ACYCLONESTOHEDRA

Chiara MANTOVANI (École Polytechnique)
Arnau PADROL (Universitat de Barcelona)
Vincent PILAUD (Universitat de Barcelona)

POSET ASSOCIAHEDRA

COLLAPSING LINE

COLLAPSING LINE

COLLAPSING LINE

COLLAPSING LINE

COLLAPSING LINE

COLLAPSING LINE

PIPINGS

TUBINGS

COLLAPSING POSET

P poset
$f: P \times[0,1] \rightarrow \mathbb{R}$ with $f(p,-)$ continuous, $f(-, t)$ order preserving, and $|f(P, 1)|=1$

COLLAPSING POSET

P poset
$f: P \times[0,1] \rightarrow \mathbb{R}$ with $f(p,-)$ continuous, $f(-, t)$ order preserving, and $|f(P, 1)|=1$
As before, remember collapsing events

PIPING COMPLEX

P poset
$f: P \times[0,1] \rightarrow \mathbb{R}$ with $f(p,-)$ continuous, $f(-, t)$ order preserving, and $|f(P, 1)|=1$
As before, remember collapsing events

DEF. pipe of $P=$ connected subset of P of size ≥ 2
piping of $P=$ collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{/ \cup X}$ acyclic for any $X \subseteq Y$
piping complex of $P=$ simplicial complex of pipings of P

PIPING COMPLEX

DEF. pipe of $P=$ connected subset of P of size ≥ 2 piping of $P=$ collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{/ \cup X}$ acyclic for any $X \subseteq Y$
piping complex of $P=$ simplicial complex of pipings of P

POSET ASSOCIAHEDRON

DEF. pipe of $P=$ connected subset of P of size ≥ 2
piping of $P=$ collection Y of pipes of P such that

- pipes are pairwise disjoints or nested
- $P_{/ \cup X}$ acyclic for any $X \subseteq Y$
piping complex of $P=$ simplicial complex of pipings of P
P-associahedron $=$ simple polytope whose polar is the piping complex of P

POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P

Figure from Galashin '2
QU. Find nice realizations

POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P

Figure from Galashin '21

POSET ASSOCIAHEDRON

POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of $L(P)$ is the piping complex of P

POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of $L(P)$ is the piping complex of P

THM. A section of an $L(P)$-associahedron is a P-associahedron

NESTOHEDRA

NESTOHEDRA

DEF. building set on $S=$ collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B^{\prime} \in \mathcal{B}$ and $B \cap B^{\prime} \neq \varnothing$, then $B \cup B^{\prime} \in \mathcal{B}$
$\kappa(\mathcal{B})=$ connected components of $\mathcal{B}=$ inclusion maximal elements of \mathcal{B}

NESTOHEDRA

DEF. building set on $S=$ collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B^{\prime} \in \mathcal{B}$ and $B \cap B^{\prime} \neq \varnothing$, then $B \cup B^{\prime} \in \mathcal{B}$
$\kappa(\mathcal{B})=$ connected components of $\mathcal{B}=$ inclusion maximal elements of \mathcal{B}

DEF. nested set on $\mathcal{B}=$ subset \mathcal{N} of $\mathcal{B} \backslash \kappa(\mathcal{B})$ such that

- for any $B, B^{\prime} \in \mathcal{N}$, either $B \subseteq B^{\prime}$ or $B^{\prime} \subseteq B$ or $B \cap B^{\prime}=\varnothing$
- for any $k \geq 2$ pairwise disjoint $B_{1}, \ldots, B_{k} \in \mathcal{N}$, the union $B_{1} \cup \cdots \cup B_{k}$ is not in \mathcal{B} nested complex of $\mathcal{B}=$ simplicial complex of nested sets on \mathcal{B}

NESTOHEDRA

DEF. building set on $S=$ collection \mathcal{B} of non-empty subsets of S such that

- \mathcal{B} contains all singletons $\{s\}$ for $s \in S$
- if $B, B^{\prime} \in \mathcal{B}$ and $B \cap B^{\prime} \neq \varnothing$, then $B \cup B^{\prime} \in \mathcal{B}$
$\kappa(\mathcal{B})=$ connected components of $\mathcal{B}=$ inclusion maximal elements of \mathcal{B}

DEF. nested set on $\mathcal{B}=$ subset \mathcal{N} of $\mathcal{B} \backslash \kappa(\mathcal{B})$ such that

- for any $B, B^{\prime} \in \mathcal{N}$, either $B \subseteq B^{\prime}$ or $B^{\prime} \subseteq B$ or $B \cap B^{\prime}=\varnothing$
- for any $k \geq 2$ pairwise disjoint $B_{1}, \ldots, B_{k} \in \mathcal{N}$, the union $B_{1} \cup \cdots \cup B_{k}$ is not in \mathcal{B} nested complex of $\mathcal{B}=$ simplicial complex of nested sets on \mathcal{B}

THM. The nested complex of \mathcal{B} is isomorphic to the boundary complex of the polar of the nestohedron $\sum_{B \in \mathcal{B}} \lambda_{B} \triangle_{B}$ where

- $\triangle_{B}:=\operatorname{conv}\left\{\boldsymbol{e}_{b} \mid b \in B\right\}$ face of the standard simplex $\triangle_{S}=\operatorname{conv}\left\{\boldsymbol{e}_{s} \mid s \in S\right\}$
- λ_{B} arbitrary strictly positive coefficients

NESTOHEDRA

THM. The nested complex of \mathcal{B} is isomorphic to the boundary complex of the polar of the nestohedron $\sum_{B \in \mathcal{B}} \lambda_{B} \triangle_{B}$

GRAPHICAL NESTOHEDRA

EXM. graphical building set of $G=$ collection of all tubes of G graphical nested set of $G=$ simplicial complex of tubings on G

ORIENTED MATROIDS

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$
dependence space $\mathcal{D}(\boldsymbol{A})=\left\{\boldsymbol{\delta} \in \mathbb{R}^{S} \mid \sum_{s \in S} \delta_{s} \boldsymbol{a}_{s}=\mathbf{0}\right\}$ evaluation space $\mathcal{D}^{*}(\boldsymbol{A})=\left\{\left(f\left(\boldsymbol{a}_{s}\right)\right)_{s \in S} \in \mathbb{R}^{S} \mid f \in\left(\mathbb{R}^{d}\right)^{*}\right\}$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$
dependence space $\mathcal{D}(\boldsymbol{A})=\left\{\boldsymbol{\delta} \in \mathbb{R}^{S} \mid \sum_{s \in S} \delta_{s} \boldsymbol{a}_{s}=\mathbf{0}\right\}$ evaluation space $\mathcal{D}^{*}(\boldsymbol{A})=\left\{\left(f\left(\boldsymbol{a}_{s}\right)\right)_{s \in S} \in \mathbb{R}^{S} \mid f \in\left(\mathbb{R}^{d}\right)^{*}\right\}$
oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$
dependence space $\mathcal{D}(\boldsymbol{A})=\left\{\boldsymbol{\delta} \in \mathbb{R}^{S} \mid \sum_{s \in S} \delta_{s} \boldsymbol{a}_{s}=\mathbf{0}\right\}$ evaluation space $\mathcal{D}^{*}(\boldsymbol{A})=\left\{\left(f\left(\boldsymbol{a}_{s}\right)\right)_{s \in S} \in \mathbb{R}^{S} \mid f \in\left(\mathbb{R}^{d}\right)^{*}\right\}$
oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

$$
\boldsymbol{A}_{\circ}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{4} .
$$

has 13 vectors, 153 covectors, 6 circuits, and 14 cocircuits $\mathcal{C}\left(\boldsymbol{A}_{\circ}\right)=\{(1,2),(16,45),(26,45)$, and their opposites $\}$
$\mathcal{C}^{*}\left(\boldsymbol{A}_{\circ}\right)=\{(12,6),(124, \varnothing),(125, \varnothing),(3, \varnothing),(46, \varnothing),(4,5),(56, \varnothing)$, and their opposites $\}$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$ oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$ oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

DEF. oriented matroid \mathcal{M} on $S=$ combinatorial data $\mathcal{V}(\mathcal{M}), \mathcal{V}^{*}(\mathcal{M}), \mathcal{C}(\mathcal{M}), \mathcal{C}^{*}(\mathcal{M})$ that behaves exactly as those of a vector configuration

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$ oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

DEF. oriented matroid \mathcal{M} on $S=$ combinatorial data $\mathcal{V}(\mathcal{M}), \mathcal{V}^{*}(\mathcal{M}), \mathcal{C}(\mathcal{M}), \mathcal{C}^{*}(\mathcal{M})$ that behaves exactly as those of a vector configuration

DEF. For $R \subseteq S$

- restriction $\mathcal{M}_{\mid R}=$ oriented matroid on R with circuits $\left\{c \in \mathcal{C}(\mathcal{M}) \mid c^{+} \cup c^{-} \subseteq R\right\}$
- contraction $\mathcal{M}_{/ R}=$ oriented matroid on $S \backslash R$ with vectors $\{v \backslash R \mid v \in \mathcal{V}(\mathcal{M})\}$

ORIENTED MATROIDS

DEF. vector configuration $\boldsymbol{A}=\left(\boldsymbol{a}_{s}\right)_{s \in S}$ with $\boldsymbol{a}_{s} \in \mathbb{R}^{d}$ oriented matroid $\mathcal{M}(\boldsymbol{A})=$ combinatorial data given by any of the following

- vectors $\mathcal{V}(\boldsymbol{A})=$ signatures of linear dependences of \boldsymbol{A}
- covectors $\mathcal{V}^{*}(\boldsymbol{A})=$ signatures of linear evaluations on \boldsymbol{A}
- circuits $\mathcal{C}(\boldsymbol{A})=$ support minimal signatures of linear dependences of \boldsymbol{A}
- cocircuits $\mathcal{C}^{*}(\boldsymbol{A})=$ support minimal signatures of linear evaluations on \boldsymbol{A}
signature of $\left(x_{s}\right)_{s \in S}=$ pair $\left(\left\{s \in S \mid x_{s}>0\right\},\left\{s \in S \mid x_{s}<0\right\}\right)$

DEF. oriented matroid \mathcal{M} on $S=$ combinatorial data $\mathcal{V}(\mathcal{M}), \mathcal{V}^{*}(\mathcal{M}), \mathcal{C}(\mathcal{M}), \mathcal{C}^{*}(\mathcal{M})$ that behaves exactly as those of a vector configuration

DEF. For $R \subseteq S$

- restriction $\mathcal{M}_{\mid R}=$ oriented matroid on R with circuits $\left\{c \in \mathcal{C}(\mathcal{M}) \mid c^{+} \cup c^{-} \subseteq R\right\}$
- contraction $\mathcal{M}_{/ R}=$ oriented matroid on $S \backslash R$ with vectors $\{v \backslash R \mid v \in \mathcal{V}(\mathcal{M})\}$

DEF. \mathcal{M} acyclic $=$ no positive circuit

GRAPHICAL ORIENTED MATROIDS

DEF. D directed graph with vertices V and arcs S incidence configuration $\boldsymbol{A}(D)=\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)_{(i, j) \in S}$ graphical oriented matroid $\mathcal{M}(D)=$ oriented matroid of $\boldsymbol{A}(G)$

REM. $\mathcal{M}(D)$ has

- a vector v for each set of cycles, with cw arcs v_{+}and ccw arcs v_{-}
- a covector v^{*} for each edge cut, with fwd arcs v_{+}^{*} and bwd arcs v_{-}^{*}
- a circuit c for each simple cycle, with cw arcs c_{+}and ccw arcs c_{-}
- a cocircuit c^{*} for each support minimal cut, with fwd arcs c_{+}^{*} and bwd $\operatorname{arcs} c_{-}^{*}$

REM. For $R \subseteq S$,

- $\mathcal{M}(D)_{\mid R}=\mathcal{M}\left(D_{\mid R}\right)$, where $D_{\mid R}=$ subgraph of D formed by the arcs in R
- $\mathcal{M}(D)_{/ R}=\mathcal{M}\left(D_{/ R}\right)$, where $D_{/ R}=$ contraction of the arcs of R in D

ACYCLONESTOHEDRA

ACYCLONESTOHEDRA

DEF. oriented building set on $S=\operatorname{pair}(\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B}=$ building set on S
- $\mathcal{M}=$ oriented matroid on S
such that $c^{+} \sqcup c^{-}$belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

ACYCLONESTOHEDRA

DEF. oriented building set on $S=\operatorname{pair}(\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B}=$ building set on S
- $\mathcal{M}=$ oriented matroid on S
such that $c^{+} \sqcup c^{-}$belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

DEF. acyclic nested set $=$ nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/ \cup \mathcal{N}^{\prime}}$ is acyclic for any $\mathcal{N}^{\prime} \subseteq \mathcal{N}$ acyclic nested complex $=$ simplicial complex of acyclic nested sets

ACYCLONESTOHEDRA

DEF. oriented building set on $S=\operatorname{pair}(\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B}=$ building set on S
- $\mathcal{M}=$ oriented matroid on S
such that $c^{+} \sqcup c^{-}$belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

DEF. acyclic nested set $=$ nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/ \cup \mathcal{N}^{\prime}}$ is acyclic for any $\mathcal{N}^{\prime} \subseteq \mathcal{N}$ acyclic nested complex $=$ simplicial complex of acyclic nested sets

THM. For any oriented building set $(\mathcal{B}, \mathcal{M})$, the acyclic nested complex is the face lattice of an oriented matroid obtained by stellar subdivisions of \mathcal{M}

ACYCLONESTOHEDRA

DEF. oriented building set on $S=\operatorname{pair}(\mathcal{B}, \mathcal{M})$ where

- $\mathcal{B}=$ building set on S
- $\mathcal{M}=$ oriented matroid on S
such that $c^{+} \sqcup c^{-}$belongs to \mathcal{B} for all circuits $c \in \mathcal{C}(\mathcal{M})$

DEF. acyclic nested set $=$ nested set \mathcal{N} of \mathcal{B} such that $\mathcal{M}_{/ \cup \mathcal{N}^{\prime}}$ is acyclic for any $\mathcal{N}^{\prime} \subseteq \mathcal{N}$ acyclic nested complex $=$ simplicial complex of acyclic nested sets

THM. For any oriented building set $(\mathcal{B}, \mathcal{M})$, the acyclic nested complex is the face lattice of an oriented matroid obtained by stellar subdivisions of \mathcal{M}

THM. For any realizable oriented building set $(\mathcal{B}, \mathcal{M}(\boldsymbol{A}))$, the acyclic nested complex is the boundary complex of the polar of the acyclonestohedron, defined as the section of the nestohedron $\sum_{B \in \mathcal{B}} \lambda_{B} \triangle_{B}$ with the evaluation space $\mathcal{D}^{*}(\boldsymbol{A})$

$$
\lambda_{B}=\left(|\mathcal{B}| \cdot \max _{c \in \mathcal{C}(\boldsymbol{A})} \frac{\max \boldsymbol{\delta}^{\nexists 0}}{\min \boldsymbol{\delta}^{\neq 0}}\right)^{|B|} \text { with } \boldsymbol{\delta}^{\neq 0}:=\left\{\left|\delta_{s}\right| \mid s \in S\right\} \backslash\{0\}
$$

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

EXM. D directed graph with vertices V and arcs S graphical oriented building set $=(\mathcal{B}(L(D)), \mathcal{M}(D))$ where

- $\mathcal{B}(L(D))$ is the graphical building set of the line graph of D
- $\mathcal{M}(D)$ is the graphical oriented matroid of D

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

EXM. D directed graph with vertices V and $\operatorname{arcs} S$ graphical oriented building set $=(\mathcal{B}(L(D)), \mathcal{M}(D))$ where

- $\mathcal{B}(L(D))$ is the graphical building set of the line graph of D
- $\mathcal{M}(D)$ is the graphical oriented matroid of D

PROP. The acyclic nested complex of the graphical oriented building set of D is the piping complex of the transitive closure of D

APPLICATION 1: GRAPHICAL ACYCLONESTOHEDRA

THM. The piping complex of P is the boundary complex of the polar of the graphical acyclonestohedron, defined as the section of a graph associahedron of the line graph $L(P)$ with the linear hyperplanes normal to $\mathbb{1}_{c_{+}}-\mathbb{1}_{c_{-}}$for all circuits $c=\left(c_{+}, c_{-}\right)$of P

WHAT WE ACTUALLY DO

LATTICE NESTED COMPLEXES

DEF. $\mathcal{L}=(L, \leq, \vee, \wedge)$ finite lattice
\mathcal{L}-building set $=$ subset \mathcal{B} of \mathcal{L} such that the lower interval of any element $x \in \mathcal{L}$ is the direct product of the lower intervals of the maximal elements of \mathcal{B} below x $\kappa(\mathcal{B})=$ connected components of $\mathcal{B}=\mathcal{L}$ maximal elements of \mathcal{B}

EXM. If \mathcal{L} is the boolean lattice, $\quad \mathcal{L}$-building set \longleftrightarrow classical building set

LATTICE NESTED COMPLEXES

DEF. $\mathcal{L}=(L, \leq, \vee, \wedge)$ finite lattice
\mathcal{L}-building set $=$ subset \mathcal{B} of \mathcal{L} such that the lower interval of any element $x \in \mathcal{L}$ is the direct product of the lower intervals of the maximal elements of \mathcal{B} below x
$\kappa(\mathcal{B})=$ connected components of $\mathcal{B}=\mathcal{L}$ maximal elements of \mathcal{B}

EXM. If \mathcal{L} is the boolean lattice, $\quad \mathcal{L}$-building set \longleftrightarrow classical building set

DEF. \mathcal{L}-nested set on $\mathcal{B}=\operatorname{subset} \mathcal{N}$ of $\mathcal{B} \backslash \kappa(\mathcal{B})$ such that for any $k \geq 2$ pairwise incomparable elements $B_{1}, \ldots, B_{k} \in \mathcal{N}$, the join $B_{1} \vee \cdots \vee B_{k}$ does not belong to \mathcal{B} \mathcal{L}-nested complex of $\mathcal{B}=$ simplicial complex of \mathcal{L}-nested sets on \mathcal{B}

$$
\text { EXM. If } \mathcal{L} \text { is the boolean lattice, } \quad \mathcal{L} \text {-nested sets } \longleftrightarrow \text { classical nested sets }
$$

LAS VERGNAS FACE LATTICE

DEF. face of $\mathcal{M}=$ subset F of S such that $(S \backslash F, \varnothing) \in \mathcal{V}^{*}(\mathcal{M})$
(Las Vergnas) face lattice of $\mathcal{M}=$ inclusion poset on faces

FACIAL BUILDING SETS AND NESTED COMPLEXES

DEF. $(\mathcal{B}, \mathcal{M})$ oriented building set facial building set $\widehat{\mathcal{B}}=$ set of blocks $B \in \mathcal{B}$ that are also faces of \mathcal{M}

THM. facial building sets of $\mathcal{M}=\mathcal{F}(\mathcal{M})$-building sets

THM. acyclic nested complex $(\mathcal{B}, \mathcal{M})=\mathcal{F}(\mathcal{M})$-nested complex of $\widehat{\mathcal{B}}$

CORO. The $\mathcal{F}(\mathcal{M})$-nested complex of any $\mathcal{F}(\mathcal{M})$-building set is the face lattice of

- an oriented matroid obtained by stellar subdivisions of \mathcal{M}
- a polytope, obtained either by realizing these stellar subdivisions polytopaly, or as the polar of a section of a nestohedron, when $\mathcal{M}=\mathcal{M}(\boldsymbol{A})$ is realizable

APPLICATION 2: TYPE B NESTOHEDRA

$$
\boldsymbol{A}_{n}^{\diamond}=\left\{\left.\left[\begin{array}{c}
\pm \boldsymbol{e}_{i} \\
1
\end{array}\right] \right\rvert\, i \in[n]\right\}=\text { homogenized vertices of } n \text {-dimensional cross-polytope }
$$

Observe that

- for the full $\mathcal{F}\left(\mathcal{M}\left(\boldsymbol{A}_{n}^{\diamond}\right)\right.$-building set, the acyclonestohedron is the type B_{n} permutahedron, obtained as a section of the $A_{2 n+1}$ permutahedron

APPLICATION 2: TYPE B NESTOHEDRA

$$
\boldsymbol{A}_{n}^{\diamond}=\left\{\left.\left[\begin{array}{c}
\pm \boldsymbol{e}_{i} \\
1
\end{array}\right] \right\rvert\, i \in[n]\right\}=\text { homogenized vertices of } n \text {-dimensional cross-polytope }
$$

Observe that

- for the full $\mathcal{F}\left(\mathcal{M}\left(\boldsymbol{A}_{n}^{\diamond}\right)\right)$-building set, the acyclonestohedron is the type B_{n} permutahedron, obtained as a section of the $A_{2 n+1}$ permutahedron
- any pair of classical building sets $\left(\mathcal{B}^{+}, \mathcal{B}^{-}\right)$defines a $\mathcal{F}\left(\mathcal{M}\left(\boldsymbol{A}_{n}^{\diamond}\right)\right.$)-building set $\left\{+B^{+} \mid B^{+} \in \mathcal{B}^{+}\right\} \cup\left\{-B^{-} \mid B^{-} \in \mathcal{B}^{-}\right\} \cup\{-[n] \cup+[n]\}$
if $\mathcal{B}^{-}=\{$singletons $\}$we obtain design nestohedra

APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P_{1} homogenize to an oriented matroid \mathcal{M}_{1} choose an oriented building set $\left(\mathcal{B}_{1}, \mathcal{M}_{1}\right)$
get a polytope $P_{2}=$ acyclonestohedron of $\left(\mathcal{B}_{1}, \mathcal{M}_{1}\right)$
homogenize to an oriented matroid \mathcal{M}_{2}
choose an oriented building set $\left(\mathcal{B}_{2}, \mathcal{M}_{2}\right)$

$$
\text { get a polytope } P_{3}=\text { acyclonestohedron of }\left(\mathcal{B}_{2}, \mathcal{M}_{2}\right)
$$

When starting from a simplex:

- taking the full building set at each steps leads to permuto-permuto-...-permutahedra

APPLICATION 3: ITERATED NESTOHEDRA

start from a polytope P_{1} homogenize to an oriented matroid \mathcal{M}_{1} choose an oriented building set $\left(\mathcal{B}_{1}, \mathcal{M}_{1}\right)$
get a polytope $P_{2}=$ acyclonestohedron of $\left(\mathcal{B}_{1}, \mathcal{M}_{1}\right)$
homogenize to an oriented matroid \mathcal{M}_{2}
choose an oriented building set $\left(\mathcal{B}_{2}, \mathcal{M}_{2}\right)$

$$
\text { get a polytope } P_{3}=\text { acyclonestohedron of }\left(\mathcal{B}_{2}, \mathcal{M}_{2}\right)
$$

When starting from a simplex:

- taking the full building set at each steps leads to permuto-permuto-...-permutahedra
- in two steps, we obtain nesto-nestohedra

