

See-saw pairs and plethysm

Rosa Orellana Dartmouth College FPSAC '24 - Bochum

Based on join work with

F. Saliola A. Schilling M. Zabrocki

Plethysm and the algebra of uniform block permutations, 2022.
 The lattice of submonoids of the uniform block permutations containing the symmetric group (arXiv:2405.09710), 2024.
 Special thanks to AIM, ICERM, BIRS at Banff.

The symmetric group

- \rightarrow The symmetric group S_{n} .
- \diamond A representation is a homomorphism: ρ
- \diamond The irreducible representations \mathbb{S}^{λ} are indexed by partitions of n.
- \diamond The module, \mathbb{S}^{λ} is spanned by standard tableaux of shape λ . **Example:** (2,2) $\begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix}$ $\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$
- ♦ The character of a representation: trace($\rho(\sigma)$), for $\sigma \in S_n$.
- A Restriction of representations: Res^{S_{k+m}}_{S_ℓ×S_m} S^ℓ = ⊕ (S^λ ⊗ S^μ)^{c^ℓ_{λ,μ}}

Sagan's book

$$: \mathbf{S}_n \to GL_d$$
.

	(1)(2)(3)	(1,2)(3)	(1,2,3
$\chi^{(1,1,1)}$	1	-1	1
$\chi^{(2,1)}$	2	0	-1
$\chi^{(3)}$	1	1	1

 $\lambda \vdash k, \mu \vdash m$

The General Linear Group

- ♦ The general linear group $GL_n = GL_n(\mathbb{C})$ is the group of invertible $n \times n$ matrices.
- A representation is a homomorphism: $\rho : GL_n \to GL_m$.
- ♦ For any $g \in GL_n$, $\rho(g)$ is an $m \times m$ matrix.
 - Irreducible polynomial representation are indexed by partitions λ with at most *n* parts: \bigvee^{λ}
 - **Example:** $V^{(2)}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a^2 & 2ab & b^2 \\ ac & ad + bc & bd \\ c^2 & 2cd & d^2 \end{bmatrix}$
 - $T = \begin{bmatrix} 8 \\ 7 & 8 & 9 \\ 3 & 5 & 6 & 7 \\ 1 & 2 & 2 & 4 & 4 & 5 \end{bmatrix}$
 - **Example:** $\mathbb{V}^{(2)}$ in GL_2 has basis $\boxed{11}$ $\boxed{12}$ $\mathbb{V}^{(2)}$ in GL_3 has basis

The module, \bigvee^{λ} is spanned by semistandard tableaux of shape λ with entries in $\{1, \ldots, n\}$.

The General Linear Group

◆ The character of a representation: trace($\rho(g)$), for $g \in GL_{n}$.

 \diamond The characters of the polynomial irreducible representations of GL_n are evaluations of Schur functions (Schur polynomials).

Example: $\lambda = (6,4,3,1)$ $T = \begin{bmatrix} 8 \\ 7 & 8 & 9 \\ 3 & 5 & 6 & 7 \\ 1 & 3 & 3 & 4 & 4 & 5 \end{bmatrix}$

Computing characters of elements:

If $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has eigenvalues θ_1 and θ_2 , then $\operatorname{trace}(\rho^{(2)}(g)) = s_{(2)}(\theta_1, \theta_2) = \theta_1^2 + \theta_1 \theta_2 + \theta_2^2$.

SSYT "semistandard Young tableaux"

$$x^T = x_1 x_3^3 x_4^2 x_5^2 x_6 x_7^2 x_8^2 x_9$$

- **Example:** The character of the GL_2 representation $V^{(2)}$ is $s_{(2)}(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ |2|2||2|1 | 1

Characters and symmetric functions

Polynomial

Representation of GL_n

Representation

 $\sqrt{/}$

 $\mathbf{Sym}^{\lambda_1}V \otimes \cdots \otimes \mathbf{Sym}^{\lambda_\ell}V$

 $\wedge^{\lambda_1} V \otimes \cdots \otimes \wedge^{\lambda_\ell} V$

 $\mathbb{V}^{\lambda} \otimes \mathbb{V}^{\mu} \cong \bigoplus \left(\mathbb{V}^{\nu} \right)^{c_{\lambda,\mu}^{\nu}}$

Same as for restriction of S_n -representations.

$c_{\lambda,\mu}^{\nu}$ are the Littlewood-Richarson coeffs.

Plethysm - composing characters

 $\tau \circ \rho : GL_n$

 GL_n representation: $\rho : GL_n \to GL_m$ GL_m representation: $\tau : GL_m \to GL_r$ Then the composition is a representation of (

We call the character of the composition: plethysm. If f and g are symmetric functions, then the plethysm is denoted by f[g]. $[-x^2 + x^2 + x$

Example:
$$s_{(2)}(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$$

111 112 212
 $s_{(2)}[s_{(2)}(x_1, x_2)] = s_2(x_1^2, x_1 x_2, x_2^2)$
 $= x_1^4 + x_1^3 x_2 - \frac{11111}{1112}$
 $= s_4(x_1, x_2) + s_{2,2}(x_1 + x_2) + \frac{11}{2}$

$$GL_n$$
.
 $\rightarrow GL_r$

$$s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_1 x_3 + x_2^2 + x_2 x_3 + x_3$$

$$11 \quad 12 \quad 13 \quad 22 \quad 23 \quad 3$$

 (x_1, x_2)

Plethysm Problem

Problem: Find a combinatorial interpretation for the coefficients $a_{\lambda,\mu}^{\nu} \in \mathbb{Z}_{\geq 0}$ in the expansion

Very few special cases are known: **Carre and Leclerc:** $s_2[s_{\mu}]$ and $s_{1,1}[s_{\mu}]$ **COSSZ:** $s_{\lambda}[s_m]$ when $\lambda \vdash 3$. Howe: $s_4[s_m]$ complicated expressions for the coefficients. Littlewood (see Macdonal page 138): $s_n[s_2]$, $s_n[s_{1,1}]$, $s_1^n[s_2]$ and $s_{1^n}[s_{1,1}]$. Bowman, Paget, Wildon - stable coefficients in s[n](s[m]). **Remark:** A solution for $s_m[s_n]$ would help prove Foulkes' Conjecture: For n > m $S_n[S_m] - S_m[S_n]$ is Schur-positive.

Subproblem: We are interested in the plethysm $s_{\lambda}[s_m]$.

Restriction to the symmetric group

 $S_n \subset GL_n$

The symmetric group as the group of permutation matrices is a subgroup of GL_{n} .

 GL_n

$$(3,1)^{\oplus 2} \oplus \mathbb{S}^{(2,2)}$$

Littlewood, Buttler and King, Narayanan, Paul, Prasad and Srivastava '22

Restricting Characters

- \diamond Every character of GL_n is a character of S_n . **Example:** Restrict the representation $\mathbb{V}^{(2)}$ of GL_3 to S_3 . $+ x_1x_3 + x_2^2 + x_2x_3 + x_3^2$ I contraction $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ matrix for each $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 1,1,1 1,-1,1 1, ξ,ξ^2 **Eigenvalues** $s_2(1,1,1) = 6$ $s_2(1,-1,1) = 2$ $s_2(1,\xi,\xi^2) = 0$

$$s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_1 x_2 +$$
on $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The decomposition for $S_{(2)}(x_1, x_2, x_3)$ as an S_3 character is

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1)(2)(3)	(1,2)(3)	(1,2,3)
$\chi^{(2,1)}$ 2 0 -1	$\chi^{(1,1,1)}$	1	-1	1
	$\chi^{(2,1)}$	2	0	-1
$\chi^{(3)}$ 1 1 1	$\chi^{(3)}$	1	1	1

< 6

$$y_{2,0} > = 2 < 1,1,1 > + 2 < 2,0, -1 >$$

= 2 $\chi^{(3)} + 2 \chi^{(2,1)}$

Restricting Characters - Symmetric Functions

◆ Zabrocki and I introduced a new basis of symmetric functions : { \tilde{s}_{λ} : λ a partition } such that if Ξ_{μ} are the eigenvalues of permutation matrices, we have

Using this basis, the restriction problem is

μ

Restricting Characters - Symmetric Functions

Theorem: [O - Zabrocki]

 $h_{\mu} = \sum M_{\lambda,\mu} \tilde{s}_{\lambda}$

and content μ .

Example: If $\mu = (2,1)$ the entries are multisets of 1,1,2.

♦ Recall: h_{μ} is the character of $Sym^{\mu_1}V \otimes \cdots \otimes Sym^{\mu_\ell}V$.

where $M_{\lambda,\mu}$ is the number of semi standard multiset filled tableaux of shape $(r, \lambda)/\lambda_1$

 $h_{21} = 4\tilde{s}_1 + 7\tilde{s}_1 + 3\tilde{s}_{11} + 4\tilde{s}_2 + \tilde{s}_{21} + \tilde{s}_3$.

Plethysm and Restriction

Littlewood '1950s and reformulated by Scharf and Thibon

Theorem:
$$r_{\lambda,\mu} = \langle s_{\lambda}, s_{\mu}[1 + s_1 + s_2 + s_3 + \cdots] \rangle$$

Subproblem: We are interested in the plethysm $s_{\lambda}[s_m]$.

μ

See-saw pairs

If (A_2, B_1) and (A_1, B_2) are centralizer pairs then

$$\operatorname{Res}_{B_1}^{A_1} V_{A_1}^{\lambda} \cong \bigoplus_{\mu} (V_{B_1}^{\mu})^{m_{\lambda,\mu}} \quad \text{and} \quad \operatorname{Res}_{B_2}^{A_2} V_{A_2}^{\mu} \cong \bigoplus_{\lambda} (V_{B_2}^{\lambda})^{m_{\lambda,\mu}}$$

Let A_1, A_2, B_1, B_2 be groups/algebras such that $B_1 \subset A_1, B_2 \subset A_2$. All acting on the same vector space W.

 $A_2 \cong \mathbf{End}_{B_1}(W)$ $B_2 \cong \mathbf{End}_{A_1}(W)$

Restricting Characters - See-saw approach

Think of $S_n \subseteq GL_n$ as the subgroup of permutation matrices acting diagonally on $V^{\otimes k}$ $\sigma \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = \sigma v_1 \otimes \sigma v_2 \otimes \cdots \otimes \sigma v_k$

what commutes with this action?

 $\{\{1, 3, \overline{1}, \overline{2}\}, \{2, \overline{4}\}, \{4, 6, \overline{3}, \overline{6}\}, \{5, \overline{7}\}, \{7, 8, 9, \overline{5}, \overline{8}, \overline{9}\}\}$

By Schur-Weyl duality (GL_n, S_k) is a centralizer pair

1990s: Jones and Martin

Partition Algebra

♦ For any positive integer k, let [k] = {1,...,k} and [k] = {1,...,k}

 \diamond The partition algebra, $P_k(n)$ has **Basis:** set partitions of $[k] \cup [\overline{k}]$ **Example:**

♦ The partition algebra, $P_k(n)$ has an identity $1 = \{\{1, \overline{1}\}, \dots, \{k, k\}\}$ and it has dimension equal B(2k), the Bell number.

Halverson-Ram, Halverson, Jacobson-Halverson, etc.

 $P_k(n)$ and S_n form a centralizer pair

The partition algebra is not always semisimple, but in the cases when it is semisimple, we have

 $V_{P_k(n)}^{(n-|\lambda|,\lambda)}$ - The irreducible representations are indexed by partitions λ such that $\lambda_1 + \lambda_2 + \cdots \leq k$

Irreducible have bases consisting of standard tableau where entries are sets.

$$V_{P_3(6)}^{(4,2)} = \operatorname{span}\left\{ \begin{array}{c|c} & 3 \\ \hline 1 & 2 \end{array}, \begin{array}{c|c} & 2 \\ \hline 1 & 3 \end{array}, \begin{array}{c|c} & 2 \\ \hline 1 & 3 \end{array}, \end{array} \right\}$$

Jones 1994 - $(P_k(n), S_n)$ form a centralizer pair

Our see-saw pair

$\operatorname{Res}_{\mathsf{S}_{k}}^{P_{k}(n)}V_{P_{k}(n)}^{\mu}\cong\bigoplus_{\lambda}\left(\mathbb{S}^{\lambda}\right)^{\oplus r_{\lambda,\mu}}$ $\operatorname{\mathsf{Res}}^{GL_n}_{S_m} \overset{\lambda}{\simeq} \bigoplus \bigoplus (\mathbb{S}^{\mu})^{\bigoplus r_{\lambda,\mu}}$ μ

Idea: To solve the restriction problem, solve the restriction of $P_k(n)$ to S_k

An approach for restriction

 U_k the uniform block permutation algebra.

$$S_k < \dots$$

Why U_k ? It is smaller and has a rich structure. $dim(U_k)$ 1 1 3 16

Goal: Give a combinatorial construction of representations of U_k using tableaux.

4	5	6
21,147	678,570	27,644,437
131	1,496	22,482

Uniform Block permutations

Note: \bigcup_{k} is a monoid algebra.

No parameter!

Idempotents and *J*-classes

Idempotents: For each $\pi \vdash [k]$, we define an idempotent

 $e_{\pi} = \{A \cup \overline{A} : A \in \pi\}$

Example: $e_{\{2\},\{7\},\{1,4\},\{3,6\},\{5,8,9\}\}} = \int_{-1}^{+1} \frac{1}{2} \frac{1}$

The set $E(U_k) = \{e_{\pi} : \pi \vdash [k]\}$ is a complete set of idempotents.

Note: U_k is the union of \mathcal{J} – classes.

Uniform block permutations

 U_k is semisimple and its irreducible representations are indexed by

 $I_{k} = \left\{ \left(\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(k)} \right) : \lambda^{(i)} \text{ are partitions such that } \sum_{i=1}^{\kappa} i |\lambda^{(i)}| = k \right\}$

Example: $I_3 = \{((3), \emptyset, \emptyset), ((2, 1), \emptyset, \emptyset), ((1, 1, 1), \emptyset, \emptyset), ((1), (1), \emptyset), (\emptyset, \emptyset, (1))\}$

A uniform tableau $T = (T^{(1)}, \dots, T^{(k)})$ of shape $\vec{\lambda} \in I_k$ is a tableau where each $T^{(i)}$ is filled with blocks of size i and the blocks in T form a set partition of [k].

The irreducible representations of U_k :

 $V_{U_{\iota}}^{\vec{\lambda}} := \operatorname{span} \left\{ T \text{ is a uniform tableau of shape } \vec{\lambda} \right\}$ Example: $V_{U_3}^{((1),(1),\cdot)} = \operatorname{span}\left\{\left(1, 23\right)\right\}$

$$\Big), \Big(\boxed{2}, \boxed{13}\Big), \Big(\boxed{3}, \boxed{12}\Big)\Big\}$$

Characters for UBP

Explicit formulas for the characters!

 $\chi_{\mathsf{U}_{k}}^{\bar{\lambda}}(d_{\vec{\mu}}) = \sum b_{\vec{\mu}}^{\vec{\nu}}\chi_{G_{\lambda}}^{\bar{\lambda}}(d_{\vec{\nu}})$ $\vec{\nu} \in I_k: |\nu^{(i)}| = a_i$ Let $\mu = (\cdot, (1,1), \cdot, \cdot)$, so that $\lambda = (2,2)$ Example:

Note: Coefficients are always integers. We found and explicit formula for $b_{\vec{n}}^{\nu}$.

Theorem: [OSSZ] For $\vec{\lambda}, \vec{\mu} \in I_k, a_i = |\lambda^{(i)}|, \lambda = (1^{a_1}2^{a_2}...k^{a_k})$ and $G_{\lambda} \cong S_{a_1} \times \cdots \times S_{a_k}$

Connection to plethysm

Our problem: We want to compute:

Defined a Frobenius map and connected to symmetric functions.

Theorem: Multiplicity of \mathbb{S}^{μ} in $\operatorname{Res}_{S_{\mu}}^{U_{k}} V_{U_{k}}^{\vec{\lambda}}$ is $\langle s_{\lambda^{(1)}}[s_{1}]s_{\lambda^{(2)}}[s_{2}]\cdots s_{\lambda^{(k)}}[s_{k}], s_{\mu}\rangle = a_{\vec{\lambda},\mu}$ $\operatorname{\mathsf{Res}}_{S_k}^{\mathsf{U}_k} V_{U_k}^{\vec{\lambda}} \cong \bigoplus$ $\mu \vdash k$

If $\vec{\lambda} = (\cdot, ..., \cdot, \lambda, ...)$ where λ is in m^{th} position: $\langle S_{\lambda}[S_m],$

Question: How do we do the restriction/induction so that we get new information?

 S_k

$$(\mathbb{S})^{\bigoplus a_{\vec{\lambda},\mu}}$$

$$s_{\mu} > = a^{\mu}_{\lambda,(m)}$$

Submonoids of UBP

We are interested in the submonoids of U_k that contain S_k and how they are related.

Proposition: Every submonoid of U_k containing S_k is the union of \mathcal{J} – classes.

Monoids : $S_3 = J_{(1,1,1)} \subset (S_3 \cup J_{(3)}) \subset (S_3 \cup J_{(3)} \cup J_{(2,1)}) = U_k$

Number of submonoids:

$k \mid$	1	2	3	4	5	6	7	8	9	10
$\left n_k \right $	1	2	3	6	10	31	63	287	1099	8640

Theorem: The set $\{M \text{ monoid such that } S_k \subseteq M \subseteq U_k\}$ with order \subseteq is a distributive lattice. (2,1)(3)Ø 12131114154689129789119 2525655957 62658

A new order on partitions

Definition: $\lambda, \mu \vdash k$, then $\mu \leq \lambda$ if there are set partitions $\pi_0, \pi_1, \ldots, \pi_{\ell} \vdash [k]$ of type λ with join $\pi_0 \lor \ldots \lor \pi_{\ell}$ of type μ .

Theorem: Every monoid $M \subseteq U_k$ containing S_k is of the form: $M = S_k \cup \bigcup J_{\mu}$ where *I* is an order ideal of $(\operatorname{Par}_k \setminus \{(1^k)\}, \leq)$ $\mu \in I$

Theorem: $\lambda, \mu \in \text{Part}_k \setminus \{(1^k)\}$. Then iff μ is coarser than λ and $SP_{>1}(\mu) \ge SP_{>1}(\lambda)$. $\mu \leq \lambda$

Final Remarks

New combinatorics:

Final Remarks

Faulstich, Sturmfels, and Sverrisdottir - connections of UBP to algebraic varieties.

- Christian Stump (Chair) Ruhr-Universität Bochum
- Mike Zabrocki (Executive Committee Liason) York University
- Nathan Williams (NSF Funding Coordinator) University of Texas at Dallas
- Christian Gaetz (Proceedings Editor) Cornell University
- Annika Schulte (Staff) Ruhr-Universität Bochum
- Ashleigh Adams North Dakota State University
- Galen Dorpalen-Barry University of Oregon
- Thomas Gerber Ruhr-Universität Bochum
- Elena Hoster Ruhr-Universität Bochum
- Deniz Kuş Ruhr-Universität Bochum
- Christoph Thäle Ruhr-Universität Bochum

versity y of Texas at Dallas /

- Marni Mishna (Cochair) Simon Fraser University
- Brendon Rhoades (Cochair) University of California San Diego
- Raman Sanyal (Cochair) Freie Universität Berlin
- Takuro Abe Rikkyo University
- Marcelo Aguiar Cornell University
- Spencer Backman University of Vermont
- Federico Castillo Pontifica Universidad Católica de Chile
- Shaoshi Chen Chinese Academy of Sciences
- Julien Courtiel Université de Caen Normandie
- Michael Cuntz Leibniz Universität Hannover
- Emanuele Delucchi SUSPI
- Anton Dochtermann Texas State University
- Andrew Elvey Price University of Tours/CNRS
- Alessandro Iraci Università di Pisa
- Katharina Jochemko Royal Institute of Technology (KTH)
- Lukas Kühne Universität Bielefeld
- Jean-Philippe Labbé Université du Québec
- Seung Jin Lee Seoul National University
- Georg Loho University of Twente
- Maria Monks Gillespie Colorado State University
- Leonid Petrov University of Virginia
- Mercedes Rosas Universidad de Sevilla
- Jose Samper Pontifica Universidad Católica de Chile
- Benjamin Schröter Royal Institute of Technology (KTH)
- Melissa Sherman-Bennett Massachusetts Institute of Technology
- Lorenzo Venturello Università di Pisa
- Michael Wallner Technische Universität Wien
- Ole Warnaar The University of Queensland
- Andy Wilson Kennesaw State University
- Meesue Yoo Chungbuk National University

Special Semester @ ICERM

Categorification and Computation in **Algebraic Combinatorics**

i

Organizing Committee

- Chris Bowman University of York
- Nicolas Libedinsky Universidad de Chile
- Anne Schilling UC Davis
- Lauren Williams Harvard University

- Nicolle Gonzalez UC Berkeley
- Rosa Orellana Dartmouth College
- Jamie Vicary University of Cambridge

Sep 3 - Dec 5, 2025 Semester Program

- Kyu-Hwan Lee University of Connecticut
- Greta Panova University of Pennsylvania and University of Southern California
- Adam Wagner Worcester Polytechnic Institute