^{k}(\lambda,\rho) &:= \{\nu : \lambda \prec' \nu \succ \rho, |\nu/(\lambda \cup \rho)| = k\}, & \mu \prec' \rho \\ \mathcal{D}^{k}(\lambda,\rho) &:= \{\mu : \lambda \succ \mu \prec' \rho, |(\lambda \cap \rho)/\mu| = k\}. & \lambda & \lambda \\ \lambda & \prec' \nu \end{aligned}$$

It suffices to find a bijection

$$\mathcal{F}_{\lambda,\rho,k}: \mathcal{D}^{k-1}(\lambda,\rho) \cup \mathcal{D}^k(\lambda,\rho) \to \mathcal{U}^k(\lambda,\rho),$$

for all λ, ρ and non-negative k. We call a family of such bijections a set of dual local growth rules.

→ An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec' \rho$.

→ An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec' \rho$.

- → An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec' \rho$.
- $\label{eq:addable} \rightarrow \mbox{ An outer corner of } \lambda \cup \rho \mbox{ is called addable if the obtained partition } \nu \\ \mbox{ satisfies } \lambda \prec' \nu \succ \rho.$

- → An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec' \rho$.
- → An outer corner of $\lambda \cup \rho$ is called addable if the obtained partition ν satisfies $\lambda \prec' \nu \succ \rho$.

$$egin{aligned} &U_x(q,t)\lambda = \sum_{
u \succ \lambda} x^{|
u/\lambda|} \psi_{
u/\lambda}(q,t)
u, \qquad &D_y^*(q,t)\lambda = \sum_{\mu\prec'\lambda} y^{|\lambda/\mu|} \varphi^*_{\lambda/\mu}(q,t)\mu, \end{aligned}$$
 where $\psi_{
u/\lambda}, \varphi^*_{\lambda/\mu}$ are products over terms of the form $rac{1-q^at^b}{1-q^ct^d}. \end{aligned}$

$$\begin{split} U_x(q,t)\lambda &= \sum_{\nu\succ\lambda} x^{|\nu/\lambda|} \psi_{\nu/\lambda}(q,t)\nu, \qquad D_y^*(q,t)\lambda = \sum_{\mu\prec'\lambda} y^{|\lambda/\mu|} \varphi_{\lambda/\mu}^*(q,t)\mu, \\ \text{where } \psi_{\nu/\lambda}, \varphi_{\lambda/\mu}^* \text{ are products over terms of the form } \frac{1-q^a t^b}{1-q^c t^d}. \end{split}$$

Theorem (Macdonald)

The Macdonald polynomials P_{λ} can be expressed via

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \langle U_{x_n}(q,t)\cdots U_{x_1}(q,t)\emptyset,\lambda\rangle,$$

$$P_{\lambda'}(y_1,\ldots,y_m;q,t) = \langle D_{y_1}^*(q,t)\cdots D_{y_m}^*(q,t)\lambda,\emptyset\rangle.$$

$$\begin{split} U_x(q,t)\lambda &= \sum_{\nu\succ\lambda} x^{|\nu/\lambda|} \psi_{\nu/\lambda}(q,t)\nu, \qquad D_y^*(q,t)\lambda = \sum_{\mu\prec'\lambda} y^{|\lambda/\mu|} \varphi_{\lambda/\mu}^*(q,t)\mu, \\ \text{where } \psi_{\nu/\lambda}, \varphi_{\lambda/\mu}^* \text{ are products over terms of the form } \frac{1-q^at^b}{1-q^ct^d}. \end{split}$$

Definition

The Macdonald polynomials P_{λ} are defined as

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \langle U_{x_n}(q,t)\cdots U_{x_1}(q,t)\emptyset,\lambda\rangle,$$

$$P_{\lambda'}(y_1,\ldots,y_m;q,t) = \langle D_{y_1}^*(q,t)\cdots D_{y_m}^*(q,t)\lambda,\emptyset\rangle.$$

$$\begin{split} &U_x(q,t)\lambda = \sum_{\nu\succ\lambda} x^{|\nu/\lambda|} \psi_{\nu/\lambda}(q,t)\nu, \qquad D_y^*(q,t)\lambda = \sum_{\mu\prec'\lambda} y^{|\lambda/\mu|} \varphi_{\lambda/\mu}^*(q,t)\mu, \\ &\text{where } \psi_{\nu/\lambda}, \varphi_{\lambda/\mu}^* \text{ are products over terms of the form } \frac{1-q^at^b}{1-q^ct^d}. \end{split}$$

Definition

The Macdonald polynomials P_{λ} are defined as

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \langle U_{x_n}(q,t)\cdots U_{x_1}(q,t)\emptyset,\lambda\rangle,$$

$$P_{\lambda'}(y_1,\ldots,y_m;q,t) = \langle D_{y_1}^*(q,t)\cdots D_{y_m}^*(q,t)\lambda,\emptyset\rangle.$$

The Macdonald polynomials $P_{\lambda}(\mathbf{x}; q, t)$ specialise to

- \rightarrow Schur polynomials for q = t,
- \rightarrow Hall–Littlewood polynomials for q = 0,
- \rightarrow *q*-Whittaker polynomials for *t* = 0,
- ightarrow Jack polynomials for $q=t^{lpha}$ and taking the limit t
 ightarrow 1.

1. For two sets of variables $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ holds

$$\prod_{i,j\geq 1} (1+x_i y_j) = \sum_{\lambda} P_{\lambda}(\mathbf{x}; q, t) P_{\lambda'}(\mathbf{y}; t, q).$$

1. For two sets of variables $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ holds

$$\prod_{i,j\geq 1}(1+x_iy_j)=\sum_{\lambda}P_{\lambda}(\mathbf{x};q,t)P_{\lambda'}(\mathbf{y};t,q).$$

2. The (q, t)-operators satisfy the commutation relation $D_y^*(q, t)U_x(q, t) = (1 + xy)U_x(q, t)D_y^*(q, t).$

1. For two sets of variables $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ holds

$$\prod_{i,j\geq 1} (1+x_i y_j) = \sum_{\lambda} P_{\lambda}(\mathbf{x}; q, t) P_{\lambda'}(\mathbf{y}; t, q).$$

2. The (q, t)-operators satisfy the commutation relation $D_y^*(q, t)U_x(q, t) = (1 + xy)U_x(q, t)D_y^*(q, t).$

The commutation relation is equivalent to the family of equations

$$\sum_{\mu\in\mathcal{D}^k(\lambda,\rho)\cup\mathcal{D}^{k-1}(\lambda,\rho)}\psi_{\lambda/\mu}(q,t)\varphi_{\rho/\mu}^*(q,t)=\sum_{\nu\in\mathcal{U}^k(\lambda,\rho)}\psi_{\nu/\rho}(q,t)\varphi_{\nu/\lambda}^*(q,t),$$

for all partitions λ, ρ and non-negative integers k,

1. For two sets of variables $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_m)$ holds

$$\prod_{i,j\geq 1}(1+x_iy_j)=\sum_{\lambda}P_{\lambda}(\mathbf{x};q,t)P_{\lambda'}(\mathbf{y};t,q).$$

2. The (q, t)-operators satisfy the commutation relation $D_y^*(q, t)U_x(q, t) = (1 + xy)U_x(q, t)D_y^*(q, t).$

The commutation relation is equivalent to the family of equations

$$\sum_{\mathsf{R} \in \binom{[d]}{k} \cup \binom{[d]}{k-1}} \omega_{\lambda,\rho}(\mathsf{R}) = \sum_{\mathsf{S} \in \binom{[0,d]}{k}} \overline{\omega}_{\lambda,\rho}(\mathsf{S})$$

for all partitions λ, ρ and non-negative integers k where $\binom{\mathbf{X}}{k}$ the set of k-subsets of \mathbf{X} and

$$egin{aligned} &\omega_{\lambda,
ho}(\mu)=\psi_{\lambda/\mu}(q,t)arphi^*_{
ho/\mu}(q,t),\ &\overline{\omega}_{\lambda,
ho}(
u)=\psi_{
u/
ho}(q,t)arphi^*_{
u/\lambda}(q,t). \end{aligned}$$

Florian Schreier-Aigner

qtRSK*: A probabilistic dual RSK correspondence for Macdonald polynomials

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} \sum_{y \in Y} \mathcal{P}(x \to y) &= 1 & \forall x \in X, \\ \sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) &= 1 & \forall y \in Y, \\ \omega(x) \mathcal{P}(x \to y) &= \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} \sum_{y \in Y} \mathcal{P}(x \to y) &= 1 & \forall x \in X, \\ \sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) &= 1 & \forall y \in Y, \\ \omega(x) \mathcal{P}(x \to y) &= \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x\in X}\omega(x)=\sum_{y\in Y}\overline{\omega}(y).$$

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} \sum_{y \in Y} \mathcal{P}(x \to y) &= 1 & \forall x \in X, \\ \sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) &= 1 & \forall y \in Y, \\ \omega(x) \mathcal{P}(x \to y) &= \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x\in X}\omega(x)$$

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} \sum_{y \in Y} \mathcal{P}(x \to y) &= 1 & \forall x \in X, \\ \sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) &= 1 & \forall y \in Y, \\ \omega(x) \mathcal{P}(x \to y) &= \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x \in X} \omega(x) = \sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \to y)$$

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} &\sum_{y \in Y} \mathcal{P}(x \to y) = 1 & \forall x \in X, \\ &\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) = 1 & \forall y \in Y, \\ &\omega(x)\mathcal{P}(x \to y) = \overline{\omega}(y)\overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x \in X} \omega(x) = \sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \to y) = \sum_{\substack{x \in X \\ y \in Y}} \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y)$$

$$\omega: X \to A, \qquad \overline{\omega}: Y \to A.$$

A probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \to y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$\begin{split} \sum_{y \in Y} \mathcal{P}(x \to y) &= 1 & \forall x \in X, \\ \sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) &= 1 & \forall y \in Y, \\ \omega(x) \mathcal{P}(x \to y) &= \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y. \end{split}$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x \in X} \omega(x) = \sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \to y) = \sum_{\substack{x \in X \\ y \in Y}} \overline{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) = \sum_{y \in Y} \overline{\omega}(y).$$

Florian Schreier-Aigner

qtRSK*: A probabilistic dual RSK correspondence for Macdonald polynomials

→ We regard the Young diagram right-justified (Quebecois notation).

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$
- → We define the points $R_i, \overline{R_i}$ for $i \in [d] = \{1, 2, ..., d\}.$

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$
- → We define the points $R_i, \overline{R_i}$ for $i \in [d] = \{1, 2, ..., d\}.$

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$
- → We define the points $R_i, \overline{R_i}$ for $i \in [d] = \{1, 2, ..., d\}.$
- \rightarrow We set $I_i = \overline{R_i}$ and $O_j = S_j$.

- → We regard the Young diagram right-justified (Quebecois notation).
- → We define the points $S_i, \overline{S_i}$ for $i \in [0, d] = \{0, 1, ..., d\}.$
- → We define the points $R_i, \overline{R_i}$ for $i \in [d] = \{1, 2, ..., d\}.$
- \rightarrow We set $I_i = \overline{R_i}$ and $O_j = S_j$.

We identify a point (x, y) with the monomial $q^{x}t^{y}$.

Definition (Frieden-SA)

Let λ, ρ be partitions, d the number of removable corners of $\lambda \cap \rho$. For $\mathbf{R} \subseteq [d]$ and $\mathbf{S} \subseteq [0, d]$, we define the forward probability

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R} \to \mathbf{S}) = \prod_{s \in \mathbf{S}} \frac{\prod_{i \in [d] \setminus \mathbf{R}} (S_s - I_i)}{\prod_{j \in [0,d] \setminus \mathbf{S}} (S_s - O_j)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in [0,d] \setminus \mathbf{S}} (R_r - O_j)}{\prod_{i \in [d] \setminus \mathbf{R}} (R_r - I_i)},$$

Definition (Frieden-SA)

Let λ, ρ be partitions, d the number of removable corners of $\lambda \cap \rho$. For $\mathbf{R} \subseteq [d]$ and $\mathbf{S} \subseteq [0, d]$, we define the forward probability

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)},$$

and the backward probability

$$\overline{\mathcal{P}}_{\lambda,\rho}(\mathbf{R}\leftarrow\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(\overline{S}_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(\overline{S}_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(\overline{R}_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(\overline{R}_r-I_i)}.$$

(D

()

Π

An example

 \rightarrow Let $\lambda = \rho = (2, 1)$. We have d = 2.

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{i\in[o,d]\setminus\mathbf{S}}(R_r-I_i)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

1)

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

→ Let
$$\lambda = \rho = (2, 1)$$
. We have $d = 2$.
→ Remember $O_i = S_i$.

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

→ Let
$$\lambda = \rho = (2, 1)$$
. We have $d = 2$.
→ Remember $O_i = S_i$.

 $\mathcal{P}_{\lambda,
ho}(\{2\}
ightarrow \{0,1\})$

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

→ Let
$$\lambda = \rho = (2, 1)$$
. We have $d = 2$.
→ Remember $O_i = S_i$.

$$\mathcal{P}_{\lambda,
ho}(\{2\} o \{0,1\}) = rac{(S_0 - l_1)(S_1 - l_1)}{(S_0 - O_2)(S_1 - O_2)} \cdot rac{(R_2 - O_2)}{(R_2 - l_1)}$$

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

→ Let
$$\lambda = \rho = (2, 1)$$
. We have $d = 2$.
→ Remember $O_i = S_i$.

$$egin{aligned} \mathcal{P}_{\lambda,
ho}(\{2\}
ightarrow \{0,1\}) &= rac{(S_0-I_1)(S_1-I_1)}{(S_0-O_2)(S_1-O_2)} \cdot rac{(R_2-O_2)}{(R_2-I_1)} \ &= rac{(1-t)(qt-t)(q^2t-q^2t^2)}{(1-q^2t^2)(qt-q^2t^2)(q^2t-t)} \end{aligned}$$

$$\mathcal{P}_{\lambda,\rho}(\mathbf{R}\to\mathbf{S})=\prod_{s\in\mathbf{S}}\frac{\prod\limits_{i\in[d]\setminus\mathbf{R}}(S_s-I_i)}{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(S_s-O_j)}\prod_{r\in\mathbf{R}}\frac{\prod\limits_{j\in[0,d]\setminus\mathbf{S}}(R_r-O_j)}{\prod\limits_{i\in[d]\setminus\mathbf{R}}(R_r-I_i)}.$$

→ Let
$$\lambda = \rho = (2, 1)$$
. We have $d = 2$.
→ Remember $O_i = S_i$.

$$egin{aligned} \mathcal{P}_{\lambda,
ho}(\{2\} o \{0,1\}) &= rac{(S_0-l_1)(S_1-l_1)}{(S_0-O_2)(S_1-O_2)} \cdot rac{(R_2-O_2)}{(R_2-l_1)} \ &= rac{(1-t)(qt-t)(q^2t-q^2t^2)}{(1-q^2t^2)(qt-q^2t^2)(q^2t-t)} = qrac{(1-q)(1-t)^2}{(1-q^2)(1-qt)(1-q^2t^2)}. \end{aligned}$$

Results I

Theorem (Frieden-SA)

- 1. The probabilities $\mathcal{P}_{\lambda,\rho}$ and $\overline{\mathcal{P}}_{\lambda,\rho}$ form a probabilistic bijection.
- 2. The probabilistic insertion algorithm, qtRSK*, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.

Theorem (Frieden-SA)

- 1. The probabilities $\mathcal{P}_{\lambda,\rho}$ and $\overline{\mathcal{P}}_{\lambda,\rho}$ form a probabilistic bijection.
- 2. The probabilistic insertion algorithm, qtRSK*, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.
- \rightarrow By specialising to matrices with at most one nonzero entry in every column we obtain a (q, t)-generalisation of RS for words.
- \rightarrow By specialising to permutation matrices, we obtain the q RSt correspondence, a (q, t)-generalisation of RS by Frieden and myself.
- \rightarrow For $q, t \in [0, 1)$ or $q, t \in (1, \infty)$ all probabilities have values in [0, 1].

Theorem (Frieden-SA)

- 1. The probabilities $\mathcal{P}_{\lambda,\rho}$ and $\overline{\mathcal{P}}_{\lambda,\rho}$ form a probabilistic bijection.
- 2. The probabilistic insertion algorithm, qtRSK*, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.
- \rightarrow By specialising to matrices with at most one nonzero entry in every column we obtain a (q, t)-generalisation of RS for words.
- \rightarrow By specialising to permutation matrices, we obtain the q RSt correspondence, a (q, t)-generalisation of RS by Frieden and myself.
- ightarrow For $q,t\in [0,1)$ or $q,t\in (1,\infty)$ all probabilities have values in [0,1].

Lemma (Frieden-SA)

The probabilities satisfy

$$\begin{split} \mathcal{P}_{\lambda,\rho}(\mu \to \nu)[q^{-1},t^{-1}] &= \mathcal{P}_{\rho',\lambda'}(\mu' \to \nu')[t,q],\\ \overline{\mathcal{P}}_{\lambda,\rho}(\mu \leftarrow \nu)[q^{-1},t^{-1}] &= \overline{\mathcal{P}}_{\rho',\lambda'}(\mu' \leftarrow \nu')[t,q]. \end{split}$$

Macdonald polynomials qtRSK* (Frieden–SA)

row / col q-RSK* (Matveev-Petrov)

row / col *t*-RSK*

Theorem (Frieden–SA)

Restricting to matrices with at most one nonzero entry per column, the P-tableaux distribution in the Jack limit ($q = t^{\alpha}$ and $t \rightarrow 1$) is invariant under interchanging two columns.

