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COLLAPSING POSET

P poset
f: P x|0,1] — R with f(p,—) continuous, f(—,t) order preserving, and |f(P,1)| =1

Galashin 21
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PIPING COMPLEX

P poset
f: P x|0,1] — R with f(p,—) continuous, f(—,t) order preserving, and |f(P,1)| =1
As before, remember collapsing events
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DEF. pipe of P = connected subset of P of size > 2

piping of P = collection Y of pipes of P such that
e pipes are pairwise disjoints or nested
e I yx acyclic for any X C YV

piping complex of P = simplicial complex of pipings of P
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POSET ASSOCIAHEDRON

DEF. pipe of P = connected subset of P of size > 2

piping of P = collection Y of pipes of P such that
e pipes are pairwise disjoints or nested
e I yx acyclic for any X C YV

piping complex of P = simplicial complex of pipings of P

P-associahedron = simple polytope whose polar is the piping complex of P
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POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P
Galashin '21
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POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P
Galashin '21
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QU. Find nice realizations Sack '23 Mantovani—Padrol-P. '23*




POSET ASSOCIAHEDRON




POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

Mantovani—Padrol-P. '23T



POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

THM. A section of an L(P)-associahedron is a P-associahedron

Mantovani—Padrol-P. '23*
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DEF. building set on S = collection B of non-empty subsets of S such that
e 3 contains all singletons {s} for s € S
oif B,B e Band BNB +# &, then BUB' € B

x(B) = connected components of B = inclusion maximal elements of B

Feichtner—Koslov '04,  Feichtner—Sturmfels '05, Postnikov '09,

Zelevinski '06
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NESTOHEDRA

DEF. building set on S = collection B of non-empty subsets of S such that

e 3 contains all singletons {s} for s € S
oif B,B e Band BNB +# &, then BUB' € B

x(B) = connected components of B = inclusion maximal elements of B

DEF. nested set on B = subset N of B ~\ k(B) such that
e forany B,B' € N, either BC B or BB C BorBNB =9
e for any k > 2 pairwise disjoint By, ..., B, € N, the union B{U---UBj, is not in B

nested complex of B = simplicial complex of nested sets on BB

THM. The nested complex of B is isomorphic to the boundary complex of the polar of

the nestohedron Z A\ where
BeB

e Ap:=conv{e, | b € B} face of the standard simplex Ag = conv{e, | s € S}
e \p arbitrary strictly positive coefficients

Feichtner—Koslov '04, Feichtner—Sturmfels '05, Postnikov '09, Zelevinski '06




NESTOHEDRA

THM. The nested complex of B is isomorphic to the boundary complex of the polar of

the nestohedron Z)\BAB
BeB
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Feichtner—Koslov '04, Feichtner-Sturmfels '05, Postnikov '09, Zelevinski '06




GRAPHICAL NESTOHEDRA

EXM. graphical building set of G = collection of all tubes of GG

graphical nested set of G = simplicial complex of tubings on GG
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DEF. vector configuration A = (a,).cg with a, € R?

dependence space D(A) = {5 c R” ‘ Y ieg O0sas = O}
evaluation space D*(A) = {(f(as))seg cRY | f € (Rd)*}

oriented matroid M(A) = combinatorial data given by any of the following
e vectors V(A) = signatures of linear dependences of A
e covectors V*(A) = signatures of linear evaluations on A
e circuits C(A) = support minimal signatures of linear dependences of A
e cocircuits C*(A) = support minimal signatures of linear evaluations on A

signature of (z4)scs = pair ({s€ S|z >0}, {s€S|xs<0})
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has 13 vectors, 153 covectors, 6 circ;Ji_ts, and 14 cocircuits
C(A,) ={(1,2),(16,45), (26, 45), and their opposites}
C*(A,) = {(12,6), (124, D), (125, &), (3, @), (46, @), (4,5), (56, &), and their opposites}
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ORIENTED MATROIDS

DEF. vector configuration A = (a,).cg with a, € R?

oriented matroid M(A) = combinatorial data given by any of the following

e vectors V(A) = signatures of linear dependences of A
e covectors V*(A) = signatures of linear evaluations on A

e circuits C(A) = support minimal signatures of linear dependences of A

e cocircuits C*(A) = support minimal signatures of linear evaluations on A

signature of (z4)ses = pair ({s€ S|z >0}, {s€S|xs <0}

DEF. oriented matroid M on S = combinatorial data V(M), V*(M), C(M), C*(M)

that behaves exactly as those of a vector configuration

DEF. For RC S
e restriction M p = oriented matroid on R with circuits {c € C(M) | c" Uc™ C R}
e contraction M, = oriented matroid on S . R with vectors {v N\ R | v € V(M)}

DEF. M acyclic = no positive circuit




GRAPHICAL ORIENTED MATROIDS

DEF. D directed graph with vertices V' and arcs S
incidence configuration A(D) = (e; — €;)(; j)es

graphical oriented matroid M (D) = oriented matroid of A(G)

REM. M(D) has
e a vector v for each set of cycles, with cw arcs v, and ccw arcs v_
e a covector v* for each edge cut, with fwd arcs v* and bwd arcs v*
e a circuit ¢ for each simple cycle, with cw arcs ¢, and ccw arcs c_
e a cocircuit ¢* for each support minimal cut, with fwd arcs ¢’ and bwd arcs c*

REM. For RC S,
. /\/l( )|R = ./\/l( ) where D) = subgraph of D formed by the arcs in R
/R = ), where D, = contraction of the arcs of R in D

/)(/\ o f AN B
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DEF. oriented building set on S = pair (B, M) where
e 3 = building set on S
e M = oriented matroid on S
such that ¢ LI ¢~ belongs to B for all circuits ¢ € C(M)

Mantovani—Padrol-P. '23*
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ACYCLONESTOHEDRA

DEF. oriented building set on S = pair (B, M) where
e 3 = building set on S
e M = oriented matroid on S
such that ¢ LI ¢~ belongs to B for all circuits ¢ € C(M)

DEF. acyclic nested set = nested set N of 3 such that M, - is acyclic for any N' C NV
acyclic nested complex = simplicial complex of acyclic nested sets

THM. For any oriented building set (B, M), the acyclic nested complex is the face
lattice of an oriented matroid obtained by stellar subdivisions of M

THM. For any realizable oriented building set (B, M(A)), the acyclic nested complex
is the boundary complex of the polar of the acyclonestohedron, defined as the section

of the nestohedron A/ p with the evaluation space D*( A
P
Beb Ap = ( max 67"

1B| - max ———5
ceC(A) min &7

| B /
) with 670:= {|5,] | s € S} ~ {0}

Mantovani—Padrol-P. '23*




APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

EXM. D directed graph with vertices V' and arcs S
graphical oriented building set = (B(L(D)),M(D)) where

e B(L(D)) is the graphical building set of the line graph of D
e M(D) is the graphical oriented matroid of D

a b
=4 1 4 3
, p ) 2 5) 6
D L(D)
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APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

EXM. D directed graph with vertices V' and arcs S
graphical oriented building set = (B(L(D)),M(D)) where

e B(L(D)) is the graphical building set of the line graph of D
e M(D) is the graphical oriented matroid of D

a b
=4 1 4 3
, p ) 2 5) 6
D L(D)

PROP. The acyclic nested complex of the graphical oriented building set of D is the
piping complex of the transitive closure of D

Mantovani—Padrol-P. '23*




APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

THM. The piping complex of P is the boundary complex of the polar of the
graphical acyclonestohedron, defined as the section of a graph associahedron of
the line graph L(P) with the linear hyperplanes normal to 1. — 1. for all cir-
cuits ¢ = (¢y,c_) of P

a
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d| £y |o
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Mantovani—Padrol-P. '23*



WHAT WE ACTUALLY DO




LATTICE NESTED COMPLEXES

DEF. £ =(L,<,V,A) finite lattice

L-building set = subset B of £ such that the lower interval of any element x € L is
the direct product of the lower intervals of the maximal elements of B below x

k(B) = connected components of B = £ maximal elements of B

EXM. If L is the boolean lattice, L-building set +— classical building set

Feichtner—Kozlov '04




LATTICE NESTED COMPLEXES

DEF. £ =(L,<,V,A) finite lattice

L-building set = subset B of £ such that the lower interval of any element x € L is

the direct product of the lower intervals of the maximal elements of B below x

x(B) = connected components of B = £ maximal elements of B

EXM. If L is the boolean lattice, L-building set +— classical building set

DEF. L-nested set on B = subset N of B\ x(B) such that for any & > 2 pairwise
incomparable elements By, ..., B, € N, the join By V ---V B, does not belong to B

L-nested complex of B = simplicial complex of £-nested sets on B

EXM. If L is the boolean lattice, L-nested sets «— classical nested sets

Feichtner—Kozlov '04




LAS VERGNAS FACE LATTICE

DEF. face of M = subset I of S such that (S \ F, Q) € V(M)
(Las Vergnas) face lattice of M = inclusion poset on faces
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FACIAL BUILDING SETS AND NESTED COMPLEXES

DEF. (B, M) oriented building set
facial building set B = set of blocks B € B that are also faces of M

THM. facial building sets of M = F(M)-building sets

THM. acyclic nested complex (B, M) = F(M)-nested complex of B

CORO. The F(M)-nested complex of any F(M)-building set is the face lattice of
e an oriented matroid obtained by stellar subdivisions of M

e a polytope, obtained either by realizing these stellar subdivisions polytopaly, or as
the polar of a section of a nestohedron, when M = M(A) is realizable

Mantovani—Padrol-P. '23*



APPLICATION 2: TYPE B NESTOHEDRA

(7

Observe that

1€ [n]} = homogenized vertices of n-dimensional cross-polytope

o for the full (M (A ))-building set, the acyclonestohedron is the type B,, permutahe-
dron, obtained as a section of the A5, 1 permutahedron




APPLICATION 2: TYPE B NESTOHEDRA

o

Observe that

i € [n]} = homogenized vertices of n-dimensional cross-polytope

o for the full (M (A?))-building set, the acyclonestohedron is the type B,, permutahe-
dron, obtained as a section of the A5, 1 permutahedron

e any pair of classical building sets (B*, B7) defines a F(M(A;))-building set
{(+B* | BT € B"}U{-B" | B- € B }U{—[n]U+[n|}

if B~ = {singletons} we obtain design nestohedra Devadoss—Heath-Vipismakul '11
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APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P;
homogenize to an oriented matroid M,
choose an oriented building set (B, M;)
get a polytope P, = acyclonestohedron of (B, M)
homogenize to an oriented matroid M
choose an oriented building set (B,, M)
get a polytope P; = acyclonestohedron of (B;, M)

When starting from a simplex:
e taking the full building set at each steps leads to permuto-permuto-...-permutahedra

Castillo-Liu '23



APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P;
homogenize to an oriented matroid M,
choose an oriented building set (B, M;)
get a polytope P, = acyclonestohedron of (B, M)
homogenize to an oriented matroid M
choose an oriented building set (B,, M)
get a polytope P; = acyclonestohedron of (B;, M)

When starting from a simplex:
e taking the full building set at each steps leads to permuto-permuto-...-permutahedra
e in two steps, we obtain nesto-nestohedra

Gaiffi 15






