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Part I:

• Introduce the notion of valuations for polytopes or matroids

• Highlight four examples: the trivial invariant (polytopes), the

Poincaré polynomial (matroids), the Chow and augmented

Chow polynomials (matroids).

• State a theorem and a conjecture about these invariants.

Part II:

• Introduce the notion of categorical valuations for polytopes

or matroids

• Highlight four examples: the trivial invariant (polytopes), the

Orlik-Solomon algebra (matroids), the Chow and augmented

Chow rings (matroids).

• State two conjectures about these categorical invariants.
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Let V be a real vector space. A polytope in V is the convex hull

of a finite, nonempty set of points in V.

Pol(V) := free abelian group with basis given by polytopes in V.

Let I(V) ⊂ Pol(V) be the kernel of the homomorphism

Pol(V)→ Functions on V

P 7→ 1P .

Example

− − + ∈ I(V)
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Example

big triangle

− 4 small trangles

+ 3 internal edges

∈ I(V)

Let’s generalize this way of finding elements of I(V).

A decomposition of a polytope P is a collection Q of polytopes

such that:

• If Q ∈ Q, then every nonempty face of Q is in Q.

• If Q,Q ′ ∈ Q, then Q ∩ Q ′ is a (possibly empty) face of both

Q and Q ′.

• We have P =
⋃
Q∈Q

Q.
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Elements of Q are called faces of the decomposition. A face

Q ∈ Q is internal if Q is not contained in the boundary of P.

Let Qk denote the set of internal faces of dimension k.

Example

Q2 = {small triangles}

Q1 = {internal edges}

Q0 = ∅

Theorem (Volland 1957, Sallee 1968, Groemer 1978,

Ardila–Fink–Rincón 2010)

We have

P −
∑
k

(−1)dimP−k
∑
Q∈Qk

Q ∈ I(V),

and I(V) is spanned by elements of this form.
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Let A be an abelian group. A homomorphism ϕ : Pol(V)→ A is

determined by specifying ϕ(P) ∈ A for every polytope P.

Such a homomorphism is a valuation if I(V) is contained in the

kernel. That means

ϕ(P) =
∑
k

(−1)dimP−k
∑
Q∈Qk

ϕ(Q),

for any decomposition Q of a polytope P.

Example

The homomorphism τ : Pol(V)→ Z with ϕ(P) = 1 for every

polytope P is a valuation.

This is not hard, but also not completely obvious! We’ll see one

proof later.
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Let’s consider a particular class of polytopes.

Let E be a finite set. A matroid on E is a nonempty collection of

finite subsets of E , called bases with the following property:

If B and B ′ are bases and e ∈ B, then there exists e ′ ∈ B ′

such that B \ {e} ∪ {e ′} is a basis.

We write rkM := |B| for any B.

Example

Suppose that {ve | e ∈ E} is a collection of vectors in a complex

vector space V , spanning all of V .

The collection of subsets B ⊂ E such that {ve | e ∈ B} is a basis

for V is a matroid on E , of rank equal to dimV .

Such a matroid is called realizable over C.
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Each matroid determines a polytope:

Let RE = R{xe | e ∈ E}.
For any S ⊂ E , let

xS =
∑
e∈S

xe ∈ RE .

Let

P(M) := Conv{xB | B a basis} ⊂ RE .

We define Mat(E ) to be the subgroup of Pol(RE ) generated by

matroid polytopes, and

I(E ) := Mat(E ) ∩ I(RE ).

Theorem (Derksen–Fink 2010)

The subgroup I(E ) ⊂ Mat(E ) is generated by elements associated

with decompositions of matroid polytopes into matroid polytopes.

A homomorphism ϕ : Mat(E )→ A is a valuation if I(E ) is

contained in the kernel.
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Let’s discuss some examples with A = Z[t].

Let OS(M) denote the Orlik–Solomon algebra of M, which is

can be defined by explicit generators and relations.

Example

Suppose that M is the matroid associated with a collection of

vectors {ve | e ∈ E} that span a complex vector space C. Let

He = v⊥e ⊂ V ∗ and U = V ∗ \
⋃
e∈E

He .

Then OS(M) ∼= H∗(U;Q).

We define the Poincaré polynomial πM(t) =
rkM∑
i=0

t i dim OSi (M).

This is closely related to the characteristic polynomial

χM(t) = (−t)rkMπM(−t−1).
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For motivation, here is a well-known theorem about πM(t).

Theorem (Adiprasito–Huh–Katz 2017)

The coefficients of πM(t) form a log concave sequence. That is,

if πM(t) =
∑

ai t
i , then a2i ≥ ai−1ai+1 for all i .

Theorem (Speyer 2008)

The Poincaré polynomial is valuative. That is, the

homomorphism Mat(E )→ Z[t] taking M to πM(t) is a valuation.

Note #1: I’m writing M rather than P(M) to denote a basis

element of Mat(E ).

Note #2: Speyer actually proved that the Tutte polynomial is

valuative, and πM(t) is an evaluation of the Tutte polynomial.

9



For motivation, here is a well-known theorem about πM(t).

Theorem (Adiprasito–Huh–Katz 2017)

The coefficients of πM(t) form a log concave sequence. That is,

if πM(t) =
∑

ai t
i , then a2i ≥ ai−1ai+1 for all i .

Theorem (Speyer 2008)
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Let CH(M) denote the Chow ring of M, also defined by explicit

generators and relations.

Example

When M is realizable over C and U is the corresponding

hyperplane complement, CH(M) is the cohomology ring of the de

Concini–Procesi wonderful compactification of U/C×.

We define the Chow polynomial

HM(t) =
rkM−1∑
i=0

t i dim CHi (t).

There is also a closely related augmented Chow ring CH(M) and

augmented Chow polynomial

HM(t) =
rkM∑
i=0

t i dim CHi (t).
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Here’s a fun conjecture about these two polynomials.

Conjecture (Ferroni–Schröter, Stevens,

Ferroni–Matherne–Stevens–Vecchi)

The polynomials HM(t) and HM(t) have strictly interlacing real

roots. That is, we have

HM(t) =
∏

(t − ai ) and HM(t) =
∏

(t − bi )

with a1 < b1 < a2 < b2 < · · · < arkM−1 < brkM−1 < arkM .

Theorem (Ferroni–Schröter,

Ferroni–Matherne–Stevens–Vecchi)

The polynomials HM(t) and HM(t) are both valuative.

This may or may not be helpful for proving the conjecture, but it

was helpful for generating and testing it!
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Let’s spend some time outlining a proof that the Chow polynomial

is valuative. We’ll begin with a theorem in the world of polytopes.

Let V be a real vector space and ψ : V→ R a linear functional.

For any polytope P ⊂ V, let Pψ be the face of P on which ψ is

maximized.

Consider the homomorphism

δψ : Pol(V)→ Pol(V)

P 7→ Pψ.

Theorem (McMullen 2009)

The homomorphism δψ takes I(V) to I(V).
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Example

Consider the linear functional ψ : R2 → R with ψ(a, b) = a + b.

P − 4 small trangles

+ 3 internal edges ∈ I(V)

Pψ

F

A

BG

Applying δψ, we get

Pψ −A−B −F −G +F +F +G

= Pψ − A− B + F .

This is the element of I(V) corresponding to the induced

decomposition of Pψ with internal faces A, B, and F .
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Now let’s specialize to the matroidal setting.

Suppose that E = E1 t E2.

Given matroids M1 and M2 on E1 and E2, we can build a matroid

M1 tM2 on E , whose bases are unions of bases for M1 and M2.

We have

P(M1 tM2) = P(M1)× P(M2).

Example

If M1 is given by {ve | e ∈ E1} in the vector space V1

and M2 is given by {ve | e ∈ E2} in the vector space V2,

then M1 tM2 is given by

{(ve , 0) | e ∈ E1} t {(0, ve) | e ∈ E2}

in the vector space V1 ⊕ V2.
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Let Mat(E1,E2) ⊂ Mat(E ) be the subgroup spanned by matroids

of this form.

We have

Mat(E1,E2) ∼= Mat(E1)⊗Mat(E2),

and

I(E ) ∩Mat(E1,E2) ∼= I(E1)⊗Mat(E2) + Mat(E1)⊗ I(E2).

That is, all decompositions of matroids of this form come from

decompositions of the two components.
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Conversely, given a matroid M on E , we can construct a new

matroid M1 on E1 by deleting E2, and a new matroid M2 on E2 by

contracting E1.

Example

If M is given by a collection of vectors {ve | e ∈ E} in a vector

space V , let

V1 = Span{ve | e ∈ E1} and V2 = V /V1.

Then M1 is given by {ve | e ∈ E1} in the vector space V1, and

M2 is given by {[ve ] | e ∈ E2} in the vector space V2.

A basis for M1 tM2 is a basis B for M with the property that

B ∩ E1 is a basis for M1, or equivalently B ∩ E2 is a basis for M2.

In particular, we have P(M1 tM2) ⊂ P(M).
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Define ψ : RE → R by the formula

ψ

(∑
e∈E

aexe

)
=
∑
e∈E1

ae .

Lemma

We have P(M)ψ = P(M1 tM2).

So we can think of δψ as a homomorphism from Mat(E ) to

Mat(E1)⊗Mat(E2) taking M to M1 ⊗M2.
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Putting everything together, we obtain the following construction.

Let

ϕ1 : Mat(E1)→ Z[t] and ϕ2 : Mat(E2)→ Z[t]

be valuations. Define a homomorphism

ϕ1 ∗ ϕ2 : Mat(E )→ Z[t]

as follows:

Mat(E )
δψ−→ Mat(E1)⊗Mat(E2)

ϕ1⊗ϕ2−→ Z[t]⊗ Z[t]
mult−→ Z[t].

More concretely,

(ϕ1 ∗ ϕ2)(M) := ϕ1(M1) · ϕ2(M2).

Theorem (Ardila–Sanchez 2022)

The homomorphism ϕ1 ∗ ϕ2 is a valuation.
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Mat(E )
δψ−→ Mat(E1)⊗Mat(E2)

ϕ1⊗ϕ2−→ Z[t]⊗ Z[t]
mult−→ Z[t]

Theorem (Ardila–Sanchez 2022)

The homomorphism ϕ1 ∗ ϕ2 is a valuation.

Proof.

By McMullen’s Theorem, δψ takes I(E ) to

I(E1)⊗Mat(E2) + Mat(E1)⊗ I(E2).

Since ϕ1 kills I(E1) and ϕ2 kills I(E2), this is killed by

mult ◦(ϕ1 ⊗ ϕ2).
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Now let’s tie this back to the theorem about the Chow polynomial.

First a little terminology:

An element e ∈ E is a loop for the matroid M if it is not

contained in any basis.

If E = E1 t E2, then we say that E1 is a flat for the matroid M if

M2 has no loops.

For S ⊂ E and k ∈ N, consider the homomorphism

ϕS,k : Mat(S)→ Z given by

ϕS ,k(M) =

1 if M has no loops and rkM = k

0 otherwise.

It is not hard to show that ϕS ,k is a valuation.
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Suppose that S1 t S2 t · · · t Sr = E , and let

ϕS ,k := ϕS1,k1 ∗ ϕS2,k2 ∗ · · · ∗ ϕSr ,kr : Mat(E )→ Z.

By the theorem of Ardila–Sanchez, ϕS ,k is a valuation.

For any matroid M on E , we have

ϕS,k(M) =

1 if, for all i , S1 t · · · t Si is a flat of rank k1 + · · ·+ ki

0 otherwise.
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Theorem (Feichtner–Yuzvinsky 2004)

The Chow ring CH(M) has a basis indexed by chains of flats,

along with some auxiliary data.

Corollary

The homomorphism taking M to HM(t) is equal to a Z[t]-linear

combination of homomorphisms of the form ϕS ,k . In particular, it

is a valuation.

A similar argument can be made for HM(t).
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Recap:

The polynomials πM(t), HM(t), and HM(t) are all valuative

invariants of matroids. This makes them easy to compute for large

classes of matroids, which is great. But the valuativity condition

itself is somewhat mysterious, and the proofs are opaque. What is

really going on?

Let’s go back to trying to understand the homomorphism

τ : Pol(V)→ Z

with τ(P) = 1 for all P. Why is this a valuation?
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Let Q be a decomposition of a polytope P. Choose an orientation

of every face in Q.

The faces of Q are the cells in a cell complex with total space P,

and we have the corresponding cellular chain complex:

0→
⊕
Q∈Q

dimQ=dimP

Q→
⊕
Q∈Q

dimQ=dimP−1

Q→ · · · →
⊕
Q∈Q

dimQ=1

Q→
⊕
Q∈Q

dimQ=0

Q→ 0.

If we kill the terms corresponding to boundary faces, we obtain a

cellular chain complex for the pair (P, ∂P):

0→
⊕

Q∈Qdim P

Q→
⊕

Q∈Qdim P−1

Q→ · · · →
⊕
Q∈Q1

Q→
⊕
Q∈Q0

Q→ 0.
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The homology of this complex is equal to the homology of the pair

(P, ∂P), which is 1-dimensional and concentrated in top degree.

We can build an exact complex by adding one more copy of Q in

the beginning:

0→ Q→
⊕

Q∈Qdim P

Q→
⊕

Q∈Qdim P−1

Q→ · · · →
⊕
Q∈Q1

Q→
⊕
Q∈Q0

Q→ 0.

Now we know that the Euler characteristic is zero, i.e.

0 = 1−
∑
k

(−1)dimP−k
∑
Q∈Qk

1

= τ(P)−
∑
k

(−1)dimP−k
∑
Q∈Qk

τ(Q).

This is precisely the statement that τ vanishes on the generator of

I(V) corresponding to Q.
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Let P(V) be the Q-linear additive category whose objects are

(formal direct sums of) polytopes in V, and where

Hom(P,P ′) =

Q · ιP,P′ if P ′ ⊂ P

0 otherwise.

Given a decomposition Q of P (with orientations), we obtain a

complex C•(Q) in P(V):

0→ P →
⊕

Q∈Qdim P

Q →
⊕

Q∈Qdim P−1

Q → · · · →
⊕
Q∈Q1

Q →
⊕
Q∈Q0

Q → 0,

with components of maps given by ±ι (depending on orientations).
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Let A be an abelian category.

Definition

A functor Φ : P(V)→ A is a categorical valuation if Φ(C•(Q))

is exact.

Note: Let A be the Grothendieck group of A. If Φ is a categorical

valuation, then the induced homomorphism

Pol(V) = K (P(V))→ K (A) = A

is an ordinary valuation.

Example

Consider the trivial functor T : P(V)→ VecQ taking every

polytope to Q and every inclusion to the identity map. This is a

categorical valuation, categorifying the valuation τ .

27



Let A be an abelian category.

Definition

A functor Φ : P(V)→ A is a categorical valuation if Φ(C•(Q))

is exact.

Note: Let A be the Grothendieck group of A. If Φ is a categorical

valuation, then the induced homomorphism

Pol(V) = K (P(V))→ K (A) = A

is an ordinary valuation.

Example

Consider the trivial functor T : P(V)→ VecQ taking every

polytope to Q and every inclusion to the identity map. This is a

categorical valuation, categorifying the valuation τ .

27



Let A be an abelian category.

Definition

A functor Φ : P(V)→ A is a categorical valuation if Φ(C•(Q))

is exact.

Note: Let A be the Grothendieck group of A. If Φ is a categorical

valuation, then the induced homomorphism

Pol(V) = K (P(V))→ K (A) = A

is an ordinary valuation.

Example

Consider the trivial functor T : P(V)→ VecQ taking every

polytope to Q and every inclusion to the identity map. This is a

categorical valuation, categorifying the valuation τ .

27



Let A be an abelian category.

Definition

A functor Φ : P(V)→ A is a categorical valuation if Φ(C•(Q))

is exact.

Note: Let A be the Grothendieck group of A. If Φ is a categorical

valuation, then the induced homomorphism

Pol(V) = K (P(V))→ K (A) = A

is an ordinary valuation.

Example

Consider the trivial functor T : P(V)→ VecQ taking every

polytope to Q and every inclusion to the identity map. This is a

categorical valuation, categorifying the valuation τ .

27



Similarly, we define M(E ) to be the subcategory of P(RE )

generated by matroid polytopes, and we say that a functor

Φ :M(E )→ A

is a categorical valuation if Φ(C•(Q)) is exact for any

decomposition of a matroid polytope into matroid polytopes.

Example

If P(M ′) ⊂ P(M), there is a natural ring homomorphism

OS(M)→ OS(M ′), thus OS is a functor from M(E ) to the

category of graded vector spaces, categorifying the Poincaré

polynomial πM(t).
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Let A be the category of graded vector spaces.

Theorem (E–M–P–V)

• The functor OS :M(E )→ A is a categorical valuation.

• There exist categorical valuations

CH,CH :M(E )→ A

taking a matroid M to the Chow ring CH(M) and the

augmented Chow ring CH(M).

The proof of the first statement has a similar flavor to the proof

that the trivial functor T is a categorical valuation.

For the second statement, the key step is the categorical analogue

of McMullen’s theorem.
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Let V be a real vector space and ψ : V→ R a linear functional.

For any polytope P ⊂ V, let Pψ be the face of P on which ψ is

maximized.

Consider the functor

∆ψ : P(V)→ P(V)

given as follows:

• For any polytope P, ∆ψ(P) = Pψ.

• If P ′ ⊂ P and P ′ψ ⊂ Pψ, then ∆ψ(ιP,P′) = ιPψ ,P′ψ .

• If P ′ ⊂ P and P ′ψ 6⊂ Pψ, then ∆ψ(ιP,P′) = 0.

Theorem (E–M–P–V)

Suppose that Q is a decomposition of P, and let Qψ be the

induced decomposition of Pψ. Then ∆ψ(C•(Q)) is homotopy

equivalent to a shift of C•(Qψ).
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Example

Pψ

F

A

BG

C•(Q):

P →
⊕

small
triangles→

⊕
internal
edges

∆ψ(C•(Q)):

G G

Pψ

B

F

A

F

F

∆ψ(C•(Q)) is homotopy

equivalent to this: Pψ

B

A

F

This is isomorphic to C•(Qψ) shifted one degree to the left.
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What can we do with a categorical valuation that we could not do

with an ordinary one?

Some categorical valuations of matroids, including OS, CH, and

CH, are functorial not only with respect to inclusions of polytopes,

but also with respect to permutations of E .

If Γ acts on E by permutations and acts on a decomposition Q of

the polytope P(M) into other matroid polytopes, then the exact

sequence

OS(C•(Q))

gives us a relation involving OS(M) and OS(N) for various

matroids N with P(N) ∈ Q, regarded as representations of Γ.

Same for CH, CH, and many other categorical valuations.

These are much richer invariants than the polynomials!
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Let me conclude by stating two open conjectures about OS(M),

CH(M), and CH(M), as representations of the group Γ of

symmetries of M.

Conjecture (Gedeon–P–Young 2017)

The Orlik–Solomon algebra OS(M) is equivariantly log concave.

That is, there exists an inclusion

OSi (M)⊗ OSi (M) ⊃ OSi−1(M)⊗ OSi+1(M)

as representations of Γ.

This categorifies the theorem of Adiprasito–Huh–Katz.

To state the last conjecture, let me first remind you of the

conjecture that I stated earlier.
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Conjecture (Ferroni–Schröter, Stevens,

Ferroni–Matherne–Stevens–Vecchi)

HM(t) and HM(t) have strictly interlacing real roots.

Let’s reinterpret this conjecture as a positivity statement.

Suppose that f (t), g(t) ∈ R[t] with deg f (t) = 1 + deg g(t). The

Bézout matrix B(f , g) is the symmetric matrix whose (i , j) entry

is equal to the coefficient of x iy j in the polynomial

f (x)g(y)− f (y)g(x)

x − y
.

Theorem (Krein–Naimark 1981)

The polynomials g(t) and f (t) have strictly interlacing real roots

if and only if B(f , g) is positive definite.
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Given graded representations

V =
d⊕

i=0

V i and W =
d−1⊕
i=0

W i

of Γ, we can define

fV (t) :=
∑
i

t iV i and fW (t) :=
∑
i

t iW i ,

and define B(fV , fW ) as above, using tensor product for

multiplication. The result will be a symmetric matrix whose entries

are virtual representations of Γ.

We say that W strictly interlaces V if all of the principal minors

of B(fV , fW ) are nonzero honest (rather than virtual)

representations.

Conjecture (Nasr–P)

CH(M) strictly interlaces CH(M).
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Example

Suppose that M is the boolean matroid on {1, 2, 3}, meaning

that {1, 2, 3} is the unique basis.

Then S3 acts on M, and the

Bézout matrix B(fCH(M), fCH(M)) looks like this:


V[2,1] ⊕ V[3] V⊕2[2,1] ⊕ V⊕2[3] V[3]

V⊕2[2,1] ⊕ V⊕2[3] V⊕2[1,1,1] ⊕ V⊕7[2,1] ⊕ V⊕6[3] V[2,1] ⊕ V⊕2[3]

V[3] V[2,1] ⊕ V⊕2[3] V[3]


One can check that all of the principal minors (in fact, all of the

minors!) are nonzero honest representations.
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Bézout matrix B(fCH(M), fCH(M)) looks like this:


V[2,1] ⊕ V[3] V⊕2[2,1] ⊕ V⊕2[3] V[3]

V⊕2[2,1] ⊕ V⊕2[3] V⊕2[1,1,1] ⊕ V⊕7[2,1] ⊕ V⊕6[3] V[2,1] ⊕ V⊕2[3]

V[3] V[2,1] ⊕ V⊕2[3] V[3]



One can check that all of the principal minors (in fact, all of the

minors!) are nonzero honest representations.

36



Example

Suppose that M is the boolean matroid on {1, 2, 3}, meaning

that {1, 2, 3} is the unique basis. Then S3 acts on M, and the
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