Chiara MANTOVANI (École Polytechnique) Arnau PADROL (Universitat de Barcelona) Vincent PILAUD (Universitat de Barcelona)

PIPINGS

TUBINGS

COLLAPSING POSET

P poset

 $f: P \times [0,1] \rightarrow \mathbb{R}$ with f(p,-) continuous, f(-,t) order preserving, and |f(P,1)| = 1

COLLAPSING POSET

P poset

 $f: P \times [0,1] \to \mathbb{R}$ with f(p,-) continuous, f(-,t) order preserving, and |f(P,1)| = 1As before, remember collapsing events

PIPING COMPLEX

P poset

 $f: P \times [0,1] \to \mathbb{R}$ with f(p,-) continuous, f(-,t) order preserving, and |f(P,1)| = 1As before, remember collapsing events

DEF. pipe of P = connected subset of P of size ≥ 2

piping of P = collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{\bigcup X}$ acyclic for any $X \subseteq Y$

piping complex of P =simplicial complex of pipings of P

PIPING COMPLEX

DEF. pipe of P = connected subset of P of size ≥ 2

<u>piping</u> of P = collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{\bigcup X}$ acyclic for any $X \subseteq Y$

<u>piping complex</u> of P =simplicial complex of pipings of P

DEF. <u>pipe</u> of P =connected subset of P of size ≥ 2

<u>piping</u> of P = collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{\bigcup X}$ acyclic for any $X \subseteq Y$

<u>piping complex</u> of P = simplicial complex of pipings of P

 \underline{P} -associahedron = simple polytope whose polar is the piping complex of P

THM. P-associahedra can be obtained by truncations of the order polytope of P

Galashin '21

 $\ensuremath{\mathsf{QU}}\xspace$. Find nice realizations

THM. P-associahedra can be obtained by truncations of the order polytope of P

Galashin '21

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

THM. A section of an L(P)-associahedron is a P-associahedron

DEF. building set on S = collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B' \in \mathcal{B}$ and $B \cap B' \neq \emptyset$, then $B \cup B' \in \mathcal{B}$

 $\kappa(\mathcal{B})=\text{connected}$ components of $\mathcal{B}=\text{inclusion}$ maximal elements of \mathcal{B}

DEF. building set on S = collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B' \in \mathcal{B}$ and $B \cap B' \neq \emptyset$, then $B \cup B' \in \mathcal{B}$

 $\kappa(\mathcal{B})=\text{connected}$ components of $\mathcal{B}=\text{inclusion}$ maximal elements of \mathcal{B}

DEF. nested set on \mathcal{B} = subset \mathcal{N} of $\mathcal{B} \smallsetminus \kappa(\mathcal{B})$ such that

- for any $B, B' \in \mathcal{N}$, either $B \subseteq B'$ or $B' \subseteq B$ or $B \cap B' = \emptyset$
- for any $k \ge 2$ pairwise disjoint $B_1, \ldots, B_k \in \mathcal{N}$, the union $B_1 \cup \cdots \cup B_k$ is not in \mathcal{B}

nested complex of $\mathcal{B}=$ simplicial complex of nested sets on \mathcal{B}

DEF. building set on S = collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B' \in \mathcal{B}$ and $B \cap B' \neq \emptyset$, then $B \cup B' \in \mathcal{B}$

 $\kappa(\mathcal{B})=\text{connected}$ components of $\mathcal{B}=\text{inclusion}$ maximal elements of \mathcal{B}

DEF. nested set on \mathcal{B} = subset \mathcal{N} of $\mathcal{B} \smallsetminus \kappa(\mathcal{B})$ such that

- for any $B, B' \in \mathcal{N}$, either $B \subseteq B'$ or $B' \subseteq B$ or $B \cap B' = \emptyset$
- for any $k \ge 2$ pairwise disjoint $B_1, \ldots, B_k \in \mathcal{N}$, the union $B_1 \cup \cdots \cup B_k$ is not in \mathcal{B}

nested complex of $\mathcal{B} =$ simplicial complex of nested sets on \mathcal{B}

THM. The nested complex of \mathcal{B} is isomorphic to the boundary complex of the polar of the <u>nestohedron</u> $\sum_{B \in \mathcal{B}} \lambda_B \triangle_B$ where

- $\triangle_B := \operatorname{conv} \{ e_b \mid b \in B \}$ face of the standard simplex $\triangle_S = \operatorname{conv} \{ e_s \mid s \in S \}$
- λ_B arbitrary strictly positive coefficients

THM. The nested complex of \mathcal{B} is isomorphic to the boundary complex of the polar of the nestohedron $\sum_{B \in \mathcal{B}} \lambda_B \triangle_B$

GRAPHICAL NESTOHEDRA

EXM. graphical building set of G = collection of all tubes of G graphical nested set of G = simplicial complex of tubings on G

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

 $\underline{ \text{dependence space}}_{\text{evaluation space}} \frac{\mathcal{D}(\boldsymbol{A}) = \left\{ \boldsymbol{\delta} \in \mathbb{R}^{S} \mid \sum_{s \in S} \delta_{s} \boldsymbol{a}_{s} = \boldsymbol{0} \right\} }{\left\{ (f(\boldsymbol{a}_{s}))_{s \in S} \in \mathbb{R}^{S} \mid f \in (\mathbb{R}^{d})^{*} \right\} }$

DEF. vector configuration
$$\mathbf{A} = (\mathbf{a}_s)_{s \in S}$$
 with $\mathbf{a}_s \in \mathbb{R}^d$

$$\frac{\text{dependence space}}{\text{evaluation space}} \mathcal{D}(\mathbf{A}) = \left\{ \mathbf{\delta} \in \mathbb{R}^S \mid \sum_{s \in S} \delta_s \mathbf{a}_s = \mathbf{0} \right\}$$

$$\frac{1}{\text{evaluation space}} \mathcal{D}^*(\mathbf{A}) = \left\{ (f(\mathbf{a}_s))_{s \in S} \in \mathbb{R}^S \mid f \in (\mathbb{R}^d)^* \right\}$$

oriented matroid $\mathcal{M}(\mathbf{A}) = \text{combinatorial data given by any of the following}$

- \bullet vectors $\mathcal{V}(\boldsymbol{\mathit{A}}) = \mathsf{signatures}$ of linear dependences of $\boldsymbol{\mathit{A}}$
- covectors $\mathcal{V}^*(\boldsymbol{A}) = \text{signatures of linear evaluations on } \boldsymbol{A}$
- circuits C(A) = support minimal signatures of linear dependences of A
- cocircuits $C^*(A)$ = support minimal signatures of linear evaluations on A

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

DEF. vector configuration $A = (a_s)_{s \in S}$ with $a_s \in \mathbb{R}^d$ $\underline{dependence space } \mathcal{D}(A) = \{\delta \in \mathbb{R}^S \mid \sum_{s \in S} \delta_s a_s = 0\}$ $\underline{evaluation space } \mathcal{D}^*(A) = \{(f(a_s))_{s \in S} \in \mathbb{R}^S \mid f \in (\mathbb{R}^d)^*\}$ <u>oriented matroid</u> $\mathcal{M}(A) = \text{combinatorial data given by any of the following}$ $\underline{evaluation } \mathcal{V}(A) = \text{signatures of linear dependences of } A$ $\underline{evaluation } \mathcal{V}^*(A) = \text{signatures of linear evaluations on } A$ $\underline{evaluation } \mathcal{C}(A) = \text{support minimal signatures of linear evaluations on } A$

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

$$\boldsymbol{A}_{\circ} = \left\{ \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\} \subset \mathbb{R}^{4}.$$

has 13 vectors, 153 covectors, 6 circuits, and 14 cocircuits $C(\mathbf{A}_{\circ}) = \{(1,2), (16,45), (26,45), \text{and their opposites}\}$ $C^{*}(\mathbf{A}_{\circ}) = \{(12,6), (124, \emptyset), (125, \emptyset), (3, \emptyset), (46, \emptyset), (4,5), (56, \emptyset), \text{and their opposites}\}$

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

oriented matroid $\mathcal{M}(\mathbf{A}) = \text{combinatorial data given by any of the following}$

- vectors $\mathcal{V}(\mathbf{A}) = signatures$ of linear dependences of \mathbf{A}
- covectors $\mathcal{V}^*(\boldsymbol{A}) = \text{signatures of linear evaluations on } \boldsymbol{A}$
- circuits C(A) = support minimal signatures of linear dependences of A
- cocircuits $\mathcal{C}^*(A)$ = support minimal signatures of linear evaluations on A

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

oriented matroid $\mathcal{M}(\mathbf{A}) = \text{combinatorial data given by any of the following}$

- vectors $\mathcal{V}(\mathbf{A}) = signatures$ of linear dependences of \mathbf{A}
- covectors $\mathcal{V}^*(\boldsymbol{A}) = \text{signatures of linear evaluations on } \boldsymbol{A}$
- circuits C(A) = support minimal signatures of linear dependences of A
- cocircuits $\mathcal{C}^*(A)$ = support minimal signatures of linear evaluations on A

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

DEF. <u>oriented matroid</u> \mathcal{M} on $S = \text{combinatorial data } \mathcal{V}(\mathcal{M})$, $\mathcal{V}^*(\mathcal{M})$, $\mathcal{C}(\mathcal{M})$, $\mathcal{C}^*(\mathcal{M})$ that behaves exactly as those of a vector configuration

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

oriented matroid $\mathcal{M}(\mathbf{A}) = \text{combinatorial data given by any of the following}$

- vectors $\mathcal{V}(\mathbf{A}) = \text{signatures of linear dependences of } \mathbf{A}$
- covectors $\mathcal{V}^*(\boldsymbol{A}) = \text{signatures of linear evaluations on } \boldsymbol{A}$
- circuits C(A) = support minimal signatures of linear dependences of A
- cocircuits $\mathcal{C}^*(A)$ = support minimal signatures of linear evaluations on A

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

DEF. oriented matroid \mathcal{M} on S = combinatorial data $\mathcal{V}(\mathcal{M})$, $\mathcal{V}^*(\mathcal{M})$, $\mathcal{C}(\mathcal{M})$, $\mathcal{C}^*(\mathcal{M})$ that behaves exactly as those of a vector configuration

DEF. For $R \subseteq S$

- restriction $\mathcal{M}_{|R}$ = oriented matroid on R with circuits $\{c \in \mathcal{C}(\mathcal{M}) \mid c^+ \cup c^- \subseteq R\}$
- contraction $\mathcal{M}_{/R}$ = oriented matroid on $S \smallsetminus R$ with vectors $\{v \smallsetminus R \mid v \in \mathcal{V}(\mathcal{M})\}$

DEF. vector configuration $\boldsymbol{A} = (\boldsymbol{a}_s)_{s \in S}$ with $\boldsymbol{a}_s \in \mathbb{R}^d$

oriented matroid $\mathcal{M}(\mathbf{A}) = \text{combinatorial data given by any of the following}$

- vectors $\mathcal{V}(\mathbf{A}) = \text{signatures of linear dependences of } \mathbf{A}$
- covectors $\mathcal{V}^*(\boldsymbol{A}) = \text{signatures of linear evaluations on } \boldsymbol{A}$
- circuits C(A) = support minimal signatures of linear dependences of A
- cocircuits $C^*(A)$ = support minimal signatures of linear evaluations on A

signature of $(x_s)_{s \in S} = \text{pair} (\{s \in S \mid x_s > 0\}, \{s \in S \mid x_s < 0\})$

DEF. <u>oriented matroid</u> \mathcal{M} on $S = \text{combinatorial data } \mathcal{V}(\mathcal{M})$, $\mathcal{V}^*(\mathcal{M})$, $\mathcal{C}(\mathcal{M})$, $\mathcal{C}^*(\mathcal{M})$ that behaves exactly as those of a vector configuration

DEF. For $R \subseteq S$

- restriction $\mathcal{M}_{|R}$ = oriented matroid on R with circuits $\{c \in \mathcal{C}(\mathcal{M}) \mid c^+ \cup c^- \subseteq R\}$
- contraction $\mathcal{M}_{/R}$ = oriented matroid on $S \smallsetminus R$ with vectors $\{v \smallsetminus R \mid v \in \mathcal{V}(\mathcal{M})\}$

DEF. \mathcal{M} acyclic = no positive circuit

GRAPHICAL ORIENTED MATROIDS

DEF. D directed graph with vertices V and arcs Sincidence configuration $\mathbf{A}(D) = (\mathbf{e}_i - \mathbf{e}_j)_{(i,j) \in S}$ graphical oriented matroid $\mathcal{M}(D)$ = oriented matroid of $\mathbf{A}(G)$

REM. $\mathcal{M}(D)$ has

- a vector v for each set of cycles, with cw arcs v_+ and ccw arcs v_-
- ullet a covector v^* for each edge cut, with fwd arcs v_+^* and bwd arcs v_-^*
- a circuit c for each simple cycle, with cw arcs c_+ and ccw arcs c_-
- a cocircuit c^* for each support minimal cut, with fwd arcs c^*_+ and bwd arcs c^*_-

DEF. oriented building set on $S = pair (\mathcal{B}, \mathcal{M})$ where

- $\bullet \ \mathcal{B} = \text{building set on } S$
- $\mathcal{M} = \text{oriented matroid on } S$

such that $c^+ \sqcup c^-$ belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

DEF. oriented building set on $S = pair (\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B} =$ building set on S
- $\mathcal{M} = \text{oriented matroid on } S$

such that $c^+ \sqcup c^-$ belongs to ${\mathcal B}$ for all circuits $c \in {\mathcal C}({\mathcal M})$

DEF. <u>acyclic nested set</u> = nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/\bigcup \mathcal{N}'}$ is acyclic for any $\mathcal{N}' \subseteq \mathcal{N}$ <u>acyclic nested complex</u> = simplicial complex of acyclic nested sets

DEF. oriented building set on $S = pair (\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B} =$ building set on S
- $\mathcal{M} = \text{oriented matroid on } S$

such that $c^+ \sqcup c^-$ belongs to $\mathcal B$ for all circuits $c \in \mathcal C(\mathcal M)$

DEF. <u>acyclic nested set</u> = nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/\bigcup \mathcal{N}'}$ is acyclic for any $\mathcal{N}' \subseteq \mathcal{N}$ acyclic nested complex = simplicial complex of acyclic nested sets

THM. For any oriented building set $(\mathcal{B}, \mathcal{M})$, the acyclic nested complex is the face lattice of an oriented matroid obtained by stellar subdivisions of \mathcal{M}

DEF. oriented building set on $S = pair (\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B} =$ building set on S
- $\bullet \ \mathcal{M} = \text{oriented} \ \text{matroid} \ \text{on} \ S$

such that $c^+ \sqcup c^-$ belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

DEF. <u>acyclic nested set</u> = nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/\bigcup \mathcal{N}'}$ is acyclic for any $\mathcal{N}' \subseteq \mathcal{N}$ acyclic nested complex = simplicial complex of acyclic nested sets

THM. For any oriented building set $(\mathcal{B}, \mathcal{M})$, the acyclic nested complex is the face lattice of an oriented matroid obtained by stellar subdivisions of \mathcal{M}

THM. For any realizable oriented building set $(\mathcal{B}, \mathcal{M}(\mathbf{A}))$, the acyclic nested complex is the boundary complex of the polar of the <u>acyclonestohedron</u>, defined as the section of the nestohedron $\sum_{B \in \mathcal{B}} \lambda_B \Delta_B$ with the evaluation space $\mathcal{D}^*(\mathbf{A})$ $\lambda_B = \left(|\mathcal{B}| \cdot \max_{c \in \mathcal{C}(\mathbf{A})} \frac{\max \delta^{\neq 0}}{\min \delta^{\neq 0}}\right)^{|B|}$ with $\delta^{\neq 0} \coloneqq \{|\delta_s| \mid s \in S\} \setminus \{0\}$

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

EXM. D directed graph with vertices V and arcs S graphical oriented building set = $(\mathcal{B}(L(D)), \mathcal{M}(D))$ where

- $\bullet \ \mathcal{B}(L(D))$ is the graphical building set of the line graph of D
- $\bullet \ \mathcal{M}(D)$ is the graphical oriented matroid of D

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

PROP. The acyclic nested complex of the graphical oriented building set of D is the piping complex of the transitive closure of D

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

THM. The piping complex of P is the boundary complex of the polar of the graphical acyclonestohedron, defined as the section of a graph associahedron of the line graph L(P) with the linear hyperplanes normal to $\mathbb{1}_{c_+} - \mathbb{1}_{c_-}$ for all circuits $c = (c_+, c_-)$ of P

WHAT WE ACTUALLY DO

LATTICE NESTED COMPLEXES

DEF. $\mathcal{L} = (L, \leq, \lor, \land)$ finite lattice

<u> \mathcal{L} -building set</u> = subset \mathcal{B} of \mathcal{L} such that the lower interval of any element $x \in \mathcal{L}$ is the direct product of the lower intervals of the maximal elements of \mathcal{B} below x

 $\kappa(\mathcal{B}) = \text{connected components of } \mathcal{B} = \mathcal{L} \text{ maximal elements of } \mathcal{B}$

LATTICE NESTED COMPLEXES

DEF. $\mathcal{L} = (L, \leq, \lor, \land)$ finite lattice

<u> \mathcal{L} -building set</u> = subset \mathcal{B} of \mathcal{L} such that the lower interval of any element $x \in \mathcal{L}$ is the direct product of the lower intervals of the maximal elements of \mathcal{B} below x

 $\kappa(\mathcal{B}) = \text{connected components of } \mathcal{B} = \mathcal{L} \text{ maximal elements of } \mathcal{B}$

EXM. If \mathcal{L} is the boolean lattice, \mathcal{L} -building set \longleftrightarrow classical building set

DEF. \mathcal{L} -nested set on \mathcal{B} = subset \mathcal{N} of $\mathcal{B} \setminus \kappa(\mathcal{B})$ such that for any $k \geq 2$ pairwise incomparable elements $B_1, \ldots, B_k \in \mathcal{N}$, the join $B_1 \vee \cdots \vee B_k$ does not belong to \mathcal{B} \mathcal{L} -nested complex of \mathcal{B} = simplicial complex of \mathcal{L} -nested sets on \mathcal{B}

EXM. If \mathcal{L} is the boolean lattice, \mathcal{L} -nested sets \longleftrightarrow classical nested sets

LAS VERGNAS FACE LATTICE

DEF. face of $\mathcal{M} = \text{subset } F$ of S such that $(S \setminus F, \emptyset) \in \mathcal{V}^*(\mathcal{M})$ (Las Vergnas) face lattice of $\mathcal{M} = \text{inclusion poset on faces}$

FACIAL BUILDING SETS AND NESTED COMPLEXES

DEF. $(\mathcal{B}, \mathcal{M})$ oriented building set facial building set $\widehat{\mathcal{B}} =$ set of blocks $B \in \mathcal{B}$ that are also faces of \mathcal{M}

THM. facial building sets of $\mathcal{M} = \mathcal{F}(\mathcal{M})$ -building sets

THM. acyclic nested complex $(\mathcal{B}, \mathcal{M}) = \mathcal{F}(\mathcal{M})$ -nested complex of $\widehat{\mathcal{B}}$

CORO. The $\mathcal{F}(\mathcal{M})$ -nested complex of any $\mathcal{F}(\mathcal{M})$ -building set is the face lattice of

- \bullet an oriented matroid obtained by stellar subdivisions of ${\cal M}$
- a polytope, obtained either by realizing these stellar subdivisions polytopaly, or as the polar of a section of a nestohedron, when $\mathcal{M} = \mathcal{M}(\mathbf{A})$ is realizable

 $\mathbf{A}_{n}^{\diamond} = \left\{ \begin{bmatrix} \pm \mathbf{e}_{i} \\ 1 \end{bmatrix} \mid i \in [n] \right\} = \text{homogenized vertices of } n\text{-dimensional cross-polytope}$

Observe that

• for the full $\mathcal{F}(\mathcal{M}(\mathbf{A}_n^\diamond))$ -building set, the acyclonestohedron is the type B_n permutahedron, obtained as a section of the A_{2n+1} permutahedron

 $\mathbf{A}_{n}^{\diamond} = \left\{ \begin{bmatrix} \pm \mathbf{e}_{i} \\ 1 \end{bmatrix} \mid i \in [n] \right\} = \text{homogenized vertices of } n\text{-dimensional cross-polytope}$

Observe that

- for the full $\mathcal{F}(\mathcal{M}(\mathbf{A}_n^\diamond))$ -building set, the acyclonestohedron is the type B_n permutahedron, obtained as a section of the A_{2n+1} permutahedron
- any pair of classical building sets $(\mathcal{B}^+, \mathcal{B}^-)$ defines a $\mathcal{F}(\mathcal{M}(\mathbf{A}_n^\diamond))$ -building set $\{+B^+ \mid B^+ \in \mathcal{B}^+\} \cup \{-B^- \mid B^- \in \mathcal{B}^-\} \cup \{-[n] \cup +[n]\}$

if $\mathcal{B}^- = \{$ singletons $\}$ we obtain design nestohedra

Devadoss-Heath-Vipismakul '11

APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P_1 homogenize to an oriented matroid \mathcal{M}_1 choose an oriented building set $(\mathcal{B}_1, \mathcal{M}_1)$ get a polytope P_2 = acyclonestohedron of $(\mathcal{B}_1, \mathcal{M}_1)$ homogenize to an oriented matroid \mathcal{M}_2 choose an oriented building set $(\mathcal{B}_2, \mathcal{M}_2)$ get a polytope P_3 = acyclonestohedron of $(\mathcal{B}_2, \mathcal{M}_2)$

When starting from a simplex:

• taking the full building set at each steps leads to permuto-permuto-...-permutahedra

APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P_1 homogenize to an oriented matroid \mathcal{M}_1 choose an oriented building set $(\mathcal{B}_1, \mathcal{M}_1)$ get a polytope P_2 = acyclonestohedron of $(\mathcal{B}_1, \mathcal{M}_1)$ homogenize to an oriented matroid \mathcal{M}_2 choose an oriented building set $(\mathcal{B}_2, \mathcal{M}_2)$ get a polytope P_3 = acyclonestohedron of $(\mathcal{B}_2, \mathcal{M}_2)$

When starting from a simplex:

- taking the full building set at each steps leads to permuto-permuto-...-permutahedra
- in two steps, we obtain nesto-nestohedra

