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Introduction

Introduction

The Erdős–Ginzburg–Ziv Problem is a classical extremal problem in
discrete geometry.

For given positive integers m and n it asks the following question.

Erdős–Ginzburg–Ziv Problem
What is the minimum integer s such that among any s points in the integer
lattice Zn there are m points whose centroid is also a lattice point in Zn?

Recall that the centroid of a collection of m points p1, . . . , pm ∈ Zn is
simply their average (p1 + · · ·+ pm)/m ∈ Rn.

We are looking for m points (among the given s points) such that
(p1 + · · ·+ pm)/m ∈ Zn, i.e. such that all coordinates of the sum
p1 + · · ·+ pm are divisible by m.
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Introduction

Let n and m be given positive integers.

Erdős–Ginzburg–Ziv Problem
What is the minimum integer s such that among any s points in the integer
lattice Zn there are m points whose centroid is also a lattice point in Zn?

Example for n = 2 and m = 3:

Among these four points in Z2 it is possible
to find m = 3 points whose centroid is also a
lattice point in Z2.

However, this is not always possible for four
points in Z2.
In fact this is not even always possible for
eight points in Z2.

For n = 2 and m = 3, one needs s = 9 points.
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Introduction

Problem
What is the minimum integer s such that among any s points in the integer
lattice Zn there are m points whose centroid is also a lattice point in Zn?

The answer to this question is called the Erdős–Ginzburg–Ziv constant
s(Zn

m).

(This notation reflects that this problem can be translated to a problem
about sequences in Zn

m, since in fact only the remainders modulo m of the
coordinates of the points are relevant.)

Erdős–Ginzburg–Ziv constants have been studied intensively, but there are
only few known exact values for s(Zn

m):

n = 1: s(Z1
m) = 2m − 1 (Erdős–Ginzburg–Ziv, 1961).

n = 2: s(Z2
m) = 4m − 3 (Reiher, 2007).

n = 3 and m has only certain prime factors : s(Z3
m) = 9m − 8.

n = 4 and m is a power of 3: s(Z4
m) = 20m − 19 (Edel et al., 2007).

m is a power of 2: s(Zn
m) = (m − 1)2n + 1 (Harborth, 1973).
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Introduction

Definition
s(Zn

m) is the minimum integer s such that among any s points in the
lattice Zn there are m points whose centroid is also a lattice point in Zn.

Rather than aiming to determine s(Zn
m) exactly, one might try to

understand how s(Zn
m) behaves as a function of m and n.

Theorem (Alon, Dubiner, 1995)

For fixed dimension n, the function s(Zn
m) grows linearly with m.

Alon and Dubiner gave the upper bound s(Zn
m) ≤ (cn log n)n ·m for some

absolute constant c .

Zakharov (2020+) improved their bound to s(Zn
m) ≤ 4n ·m in the case

where m is a prime that is sufficiently large with respect to n.

Open Problem
What happens in the opposite regime, when m is fixed and the dimension n
is large?
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Reducing to m = p prime

Reducing to m = p prime

Definition
s(Zn

m) is the minimum integer s such that among any s points in the
lattice Zn there are m points whose centroid is also a lattice point in Zn.

If m = kℓ, the following lemma gives an upper bound for s(Zn
m) in terms of

s(Zn
k) and s(Zn

ℓ ).

Lemma
s(Zn

kℓ) ≤ ℓ · (s(Zn
k)− 1) + s(Zn

ℓ ).

This lemma can be used in all of the previously mentioned upper bounds
for s(Zn

m) in order to reduce to the case where m is a prime.

In other words, for these upper bounds it suffices to study s(Zn
p) = s(Fn

p)
for a prime p.
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Reducing to m = p prime

Lemma
s(Zn

kℓ) ≤ ℓ · (s(Zn
k)− 1) + s(Zn

ℓ ).

Proof: Consider a set S of ℓ · (s(Zn
k)− 1) + s(Zn

ℓ ) points in Zn.

We need to find kℓ points in S whose centroid is a lattice point in Zn.

First, we can find ℓ points in S whose centroid is a lattice point in Zn. Let
us delete these ℓ points from S and repeat the process (again finding ℓ
points whose centroid is in Zn).

After having found s(Zn
k)− 1 groups of ℓ points, we still have s(Zn

ℓ ) points
left and can find another group of ℓ points.

In total, we have found s(Zn
k) groups of ℓ points, so that each group has a

centroid in Zn. Among these s(Zn
k) centroid points, we can find k centroid

points whose centroid is a lattice point in Zn.

Considering the corresponding k groups of size ℓ, gives kℓ points in S
whose centroid is a lattice point in Zn.
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Proof techniques for small dimension n

Proof techniques for small dimension n

All of the previously mentioned bounds for s(Zn
m) can be reduced to the

case where m = p is a prime (with the lemma on the last slide).

Theorem (Erdős, Ginzburg, Ziv, 1961)

For dimension n = 1, we have s(F1
p) = 2p − 1.

This can be proved as an easy application of the Combinatorial
Nullstellensatz (due to Alon, 1999), although the original proof of Erdős,
Ginzburg, and Ziv was different.

Theorem (Reiher, 2007)

For dimension n = 2, we have s(F2
p) = 4p − 3.

This also be proved with the Combinatorial Nullstellensatz (or the
Chevalley–Warning Theorem), but the proof is much more involved.
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Proof techniques for small dimension n

Theorem (Alon, Dubiner, 1995)

For fixed dimension n, the function s(Fn
p) grows linearly in p.

The proof is by induction on the dimension n. The induction step relies on
results from additive combinatorics, as well as arguments using spectral
graph theory (i.e. studying eigenvalues of certain matrices).

The proofs of all of these results for s(Fn
p) for small dimension n rely on

algebraic techniques.

The techniques used for n = 1 and n = 2 are very different from the
techniques for fixed n > 2 (even though all of these techniques are in some
sense algebraic).

None of these approaches seems to work for large dimension n.

Open Problem
How large is s(Fn

p) for a fixed prime p ≥ 3 and large dimension n?
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p) for a fixed prime p

Assume from now on that p ≥ 3 is a fixed prime and n is large.

Definition
s(Fn

p) is the minimum integer s such that among any s points in the lattice
Zn there are p points whose centroid is also a lattice point in Zn.

Note that for p points in Zn, the centroid is a lattice point in Zn precisely
when the sum of the p points has all coordinates divisible by p.

We can consider the points as (possibly repeated) elements of Zn
p = Fn

p.
We are then trying to find p elements of Fn

p whose sum is the zero vector
in Fn

p.

Equivalent definition
s(Fn

p) is the minimum integer s such that among any sequence of s
elements of Fn

p there is a subsequence of length p whose elements have
sum zero.
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s(Fn
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p) for a fixed prime p

Definition
s(Fn

p) is the minimum integer s such that among any sequence of s
elements of Fn

p there is a subsequence of length p whose elements have
sum zero.

Equivalently, s(Fn
p)− 1 is the answer to the following problem.

Problem
What is the maximum possible length of a sequence of elements of Fn

p

without a subsequence of length p summing to zero?

Note that every element of Fn
p can occur in such a sequence at most p − 1

times (otherwise, the p copies of the same element form a subsequence of
length p summing to zero).

So, up to a factor of at most p − 1, this problem is equivalent to:

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?
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Let p ≥ 3 be a fixed prime and n large.

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?

We have seen that s(Fn
p) agrees with the answer to this problem up to a

constant factor (if p is fixed).

An easy lower bound for the problem above is 2n (consider the subset
{0, 1}n ⊆ Fn

p).

The best known lower bound is roughly 2.1398n for p ≥ 5 (Edel, 2008) and
roughly 2.2202n for p = 3 (Romera-Paredes et al., 2024).

For p = 3, we are asking about the maximum size of a subset A ⊆ Fn
3 not

containing distinct vectors x , y , z ∈ A with x + y + z = 0.

In characteristic 3, having x + y + z = 0 is equivalent to x − 2y + z = 0,
i.e. to x , y , z forming an arithmetic progression.
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For p = 3, determining s(Fn
3) is equivalent to the following problem.

Problem
What is the maximum size of a subset of Fn

3 without a three-term
arithmetic progression
(i.e. without distinct vectors x , y , z with x − 2y + z = 0)?

This is a famous problem, called the Cap-Set Problem.

More generally, studying the maximum size of progression-free subsets of
Fn
p or {1, . . . ,N} is a fundamental problem in additive combinatorics.

Theorem (Szemerédi, 1975)

For any fixed k ≥ 3, the maximum size of a subset of {1, . . . ,N} without a
k-term arithmetic progression is of the form o(N).

This was the main result described in Szemerédi’s 2012 Abel Prize citation.

The behavior of the o(N)-term is still not understood, despite a lot of
attention. For k = 3, a revolutionary new upper bound was shown by
Kelley and Meka (2023+).
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Problem (Cap-Set Problem)

What is the maximum size of a subset of Fn
3 without a three-term

arithmetic progression
(i.e. without distinct vectors x , y , z with x − 2y + z = 0)?

Upper bounds:

trivial: 3n

Pigeon-hole principle: 1
2(3

n + 1)
Meshulam (1995): O(3n/n)
Bateman–Katz (2012): O(3n/n1+ε) for some constant ε > 0

In 2017, Ellenberg and Gijswijt achieved a breakthrough on this problem,
improving exponentially upon the trivial upper bound 3n.

Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.
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In 2017, Ellenberg and Gijswijt achieved a breakthrough on this problem,
improving exponentially upon the trivial upper bound 3n.

Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.
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Ellenberg and Gijswijt actually proved a more general result for Fn
p for any

fixed prime p ≥ 3:

Theorem (Ellenberg, Gijswijt, 2017)

Let p ≥ 3 be prime. If A ⊆ Fn
p does not contain a three-term arithmetic

progression, then |A| ≤ (Γp)
n, for some Γp < p (only depending on p).

The proof gives the the following value for Γp:

Γp = min
0<t<1

1 + t + · · ·+ tp−1

t(p−1)/3 ,

This Γp satisfies 0.8414p ≤ Γp ≤ 0.9184p.

For p = 3, we have Γ3 ≈ 2.756, giving the bound |A| ≤ 2.756n.

It is not known whether the constant Γp defined above is tight. The best
known general lower bound is Γp ≥

√
7/24p ≈ 0.54p

(Elsholtz–Hunter–Proske–S., 2024+).

However, Γp is tight for a certain “multi-colored” generalization of this
result (Kleinberg–Sawin–Speyer, Norin, Pebody).
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Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.

The proof of Ellenberg and Gijswijt used a new polynomial method
introduced by Croot, Lev and Pach only a few weeks earlier.

A few weeks later, Tao introduced a reformulation of this method, now
called the slice rank polynomial method.

The result above gives the following corollary concerning s(Fn
3) for p = 3.

Corollary
s(Fn

3) ≤ 1 + 2 · 2.756n.

Again, the proof relies on an algebraic technique (using polynomials), but
in a very different way than the results on s(Fn

p) for small dimension n.

Lisa Sauermann (Bonn) The Erdős–Ginzburg–Ziv Problem July 25, 2024 16 / 24



s(Fn
pF
n
pF
n
p) for a fixed prime p

Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.

The proof of Ellenberg and Gijswijt used a new polynomial method
introduced by Croot, Lev and Pach only a few weeks earlier.

A few weeks later, Tao introduced a reformulation of this method, now
called the slice rank polynomial method.

The result above gives the following corollary concerning s(Fn
3) for p = 3.

Corollary
s(Fn

3) ≤ 1 + 2 · 2.756n.

Again, the proof relies on an algebraic technique (using polynomials), but
in a very different way than the results on s(Fn

p) for small dimension n.

Lisa Sauermann (Bonn) The Erdős–Ginzburg–Ziv Problem July 25, 2024 16 / 24



s(Fn
pF
n
pF
n
p) for a fixed prime p

Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.

The proof of Ellenberg and Gijswijt used a new polynomial method
introduced by Croot, Lev and Pach only a few weeks earlier.

A few weeks later, Tao introduced a reformulation of this method, now
called the slice rank polynomial method.

The result above gives the following corollary concerning s(Fn
3) for p = 3.

Corollary
s(Fn

3) ≤ 1 + 2 · 2.756n.

Again, the proof relies on an algebraic technique (using polynomials), but
in a very different way than the results on s(Fn

p) for small dimension n.

Lisa Sauermann (Bonn) The Erdős–Ginzburg–Ziv Problem July 25, 2024 16 / 24



s(Fn
pF
n
pF
n
p) for a fixed prime p

Theorem (Ellenberg, Gijswijt, 2017)

If A ⊆ Fn
3 does not contain a three-term arithmetic progression, then

|A| ≤ 2.756n.

The proof of Ellenberg and Gijswijt used a new polynomial method
introduced by Croot, Lev and Pach only a few weeks earlier.

A few weeks later, Tao introduced a reformulation of this method, now
called the slice rank polynomial method.

The result above gives the following corollary concerning s(Fn
3) for p = 3.

Corollary
s(Fn

3) ≤ 1 + 2 · 2.756n.

Again, the proof relies on an algebraic technique (using polynomials), but
in a very different way than the results on s(Fn

p) for small dimension n.

Lisa Sauermann (Bonn) The Erdős–Ginzburg–Ziv Problem July 25, 2024 16 / 24



s(Fn
pF
n
pF
n
p) for a fixed prime p

For fixed p ≥ 3, determining s(Fn
p) is equivalent to the following problem

(up to constant factors depending on p).

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?

For p = 3, this problem is the Cap-Set Problem, and by the result of
Ellenberg–Gijswijt we have an upper bound of 2.756n.

It is natural to also try to apply the slice rank polynomial method to this
problem for p ≥ 5.

However, this does not work. The problem is that the natural tensor
associated with this problem is not a diagonal tensor, and so one does not
have a good lower bound for its slice rank.

The fact that the tensor is not necessarily diagonal is due to the
distinctness condition in the problem above.
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Let p ≥ 5 be a fixed prime, and let n be large.

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?

In other words, we are asking for the maximum size of a subset A ⊆ Fn
p

with no solution for x1 + · · ·+ xp = 0 with x1, . . . , xp ∈ A being .

Similar-looking problem
What is the maximum size of a subset of A ⊆ Fn

p with no solution for
x1 + · · ·+ xp = 0 with x1, . . . , xp ∈ A being not all equal.

Here, we have |A| < 4n. This is a straightforward application of the slice
rank polynomial method.

However, this argument fails for the top problem because we do not have a
diagonal tensor anymore.
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Results for fixed p ≥ 5p ≥ 5p ≥ 5 and large n

Results for fixed p ≥ 5p ≥ 5p ≥ 5 and large n

Let p ≥ 5 be a fixed prime and n large.

Problem
What is the maximum size of a subset A ⊆ Fn

p without p distinct elements
summing to zero?

Clearly, |A| ≤ pn. Naslund proved that |A| must be exponentially smaller
than pn.

Theorem (Naslund, 2020)

If A ⊆ Fn
p does not contain p distinct elements summing to zero, then

|A| ≤ (2p − p − 2) · Γnp.

Here, Γp < p is the constant in the Ellenberg–Gijswijt bound for
progression-free subsets of Fn

p. It satisfies 0.8414p ≤ Γp ≤ 0.9184p.

So this bound is exponentially better than the trivial bound |A| ≤ pn, but
the base Γp is still is linear in p.
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Results for fixed p ≥ 5p ≥ 5p ≥ 5 and large n

Let p ≥ 5 be a fixed prime and n large.

Theorem (S., 2021)

If A ⊆ Fn
p does not contain p distinct elements summing to zero, then

|A| ≤ Cp ·
(
2
√
p
)n for some constant Cp only depending on p.

The proof combines the slice rank polynomial method with combinatorial
ideas (in order to overcome the problem of the tensor not being diagonal).

The same proof gives a “multi-colored” generalization (which is somewhat
technical to state).

Interestingly, in this multi-colored generalization the bound is almost tight
(there is a lower bound

√
pn for even n).

This is similar to the situation for the Cap-Set Problem, where the bound is
known to be tight for the “multi-colored” generalization.

One barrier to improving the result above or the bound for the Cap-Set
Problem is that one needs an approach which does not generalize to the
“multi-colored” setting.
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(there is a lower bound

√
pn for even n).

This is similar to the situation for the Cap-Set Problem, where the bound is
known to be tight for the “multi-colored” generalization.

One barrier to improving the result above or the bound for the Cap-Set
Problem is that one needs an approach which does not generalize to the
“multi-colored” setting.
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Results for fixed p ≥ 5p ≥ 5p ≥ 5 and large n

Overcoming this barrier, in joint work with Zakharov, improved the bound
as follows.

Theorem (S., Zakharov, 2023+)

For every fixed ε > 0, for all primes p and all n, one has a bound
|A| ≤ Dε,p · (Cεp

ε)n for any subset A ⊆ Fn
p without p distinct elements

summing to zero.

The proof combines the slice rank polynomial method with combinatorial
and probabilistic arguments, as well as a higher uniformity version of the
Balog–Szemerédi–Gowers Theorem due to Borenstein–Croot (2011).

Corollary (S., Zakharov, 2023+)

For every fixed ε > 0, for all primes p and all n, one has
s(Fn

p) ≤ Dε,p · (Cεp
ε)n.

In particular, s(Fn
p) ≤ Dp · (C · p0.01)n for some absolute constant C .

A similar bound holds when replacing 0.01 by any fixed ε > 0.
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Results for fixed p ≥ 5p ≥ 5p ≥ 5 and large n

Corollary (S., Zakharov, 2023+)

For every fixed ε > 0, for all primes p and all n, one has
s(Fn

p) ≤ Dε,p · (Cεp
ε)n.

The best lower bound for s(Fn
p) for fixed p and large n is roughly 2.1398n

(Edel, 2008).

Thus, there is still a significant gap between the upper and lower bounds.
In particular, the following question is open.

Open problem
Is there a bound of the form s(Fn

p) ≤ Cp · cn for some absolute constant c?

In the opposite parameter regime, where n is fixed and p is large with
respect to n, Zakharov (2020+) proved s(Fn

p) ≤ p · 4n.

However, his methods do not apply for fixed p and large n.
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Thank you

Thank you very much for your attention!
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