See-saw pairs and plethysm Rosa Orellana Dartmouth College FPSAC '24 - Bochum

Based on join work with

F. Saliola A. Schilling M. Zabrocki

❖ **Plethysm and the algebra of uniform block permutations, 2022.** ❖ **The lattice of submonoids of the uniform block permutations containing the symmetric group (arXiv:2405.09710), 2024.** ❖ **Special thanks to AIM, ICERM, BIRS at Banff.**

The symmetric group

- \triangle The symmetric group S_n .
- ✦ **A representation is a homomorphism:** *ρ* : **.** *ⁿ* → *GLd*
- ✦ **The irreducible representations are indexed by partitions of** *^λ n* .

 $_{k}\!\!\times\!\!{\mathsf{S}}_{m}$

- \rightarrow The module, \mathbb{S}^{λ} is spanned by standard tableaux of shape λ . **Example:** $\mathbb{S}^{(2,2)}$ $\frac{2}{1}$ 1 3 1 2 4 3 4
- ✦ **The character of a representation: trace**(*ρ*(*σ*))**, for** *σ* ∈ **.** *ⁿ*
- ✦ **Restriction of representations: Res** *^k*+*^m*

Example: $k = 6$, $m = 5$. The representation $\mathbb{S}^{(3,2,1)}$ ⊗ $\mathbb{S}^{(3,2)}$ occurs 3 times in the restriction of $\mathbb{S}^{(5,3,2,1)}$ from \mathbb{S}_{11} to $_{11}$ to $S_6 \times S_5$.

ν = *λ*⊢ *k*,*μ*⊢*m* ⨁ $(S^{\lambda} \otimes S^{\mu})^{c^{\nu}_{\lambda,\mu}}$

Sagan's book

$$
: \mathbf{S}_n \to GL_d.
$$

The General Linear Group

 \blacklozenge The general linear group $GL_n=GL_n(\mathbb{C})$ is the group of invertible $n\times n$ matrices.

- A representation is a homomorphism: $\rho: GL_n \to GL_m$.
- For any $g \in GL_n$, $\rho(g)$ is an $m \times m$ matrix.
	- Irreducible polynomial representation are indexed by partitions λ with at most n parts: \mathbb{V}^{λ}
		- **Example:** $\mathbb{V}^{(2)}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a^2 & 2ab & b^2 \\ ac & ad + bc & bd \\ c^2 & 2cd & d^2 \end{bmatrix}$
	- $T = \frac{\frac{8}{7} \times 9}{\frac{3}{3} \times 5 \times 6}{\frac{7}{12} \times 1}$
		- **Example:** $V^{(2)}$ in GL_2 has basis $\boxed{1|1|}$ $\boxed{1|2}$ $\mathbb{V}^{(2)}$ in GL_3 has basis

The module, \mathbb{V}^{λ} is spanned by semistandard tableaux of shape λ with entries in $\{1,...,n\}$.

The General Linear Group

 \blacklozenge The character of a representation: trace($\rho(g)$), for $g \in GL_n$.

 \blacklozenge The characters of the polynomial irreducible representations of GL_n are evaluations of **Schur functions (Schur polynomials).**

Example: *λ* = (6,4,3,1) *T* = *x^T* = *x*1*x*³

$$
x^T = x_1 x_3^3 x_4^2 x_5^2 x_6 x_7^2 x_8^2 x_9
$$

- Example: The character of the GL_2 representation $\mathbb{V}^{(2)}$ is $s_{(2)}(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ $|2|2|$ $\overline{2}$ $|1|1$
	- (g)) = $s_{(2)}(\theta_1, \theta_2) = \theta_1^2 + \theta_1 \theta_2 + \theta_2^2$.

✦ **Computing characters of elements:**

If $g = \begin{bmatrix} a & b \ c & d \end{bmatrix}$ has eigenvalues θ_1 and θ_2 , then $\textbf{trace}(\rho^{(2)}(g)) = s_{(2)}(\theta_1, \theta_2) = \theta_1^2 + \theta_1\theta_2 + \theta_2^2$. *a b* $\begin{bmatrix} a & b \ c & d \end{bmatrix}$ has eigenvalues θ_1 and θ_2 , then trace($\rho^{(2)}$

SSYT "semistandard Young tableaux"

Characters and symmetric functions

Polynomial

Representation of GL_n

- **are the Littlewood-Richarson coeffs.**
- Same as for restriction of S_n-representations. *n*

cν λ,*μ*

$$
\mathbb{V}^{\lambda} \otimes \mathbb{V}^{\mu} \simeq \bigoplus_{\nu} (\mathbb{V}^{\nu})^{c_{\lambda,\mu}^{\nu}}
$$

$$
\textbf{Sym}^{\lambda_1}V \otimes \cdots \otimes \textbf{Sym}^{\lambda_e}V
$$

$$
\wedge^{\lambda_1}V\otimes\cdots\otimes\wedge^{\lambda_\ell}V
$$

Plethysm - composing characters

 GL_n representation: $\rho: GL_n \to GL_m$ GL_m representation: $\tau: GL_m \to GL_r$ Then the composition is a representation of GL_n .

We call the character of the composition: plethysm. If f and g are symmetric functions, then the plethysm is denoted by $f[g]$. **Example:** $s_{(2)}(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ $\frac{1}{2}$ $S_{(2)}$ $|1|2|$ $|2|2|$

$$
s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_1 x_3 + x_2^2 + x_2 x_3 + x_3^2
$$

$$
\overline{111} \quad \overline{112} \quad \overline{113} \quad \overline{113} \quad \overline{212} \quad \overline{213} \quad \overline{313}
$$

$$
s_{(2)}[s_{(2)}(x_1, x_2)] = s_2(x_1^2, x_1x_2, x_2^2)
$$

= $x_1^4 + x_1^3x_2 + x_2^2$

$$
\boxed{1\,1}\,\boxed{1\,1}\qquad\qquad \boxed{1\,1}\,\boxed{1\,2}
$$

 $τ • ρ : GL_n$

 $=$ *s*₄(*x*₁, *x*₂) + *s*_{2,2}(*x*₁, *x*₂)

$$
\overrightarrow{J}L_n \cdot \overrightarrow{GL_r}
$$

-
-

Plethysm Problem

Problem: Find a combinatorial interpretation for the coefficients $a_{\lambda,\mu}^{\nu} \in \mathbb{Z}_{\geq 0}$ **in the expansion**

Remark: A solution for $s_m[s_n]$ would help prove Foulkes' Conjecture: For $n > m$ $s_n[s_m] - s_m[s_n]$ **Very few special cases are known: Carre and Leclerc:** $s_2[s_\mu]$ and $s_{1,1}[s_\mu]$ **COSSZ:** $s_{\lambda}[s_{m}]$ when $\lambda \vdash 3$. Howe: $s_4[s_m]$ complicated expressions for the coefficients. **Littlewood (see Macdonal page 138):** $s_n[s_2]$, $s_n[s_{1,1}]$, $s_1^n[s_2]$ and $s_{1^n}[s_{1,1}]$. **Bowman, Paget, Wildon - stable coefficients in** *s*[*n*](*s*[*m*])**.**

Subproblem: We are interested in the plethysm $s_{\lambda}[s_m]$.

-
-
-
- **is Schur-positive.**
	-

Restriction to the symmetric group

 $S_n \subset GL_n$

The symmetric group as the group of permutation matrices is a subgroup of GL_n .

$$
\mu
$$

 GL_n

$$
(S^{(3,1)})^{\bigoplus 2} \oplus S^{(2,2)}
$$

Littlewood, Buttler and King, Narayanan, Paul, Prasad and Srivastava '22

Restricting Characters

- Every character of GL_n is a character of S_n . **Example:** Restrict the representation $\mathbb{V}^{(2)}$ of GL_3 to S_3 . $x_1x_3 + x_2^2 + x_2x_3 + x_3^2$ Patrix for each

conjugacy class:
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 1,1,1 $1, -1,1$ $1, \xi, \xi^2$ **Eigenvalues** $s_2(1,1,1) = 6$ $s_2(1,-1,1) = 2$ $s_2(1,\xi,\xi^2) = 0$
-

$$
s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_1 x_2 +
$$

on

$$
s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_1 x_2 +
$$

The decomposition for $S_{(2)}(x_1, x_2, x_3)$ as an S_3 character is

 < 6

$$
2.0 > 2 < 1.1, 1 > 2 < 2.0, -1 > 2
$$

= 2 $\chi^{(3)} + 2 \chi^{(2,1)}$

Restricting Characters - Symmetric Functions

↑ Zabrocki and I introduced a new basis of symmetric functions : $\{\tilde{s}_\lambda : \lambda$ a partition $\}$ such that if Ξ_μ are the eigenvalues of permutation matrices, we have

s ˜

μ

$$
a(\Xi_{\mu}) = \chi^{(n-|\alpha|,\alpha)}(\mu)
$$

\n
$$
(x_1, x_2, x_3) = x_1 + x_2 + x_2 - 1
$$

\n
$$
+ x_1x_3 + x_2x_3 - x_1 - x_2 - x_3 + 1
$$

\n
$$
\begin{array}{c} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
$$

\n
$$
\begin{array}{c} \chi^{(1,1,1)} & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array}
$$

\n
$$
\begin{array}{c} \chi^{(2,1)} & 2 & 0 & -1 \\ 1 & 1 & 1 & 1 \end{array}
$$

\n
$$
\begin{array}{c} \chi^{(3)} & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}
$$

\n
$$
r_{\lambda,\mu} \tilde{s}_{\mu}
$$

\n
$$
\text{problem is reformulated as:} \quad \tilde{s}_{\lambda} = \sum_{i} r_{\lambda,\mu} \tilde{s}_{\mu}
$$

◆ Using this basis, the restriction problem is

Theorem: [O - Zabrocki]

 $h_\mu = \sum M_{\lambda,\mu}$ \tilde{s} *λ*

where $M_{\lambda,\mu}$ is the number of semi standard multiset filled tableaux of shape $(r,\lambda)/\lambda_1$ and content μ .

Example: If $\mu = (2,1)$ the entries are multisets of 1,1,2.

 \rightarrow Recall: h_{μ} is the character of $Sym^{\mu_1}V\otimes \cdots \otimes Sym^{\mu_\ell}V$.

Restricting Characters - Symmetric Functions

λ

 $h_{21} = 4\tilde{s}$. + $7\tilde{s}_1 + 3\tilde{s}_{11} + 4\tilde{s}_2 + \tilde{s}_{21} + \tilde{s}_3$.

Plethysm and Restriction

Littlewood '1950s and reformulated by Scharf and Thibon

Theorem:
$$
r_{\lambda,\mu} = (s_{\lambda}, s_{\mu}[1 + s_1 + s_2 + s_3 + \cdots])
$$

Subproblem: We are interested in the plethysm $S_{\lambda}[S_{m}]$.

 μ

See-saw pairs

If (A_2, B_1) and (A_1, B_2) are centralizer pairs then

$$
\mathbf{Res}_{B_1}^{A_1} V_{A_1}^{\lambda} \cong \bigoplus_{\mu} (V_{B_1}^{\mu})^{m_{\lambda,\mu}} \quad \text{and} \quad \mathbf{Res}_{B_2}^{A_2} V_{A_2}^{\mu} \cong \bigoplus_{\lambda} (V_{B_2}^{\lambda})^{m_{\lambda,\mu}}
$$

Let A_1, A_2, B_1, B_2 be groups/algebras such that $B_1\subset A_1, B_2\subset A_2$. All acting on the same vector space W.

 $A_2 \cong \operatorname{End}_{B_1}(W)$
 $B_2 \cong \operatorname{End}_{A_1}(W)$

Restricting Characters - See-saw approach

By Schur-Weyl duality (GL_n, S_k) **is a centralizer pair**

Think of $S_n \subseteq GL_n$ as the subgroup of permutation matrices acting diagonally on $V^{\otimes k}$ $\sigma \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = \sigma v_1 \otimes \sigma v_2 \otimes \cdots \otimes \sigma v_k$

1990s: Jones and Martin

what commutes with this action?

 $\{\{1,3,\overline{1},\overline{2}\},\{2,\overline{4}\},\{4,6,\overline{3},\overline{6}\},\{5,\overline{7}\},\{7,8,9,\overline{5},\overline{8},\overline{9}\}\}\$

Partition Algebra

 \blacklozenge For any positive integer *k*, let $[k] = \{1, ..., k\}$ and $[\overline{k}] = \{\overline{1}, ..., \overline{k}\}$

 \blacktriangleright The partition algebra, $P_k(n)$ has **Basis: set partitions of** [*k*] ∪ [*k*] **Example:**

$$
k=9
$$

 \blacklozenge The partition algebra, $P_k(n)$ has an identity $1 = \{\{1,1\},..., \{k,k\}\}$ and it has dimension equal $B(2k)$, the Bell number.

✦ **Halverson-Ram, Halverson, Jacobson-Halverson, etc.**

The irreducible representations are indexed by partitions *λ* **such that**

Irreducible have bases consisting of standard tableau where entries are sets .

$$
V_{P_3(6)}^{(4,2)} = \text{span}\left\{\boxed{\frac{3}{1\,2}}, \boxed{\frac{2}{1\,3}}, \boxed{2}, \boxed{\right\}
$$

Jones 1994 - $(P_k(n), S_n)$ **form a centralizer pair**

 $P_k(n)$ and S_n form a centralizer pair

The partition algebra is not always semisimple, but in the cases when it is semisimple, we have

 $\lambda_1 + \lambda_2 + \cdots \leq k$ $V_{P,(n)}^{(n-|\lambda|,\lambda)}$ -(*n*−|*λ*|,*λ*) $P_k(n)$

Our see-saw pair

$\mathbf{Res}_{S_k}^{P_k(n)}V_{P_k(n)}^{\mu} \cong \bigoplus_{\lambda} (S^{\lambda})^{\bigoplus r_{\lambda,\mu}}$ $\mathsf{Res}^{GL_n}_{S_n}\mathbb{V}^\lambda\simeq\bigoplus(S^\mu)^{\oplus r_{\lambda,\mu}}$ μ

Idea: To solve the restriction problem, solve the restriction of $P_k(n)$ to S_k

An approach for restriction

 \mathbf{U}_k the uniform block permutation algebra.

$$
S_k \leftarrow \longrightarrow
$$

Why U_k ? It is smaller and has a rich structure. $\frac{0}{\dim(P_k(n))} \frac{1}{1} \frac{2}{2} \frac{3}{15} \frac{3}{877}$ $dim(U_k)$ 1 1 3 16

Goal: Give a combinatorial construction of representations of \bigcup_{k} using tableaux.

Uniform Block permutations

Elements: Uniform set partitions $1 \leq i \leq \ell$. **Example:** $\{ \{1,3,\overline{1},\overline{2}\}, \{2,\overline{4}\}, \{4,6,\overline{3},\overline{6}\}, \{5,\overline{7}\}, \{7,8,9,\overline{5},\overline{8},\overline{9}\} \}$ **Product:** $dd' =$

Note: U_k is a monoid algebra.

Tanabe and Kosuda: Centralizer algebra for complex reflection groups. "Party Algebra"

A set partition $d = \{d_1, d_2, ..., d_\ell\}$ of $[k] \cup [k]$ is uniform if $|d_i \cap [k]| = |d_i \cap [k]|$ for all $\bigcup_{k} := \{d \vdash [k] \cup [k] \text{ is uniform}\}$

No parameter!

Idempotents and f -classes

Idempotents: For each $\pi \vdash [k]$, we define an idempotent

 $e_{\pi} = \{ A \cup A : A \in \pi \}$

Example: $e_{\{\{2\},\{7\},\{1,4\},\{3,6\},\{5,8,9\}\}} = \sqrt{\frac{1}{2} \sqrt{\frac{1}{2}$

The set $E(U_k) = \{e_{\pi} : \pi \vdash [k]\}$ is a complete set of idempotents.

Example:

\n
$$
J_{(3)} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad J_{(1,1,1)} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{b
$$

Note: U_k is the union of \mathscr{J} – classes.

Uniform block permutations

 U_k is semisimple and its irreducible representations are indexed by

 $I_k = \left\{ \left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(k)} \right) : \lambda^{(i)} \text{ are partitions such that } \sum_{i=1}^k i|\lambda^{(i)}| = k \right\}$

Example: $I_3 = \{((3), \emptyset, \emptyset), ((2, 1), \emptyset, \emptyset), ((1, 1, 1), \emptyset, \emptyset), ((1), (1), \emptyset), (\emptyset, \emptyset, (1))\}$

A uniform tableau $T=\left(T^{(1)},...,T^{(k)}\right)$ of shape $\vec{\lambda}\in I_k$ is a tableau where each $T^{(i)}$ is filled with blocks of size i and the blocks in T form a set partition of $[k]$.

The irreducible representations of U_k :

 $V_{\bigcup_{k}}^{\vec{\lambda}}:=$ span $\left\{ T$ is a uniform tableau of shape $\vec{\lambda}\right\}$ **Example:** $V_{U_3}^{((1),(1),\cdot)}$ = span $\left\{ (\boxed{1}, \boxed{23} \right\}$

$$
\Big), \Big(\boxed{2}, \boxed{13}\Big)\, , \Big(\boxed{3}, \boxed{12}\Big)\Big\}
$$

Characters for UBP

Explicit formulas for the characters!

 $\chi_{U_k}^{\lambda}(d_{\vec{\mu}}) = \sum b_{\vec{\mu}}^{\vec{\nu}} \chi_{G_{\lambda}}^{\vec{\lambda}}(d_{\vec{\nu}})$ $\vec{\nu} \in I_{\vec{\nu}} : |\nu^{(i)}| = a_i$ Let $\mu = (\cdot, (1,1), \cdot, \cdot)$, so that $\lambda = (2,2)$ **Example:**

 $\chi^{\vec{\lambda}}_{\mathcal{U}_4}\left(\begin{array}{cc} \infty & \infty \\ \infty & \infty \end{array}\right)=\chi^{\vec{\lambda}}_{G_{\lambda}}\left(\begin{array}{cc} \infty & \infty \\ \infty & \infty \end{array}\right)+2\chi^{\vec{\lambda}}_{G_{\lambda}}\left(\begin{array}{cc} \infty & \infty \\ \infty & \infty \end{array}\right)=-1$

Note: Coefficients are always integers. We found and explicit formula for $b^{\nu}_{\vec{\mu}}$.

Theorem: [OSSZ] For $\vec{\lambda}$, $\vec{\mu} \in I_k$, $a_i = |\lambda^{(i)}|$, $\lambda = (1^{a_1}2^{a_2}...k^{a_k})$ and $G_{\lambda} \cong S_{a_1} \times \cdots \times S_{a_k}$

Connection to plethysm

Our problem: We want to compute:

Defined a Frobenius map and connected to symmetric functions.

Theorem: Multiplicity of \mathbb{S}^{μ} in $\text{Res}_{S_{\mu}}^{U_k}V^{\vec{\lambda}}_{U_k}$ is $\langle s_{\lambda^{(1)}}[s_1]s_{\lambda^{(2)}}[s_2]\cdots s_{\lambda^{(k)}}[s_k], s_{\mu}\rangle=a_{\vec{\lambda},\mu}$ $\text{Res}_{S_k}^{\bigcup_k}V_{U_k}^{\vec{\lambda}}\cong\bigoplus$

If $\vec{\lambda} = (\cdot , \ldots , \cdot , \lambda , \cdots)$ where λ is in m^{th} position: $\langle S_{\lambda}[S_m],$

Question: How do we do the restriction/induction so that we get new information?

 $\mu \vdash k$

 S_k

$$
(\mathbb{S})^{\bigoplus a_{\vec{\lambda},\mu}}
$$

$$
s_{\mu} > \frac{a_{\lambda, m}}{a_{\lambda, m}}
$$

Submonoids of UBP

We are interested in the submonoids of \bigcup_{k} that contain S_k and how they are related.

Proposition: Every submonoid of \bigcup_{k} **containing** S_k **is the union of** \mathscr{J} **− classes.**

 M onoids : $S_3 = J_{(1,1,1)} \subset (S_3 \cup J_{(3)}) \subset (S_3 \cup J_{(3)} \cup J_{(2,1)}) = \bigcup_k$

\mathbf{r} \blacksquare Theorem: The set $\{M$ monoid such that $S_k \subseteq M \subseteq \bigcup_k \}$ with order \subseteq is a distributive lattice. $(2,1)$ (3) **Number of submonoids:** ∅ 11 12 13 14 1546891 29789119 2525655957 62658

A new order on partitions

Definition: $\lambda, \mu \vdash k$, then $\mu \leq \lambda$ if there are set partitions $\pi_0, \pi_1, ..., \pi_{\ell} \vdash [k]$ of type λ with join $\pi_{\alpha} \vee ... \vee \pi_{\ell}$ of type μ .

Theorem: Every monoid $M \subseteq U_k$ **containing** S_k **is of the form:** $M = S_k \cup \int J_\mu$ where *I* is an order ideal of $(Par_k \setminus \{(1^k)\}, \leq \mu)$ $\mu \in I$

Theorem: $\lambda, \mu \in \text{Part}_k \setminus \{ (1^k) \}$. Then iff μ is coarser than λ and $SP_{>1}(\mu) \ge SP_{>1}(\lambda)$. $\mu \leq \lambda$

Final Remarks

New combinatorics:

Final Remarks

Faulstich, Sturmfels, and Sverrisdottir - connections of UBP to algebraic varieties.

- Christian Stump (Chair) Ruhr-Universität Bochum
- Mike Zabrocki (Executive Committee Liason) York University
- Nathan Williams (NSF Funding Coordinator) University of Texas at Dallas
- Christian Gaetz (Proceedings Editor) Cornell University
- · Annika Schulte (Staff) Ruhr-Universität Bochum
- Ashleigh Adams North Dakota State University
- Galen Dorpalen-Barry University of Oregon
- Thomas Gerber Ruhr-Universität Bochum
- Elena Hoster Ruhr-Universität Bochum
- Deniz Kuş Ruhr-Universität Bochum
- Christoph Thäle Ruhr-Universität Bochum

- Marni Mishna (Cochair) Simon Fraser University
- Brendon Rhoades (Cochair) University of California San Diego
- Raman Sanyal (Cochair) Freie Universität Berlin
- Takuro Abe Rikkyo University
- Marcelo Aguiar Cornell University
- Spencer Backman University of Vermont
- · Federico Castillo Pontifica Universidad Católica de Chile
- Shaoshi Chen Chinese Academy of Sciences
- · Julien Courtiel Université de Caen Normandie
- · Michael Cuntz Leibniz Universität Hannover
- Emanuele Delucchi SUSPI
- Anton Dochtermann Texas State University
- Andrew Elvey Price University of Tours/CNRS
- · Alessandro Iraci Università di Pisa
- Katharina Jochemko Royal Institute of Technology (KTH)
- Lukas Kühne Universität Bielefeld
- · Jean-Philippe Labbé Université du Québec
- Seung Jin Lee Seoul National University
- Georg Loho University of Twente
- Maria Monks Gillespie Colorado State University
- Leonid Petrov University of Virginia
- Mercedes Rosas Universidad de Sevilla
- · Jose Samper Pontifica Universidad Católica de Chile
- Benjamin Schröter Royal Institute of Technology (KTH)
- Melissa Sherman-Bennett Massachusetts Institute of Technology
- · Lorenzo Venturello Università di Pisa
- Michael Wallner Technische Universität Wien
- Ole Warnaar The University of Queensland
- Andy Wilson Kennesaw State University
- Meesue Yoo Chungbuk National University

Special Semester @ ICERM

Categorification and Computation in Algebraic Combinatorics

 \mathbf{i}

Organizing Committee

- Chris Bowman **University of York**
- Nicolas Libedinsky Universidad de Chile
- Anne Schilling **UC Davis**
- Lauren Williams **Harvard University**
- Nicolle Gonzalez **UC Berkeley**
- Rosa Orellana **Dartmouth College**
- Jamie Vicary **University of Cambridge**

Sep 3 - Dec 5, 2025 Semester Program

- Kyu-Hwan Lee **University of Connecticut**
- Greta Panova University of Pennsylvania and University of Southern California
- Adam Wagner Worcester Polytechnic Institute