$q t \mathrm{RSK}^{*}$: A probabilistic dual RSK correspondence for Macdonald polynomials

Gabriel Frieden (McGill University),
Florian Schreier-Aigner (University of Vienna)

$$
\text { arXiv: } 2403.16243
$$

@ FPSAC24 Bochum

Our aim is a tableaux theoretic proof of

$$
\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) P_{\lambda^{\prime}}(\mathbf{y} ; t, q)=\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right)
$$

\rightarrow The Schur case - classical RSK*
\rightarrow Macdonald polynomials
\rightarrow A probabilistic dual RSK correspondence: $q t \mathrm{RSK}^{*}$
\rightarrow A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

$$
\lambda=(4,3,1)
$$

\rightarrow A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

$$
\lambda=(4,3,1) \quad \leftrightarrow
$$

\rightarrow The conjugate $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{l}^{\prime}\right)$ of a partition is obtained by reflecting the Young diagram of λ along the line $x=y$.

$$
\lambda^{\prime}=(3,2,2,1) \quad \leftrightarrow
$$

\rightarrow A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a weakly decreasing sequence of positive integers. We identify partitions with their Young diagrams.

$$
\lambda=(4,3,1) \quad \leftrightarrow
$$

\rightarrow The conjugate $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{l}^{\prime}\right)$ of a partition is obtained by reflecting the Young diagram of λ along the line $x=y$.

$$
\lambda^{\prime}=(3,2,2,1) \quad \leftrightarrow
$$

\rightarrow For $\mu \subseteq \lambda$ the skew diagram λ / μ is obtained by deleting all boxes of μ from the Young diagram of λ.

A semistandard Young tableau (SSYT) is a filling of the cells of λ with positive integers such that
\rightarrow rows are weakly increasing,
\rightarrow and columns are strictly increasing.

4		
2	3	4
1	2	2

The weight of an SSYT T is $\mathbf{x}^{T}=\prod_{i} x_{i}^{\# i ' s}$ in T. In the above examples, we have $\mathbf{x}^{T}=x_{1} x_{2}^{3} x_{3}^{2} x_{4}^{2}$.

A semistandard Young tableau (SSYT) is a filling of the cells of λ with positive integers such that
\rightarrow rows are weakly increasing,
\rightarrow and columns are strictly increasing.

4		
2	3	4
1	2	2

The weight of an SSYT T is $\mathbf{x}^{T}=\prod_{i} x_{i}^{\# i ' s}$ in T. In the above examples, we have $\mathbf{x}^{T}=x_{1} x_{2}^{3} x_{3}^{2} x_{4}^{2}$.

Let λ be a partition and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is the multivariate generating function of all SSYT of shape λ and with entries at most n

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \mathrm{SSYT}_{\lambda}(n)} \mathbf{x}^{T}
$$

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,

horizontal strip

vertical strip most one cell in each row.

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle,
$$

4		
2	3	4

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle,
$$

4			
2	3	4	
	2	2	3

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle,
$$

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

$$
U_{x_{2}} U_{x_{1}} \emptyset
$$

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle,
$$

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

$U_{x_{3}} U_{x_{2}} U_{x_{1}} \emptyset$

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle,
$$

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

$$
U_{x_{4}} U_{x_{3}} U_{x_{2}} U_{x_{1}} \emptyset
$$

We say that the diagram λ / μ is a
\rightarrow horizontal strip $(\mu \prec \lambda)$ if it contains at most one cell in each column,
\rightarrow vertical strip $\left(\mu \prec^{\prime} \lambda\right)$ if it contains at most one cell in each row.

horizontal strip

vertical strip

We define the up operator U_{x} and the dual down operator D_{y}^{*} as

$$
U_{x} \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \nu, \quad D_{y}^{*} \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \mu .
$$

The Schur polynomials can be rewritten as

$$
\begin{aligned}
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right) & =\left\langle U_{x_{n}} \cdots U_{x_{1}} \emptyset, \lambda\right\rangle, \\
s_{\lambda^{\prime}}\left(y_{1}, \ldots, y_{m}\right) & =\left\langle D_{y_{1}}^{*} \cdots D_{y_{m}}^{*} \lambda, \emptyset\right\rangle,
\end{aligned}
$$

where $\langle\lambda, \rho\rangle:=\delta_{\lambda, \rho}$ for all partitions λ, ρ.

Theorem

1. The up and dual down operator satisfy the commutation relation

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*} .
$$

Theorem

1. The up and dual down operator satisfy the commutation relation

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*} .
$$

2. The commutation relation is equivalent to the skew version of the dual Cauchy identity

$$
\prod_{\substack{1 \leq i \leq n \\ 1<i<m}}\left(1+x_{i} y_{j}\right) \sum_{\mu} s_{\lambda / \mu}(\mathbf{x}) s_{\rho^{\prime} / \mu^{\prime}}(\mathbf{y})=\sum_{\nu} s_{\nu / \rho}(\mathbf{x}) s_{\nu^{\prime} / \lambda^{\prime}}(\mathbf{y})
$$

Theorem

1. The up and dual down operator satisfy the commutation relation

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*}
$$

2. The commutation relation is equivalent to the skew version of the dual Cauchy identity

$$
\prod_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}\left(1+x_{i} y_{j}\right) \sum_{\mu} s_{\lambda / \mu}(\mathbf{x}) s_{\rho^{\prime} / \mu^{\prime}}(\mathbf{y})=\sum_{\nu} s_{\nu / \rho}(\mathbf{x}) s_{\nu^{\prime} / \lambda^{\prime}}(\mathbf{y})
$$

\rightarrow Ad 2) This follows from a simple linear algebra argument.
\rightarrow Ad 1) We give a combinatorial proof via dual local growth rules. Using dual growth diagrams, we obtain a combinatorial proof of the dual Cauchy identity.

Given two partitions λ, ρ, we count (in a refined way) how often we obtain λ when applying both sides of

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*}
$$

to ρ.

Given two partitions λ, ρ, we count (in a refined way) how often we obtain λ when applying both sides of

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*}
$$

to ρ.
$\mathcal{U}^{k}(\lambda, \rho):=\left\{\nu: \lambda \prec^{\prime} \nu \succ \rho,|\nu /(\lambda \cup \rho)|=k\right\}$,

Given two partitions λ, ρ, we count (in a refined way) how often we obtain λ when applying both sides of

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*}
$$

to ρ.

$$
\begin{aligned}
\mathcal{U}^{k}(\lambda, \rho) & :=\left\{\nu: \lambda \prec^{\prime} \nu \succ \rho,|\nu /(\lambda \cup \rho)|=k\right\}, \\
\mathcal{D}^{k}(\lambda, \rho) & :=\left\{\mu: \lambda \succ \mu \prec^{\prime} \rho,|(\lambda \cap \rho) / \mu|=k\right\} .
\end{aligned}
$$

Given two partitions λ, ρ, we count (in a refined way) how often we obtain λ when applying both sides of

$$
D_{y}^{*} U_{x}=(1+x y) U_{x} D_{y}^{*}
$$

to ρ.

$$
\begin{aligned}
& \mathcal{U}^{k}(\lambda, \rho):=\left\{\nu: \lambda \prec^{\prime} \nu \succ \rho,|\nu /(\lambda \cup \rho)|=k\right\}, \\
& \mathcal{D}^{k}(\lambda, \rho):=\left\{\mu: \lambda \succ \mu \prec^{\prime} \rho,|(\lambda \cap \rho) / \mu|=k\right\} .
\end{aligned}
$$

It suffices to find a bijection

$$
F_{\lambda, \rho, k}: \mathcal{D}^{k-1}(\lambda, \rho) \cup \mathcal{D}^{k}(\lambda, \rho) \rightarrow \mathcal{U}^{k}(\lambda, \rho),
$$

for all λ, ρ and non-negative k. We call a family of such bijections a set of dual local growth rules.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.
\rightarrow An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec^{\prime} \rho$.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.
\rightarrow An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec^{\prime} \rho$.

$\lambda=(7,7,3,2,2)$ and $\rho=(8,5,4,2,2,1)$.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.
\rightarrow An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec^{\prime} \rho$.
\rightarrow An outer corner of $\lambda \cup \rho$ is called addable if the obtained partition ν satisfies $\lambda \prec^{\prime} \nu \succ \rho$.

$\lambda=(7,7,3,2,2)$ and $\rho=(8,5,4,2,2,1)$.

An inner corner (resp., outer corner) of λ is a cell c which we can remove (resp., add) and still obtain a partition.
\rightarrow An inner corner of $\lambda \cap \rho$ is called removeable if the obtained partition μ satisfies $\lambda \succ \mu \prec^{\prime} \rho$.
\rightarrow An outer corner of $\lambda \cup \rho$ is called addable if the obtained partition ν satisfies $\lambda \prec^{\prime} \nu \succ \rho$.

$F_{\lambda, \rho, 1}^{* \operatorname{col}}$

$\lambda \cup \rho$

$\lambda=(7,7,3,2,2)$ and $\rho=(8,5,4,2,2,1)$.

The (q, t)-up and dual down operator are defined as
$U_{x}(q, t) \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{y}^{*}(q, t) \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \varphi_{\lambda / \mu}^{*}(q, t) \mu$,
where $\psi_{\nu / \lambda}, \varphi_{\lambda / \mu}^{*}$ are products over terms of the form $\frac{1-q^{a} t^{b}}{1-q^{c} t^{d}}$.

The (q, t)-up and dual down operator are defined as
$U_{x}(q, t) \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{y}^{*}(q, t) \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \varphi_{\lambda / \mu}^{*}(q, t) \mu$,
where $\psi_{\nu / \lambda}, \varphi_{\lambda / \mu}^{*}$ are products over terms of the form $\frac{1-q^{a} t^{b}}{1-q^{c} t^{d}}$.

Theorem (Macdonald)

The Macdonald polynomials P_{λ} can be expressed via

$$
\begin{aligned}
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right) & =\left\langle U_{x_{n}}(q, t) \cdots U_{x_{1}}(q, t) \emptyset, \lambda\right\rangle \\
P_{\lambda^{\prime}}\left(y_{1}, \ldots, y_{m} ; q, t\right) & =\left\langle D_{y_{1}}^{*}(q, t) \cdots D_{y_{m}}^{*}(q, t) \lambda, \emptyset\right\rangle .
\end{aligned}
$$

The (q, t)-up and dual down operator are defined as
$U_{x}(q, t) \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{y}^{*}(q, t) \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \varphi_{\lambda / \mu}^{*}(q, t) \mu$,
where $\psi_{\nu / \lambda}, \varphi_{\lambda / \mu}^{*}$ are products over terms of the form $\frac{1-q^{a} t^{b}}{1-q^{c} t^{d}}$.

Definition

The Macdonald polynomials P_{λ} are defined as

$$
\begin{aligned}
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right) & =\left\langle U_{x_{n}}(q, t) \cdots U_{x_{1}}(q, t) \emptyset, \lambda\right\rangle, \\
P_{\lambda^{\prime}}\left(y_{1}, \ldots, y_{m} ; q, t\right) & =\left\langle D_{y_{1}}^{*}(q, t) \cdots D_{y_{m}}^{*}(q, t) \lambda, \emptyset\right\rangle .
\end{aligned}
$$

The (q, t)-up and dual down operator are defined as
$U_{x}(q, t) \lambda=\sum_{\nu \succ \lambda} x^{|\nu / \lambda|} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{y}^{*}(q, t) \lambda=\sum_{\mu \prec^{\prime} \lambda} y^{|\lambda / \mu|} \varphi_{\lambda / \mu}^{*}(q, t) \mu$,
where $\psi_{\nu / \lambda}, \varphi_{\lambda / \mu}^{*}$ are products over terms of the form $\frac{1-q^{a} t^{b}}{1-q^{c} t^{d}}$.

Definition

The Macdonald polynomials P_{λ} are defined as

$$
\begin{aligned}
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right) & =\left\langle U_{x_{n}}(q, t) \cdots U_{x_{1}}(q, t) \emptyset, \lambda\right\rangle, \\
P_{\lambda^{\prime}}\left(y_{1}, \ldots, y_{m} ; q, t\right) & =\left\langle D_{y_{1}}^{*}(q, t) \cdots D_{y_{m}}^{*}(q, t) \lambda, \emptyset\right\rangle .
\end{aligned}
$$

The Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ specialise to
\rightarrow Schur polynomials for $q=t$,
\rightarrow Hall-Littlewood polynomials for $q=0$,
$\rightarrow q$-Whittaker polynomials for $t=0$,
\rightarrow Jack polynomials for $q=t^{\alpha}$ and taking the limit $t \rightarrow 1$.

Theorem (Macdonald)

1. For two sets of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ holds

$$
\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) P_{\lambda^{\prime}}(\mathbf{y} ; t, q) .
$$

Theorem (Macdonald)

1. For two sets of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ holds

$$
\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) P_{\lambda^{\prime}}(\mathbf{y} ; t, q)
$$

2. The (q, t)-operators satisfy the commutation relation

$$
D_{y}^{*}(q, t) U_{x}(q, t)=(1+x y) U_{x}(q, t) D_{y}^{*}(q, t) .
$$

Theorem (Macdonald)

1. For two sets of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ holds

$$
\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) P_{\lambda^{\prime}}(\mathbf{y} ; t, q)
$$

2. The (q, t)-operators satisfy the commutation relation

$$
D_{y}^{*}(q, t) U_{x}(q, t)=(1+x y) U_{x}(q, t) D_{y}^{*}(q, t) .
$$

The commutation relation is equivalent to the family of equations
$\sum_{\mu \in \mathcal{D}^{k}(\lambda, \rho) \cup \mathcal{D}^{k-1}(\lambda, \rho)} \psi_{\lambda / \mu}(q, t) \varphi_{\rho / \mu}^{*}(q, t)=\sum_{\nu \in \mathcal{U}^{k}(\lambda, \rho)} \psi_{\nu / \rho}(q, t) \varphi_{\nu / \lambda}^{*}(q, t)$,
for all partitions λ, ρ and non-negative integers k,

Theorem (Macdonald)

1. For two sets of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ holds

$$
\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) P_{\lambda^{\prime}}(\mathbf{y} ; t, q)
$$

2. The (q, t)-operators satisfy the commutation relation

$$
D_{y}^{*}(q, t) U_{x}(q, t)=(1+x y) U_{x}(q, t) D_{y}^{*}(q, t) .
$$

The commutation relation is equivalent to the family of equations

$$
\sum_{\substack{\left(\begin{array}{l}
d d \\
k
\end{array}\right) \cup\left(\begin{array}{c}
{[d] \\
k-1}
\end{array}\right)}} \omega_{\lambda, \rho}(\mathbf{R})=\sum_{\mathbf{S} \in\binom{[0, d]}{k}} \bar{\omega}_{\lambda, \rho}(\mathbf{S})
$$

for all partitions λ, ρ and non-negative integers k where $\binom{\mathbf{x}}{k}$ the set of k-subsets of \mathbf{X} and

$$
\begin{aligned}
& \omega_{\lambda, \rho}(\mu)=\psi_{\lambda / \mu}(q, t) \varphi_{\rho / \mu}^{*}(q, t) \\
& \bar{\omega}_{\lambda, \rho}(\nu)=\psi_{\nu / \rho}(q, t) \varphi_{\nu / \lambda}^{*}(q, t)
\end{aligned}
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X, \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y, \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y .
\end{array}
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y .
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x \in X} \omega(x)=\sum_{y \in Y} \bar{\omega}(y)
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x=1}(x)
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x \in X} \omega(x)=\sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \rightarrow y)
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y .
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x \in X} \omega(x)=\sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \rightarrow y)=\sum_{\substack{x \in X \\ y \in Y}} \bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y)
$$

Let A be an algebra and X, Y be two sets equipped with weight functions

$$
\omega: X \rightarrow A, \quad \bar{\omega}: Y \rightarrow A .
$$

A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of A-valued "probability distributions" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y .
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x \in X} \omega(x)=\sum_{\substack{x \in X \\ y \in Y}} \omega(x) \mathcal{P}(x \rightarrow y)=\sum_{\substack{x \in X \\ y \in Y}} \bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y)=\sum_{y \in Y} \bar{\omega}(y)
$$

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.
\rightarrow We define the points $R_{i}, \overline{R_{i}}$ for $i \in[d]=\{1,2, \ldots, d\}$.

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.
\rightarrow We define the points $R_{i}, \overline{R_{i}}$ for $i \in[d]=\{1,2, \ldots, d\}$.

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.
\rightarrow We define the points $R_{i}, \overline{R_{i}}$ for $i \in[d]=\{1,2, \ldots, d\}$.
\rightarrow We set $I_{i}=\overline{R_{i}}$ and $O_{j}=S_{j}$.

Let λ, ρ be partitions and regard the removable and addable corners of $\lambda \cap \rho$ and $\lambda \cup \rho$ respectively. Denote by d the number of removable corners.
\rightarrow We regard the Young diagram right-justified (Quebecois notation).
\rightarrow We define the points $S_{i}, \overline{S_{i}}$ for $i \in[0, d]=\{0,1, \ldots, d\}$.
\rightarrow We define the points $R_{i}, \overline{R_{i}}$ for $i \in[d]=\{1,2, \ldots, d\}$.
\rightarrow We set $I_{i}=\overline{R_{i}}$ and $O_{j}=S_{j}$.

We identify a point (x, y) with the monomial $q^{x} t^{y}$.

Definition (Frieden-SA)

Let λ, ρ be partitions, d the number of removable corners of $\lambda \cap \rho$. For $\mathbf{R} \subseteq[d]$ and $\mathbf{S} \subseteq[0, d]$, we define the forward probability

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)},
$$

Definition (Frieden-SA)

Let λ, ρ be partitions, d the number of removable corners of $\lambda \cap \rho$. For $\mathbf{R} \subseteq[d]$ and $\mathbf{S} \subseteq[0, d]$, we define the forward probability

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-l_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-l_{i}\right)},
$$

and the backward probability

$$
\overline{\mathcal{P}}_{\lambda, \rho}(\mathbf{R} \leftarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(\bar{S}_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(\bar{S}_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{i \in[0, d] \backslash \mathbf{S}}\left(\bar{R}_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(\bar{R}_{r}-I_{i}\right)} .
$$

$$
\begin{aligned}
& \quad \mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)} . \\
& \rightarrow \text { Let } \lambda=\rho=(2,1) . \text { We have } d=2 . \\
& + \\
& \hline
\end{aligned}
$$

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-l_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-l_{i}\right)}
$$

\rightarrow Let $\lambda=\rho=(2,1)$. We have $d=2$.
\rightarrow Remember $O_{i}=S_{i}$.

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)}
$$

\rightarrow Let $\lambda=\rho=(2,1)$. We have $d=2$.
\rightarrow Remember $O_{i}=S_{i}$.

$$
\mathcal{P}_{\lambda, \rho}(\{2\} \rightarrow\{0,1\})
$$

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)}
$$

\rightarrow Let $\lambda=\rho=(2,1)$. We have $d=2$.
\rightarrow Remember $O_{i}=S_{i}$.

$$
\mathcal{P}_{\lambda, \rho}(\{2\} \rightarrow\{0,1\})=\frac{\left(S_{0}-I_{1}\right)\left(S_{1}-I_{1}\right)}{\left(S_{0}-O_{2}\right)\left(S_{1}-O_{2}\right)} \cdot \frac{\left(R_{2}-O_{2}\right)}{\left(R_{2}-I_{1}\right)}
$$

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)}
$$

\rightarrow Let $\lambda=\rho=(2,1)$. We have $d=2$.
\rightarrow Remember $O_{i}=S_{i}$.

$$
\begin{aligned}
& \mathcal{P}_{\lambda, \rho}(\{2\} \rightarrow\{0,1\})=\frac{\left(S_{0}-I_{1}\right)\left(S_{1}-I_{1}\right)}{\left(S_{0}-O_{2}\right)\left(S_{1}-O_{2}\right)} \cdot \frac{\left(R_{2}-O_{2}\right)}{\left(R_{2}-I_{1}\right)} \\
& \quad=\frac{(1-t)(q t-t)\left(q^{2} t-q^{2} t^{2}\right)}{\left(1-q^{2} t^{2}\right)\left(q t-q^{2} t^{2}\right)\left(q^{2} t-t\right)}
\end{aligned}
$$

$$
\mathcal{P}_{\lambda, \rho}(\mathbf{R} \rightarrow \mathbf{S})=\prod_{s \in \mathbf{S}} \frac{\prod_{i \in[d] \backslash \mathbf{R}}\left(S_{s}-I_{i}\right)}{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(S_{s}-O_{j}\right)} \prod_{r \in \mathbf{R}} \frac{\prod_{j \in[0, d] \backslash \mathbf{S}}\left(R_{r}-O_{j}\right)}{\prod_{i \in[d] \backslash \mathbf{R}}\left(R_{r}-I_{i}\right)}
$$

\rightarrow Let $\lambda=\rho=(2,1)$. We have $d=2$.
\rightarrow Remember $O_{i}=S_{i}$.

$$
\begin{aligned}
& \mathcal{P}_{\lambda, \rho}(\{2\} \rightarrow\{0,1\})=\frac{\left(S_{0}-I_{1}\right)\left(S_{1}-I_{1}\right)}{\left(S_{0}-O_{2}\right)\left(S_{1}-O_{2}\right)} \cdot \frac{\left(R_{2}-O_{2}\right)}{\left(R_{2}-I_{1}\right)} \\
& \quad=\frac{(1-t)(q t-t)\left(q^{2} t-q^{2} t^{2}\right)}{\left(1-q^{2} t^{2}\right)\left(q t-q^{2} t^{2}\right)\left(q^{2} t-t\right)}=q \frac{(1-q)(1-t)^{2}}{\left(1-q^{2}\right)(1-q t)\left(1-q^{2} t^{2}\right)} .
\end{aligned}
$$

Theorem (Frieden-SA)

1. The probabilities $\mathcal{P}_{\lambda, \rho}$ and $\overline{\mathcal{P}}_{\lambda, \rho}$ form a probabilistic bijection.
2. The probabilistic insertion algorithm, $q t \mathrm{RSK}^{*}$, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.

Theorem (Frieden-SA)

1. The probabilities $\mathcal{P}_{\lambda, \rho}$ and $\overline{\mathcal{P}}_{\lambda, \rho}$ form a probabilistic bijection.
2. The probabilistic insertion algorithm, $q t \mathrm{RSK}^{*}$, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.
\rightarrow By specialising to matrices with at most one nonzero entry in every column we obtain a (q, t)-generalisation of RS for words.
\rightarrow By specialising to permutation matrices, we obtain the $q R S t$ correspondence, a (q, t)-generalisation of RS by Frieden and myself.
\rightarrow For $q, t \in[0,1)$ or $q, t \in(1, \infty)$ all probabilities have values in $[0,1]$.

Theorem (Frieden-SA)

1. The probabilities $\mathcal{P}_{\lambda, \rho}$ and $\overline{\mathcal{P}}_{\lambda, \rho}$ form a probabilistic bijection.
2. The probabilistic insertion algorithm, $q t \mathrm{RSK}^{*}$, building on these growth rules is a probabilistic bijection which allows to proof the dual Cauchy identity for Macdonald polynomials.
\rightarrow By specialising to matrices with at most one nonzero entry in every column we obtain a (q, t)-generalisation of RS for words.
\rightarrow By specialising to permutation matrices, we obtain the $q R S t$ correspondence, a (q, t)-generalisation of RS by Frieden and myself.
\rightarrow For $q, t \in[0,1)$ or $q, t \in(1, \infty)$ all probabilities have values in $[0,1]$.

Lemma (Frieden-SA)

The probabilities satisfy

$$
\begin{aligned}
\mathcal{P}_{\lambda, \rho}(\mu \rightarrow \nu)\left[q^{-1}, t^{-1}\right] & =\mathcal{P}_{\rho^{\prime}, \lambda^{\prime}}\left(\mu^{\prime} \rightarrow \nu^{\prime}\right)[t, q], \\
\overline{\mathcal{P}}_{\lambda, \rho}(\mu \leftarrow \nu)\left[q^{-1}, t^{-1}\right] & =\overline{\mathcal{P}}_{\rho^{\prime}, \lambda^{\prime}}\left(\mu^{\prime} \leftarrow \nu^{\prime}\right)[t, q] .
\end{aligned}
$$

Macdonald polynomials qtRSK* (Frieden-SA)

q-Whittaker polynomials row / col q-RSK* (Matveev-Petrov)

Theorem (Frieden-SA)

Restricting to matrices with at most one nonzero entry per column, the P-tableaux distribution in the Jack limit $\left(q=t^{\alpha}\right.$ and $\left.t \rightarrow 1\right)$ is invariant under interchanging two columns.

