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The symmetric group
✦ The symmetric group .𝖲n

✦   A representation is a homomorphism:   .ρ : 𝖲n → GLd

✦  The module,  is spanned by standard tableaux of  shape .  𝕊 λ λ
✦ The irreducible representations  are indexed by partitions of   𝕊λ n .

Example: 𝕊(2,2) 2
1 1 23

34 4

✦  The character of  a representation:  , for .trace(ρ(σ)) σ ∈ 𝖲n

χ(1,1,1)

χ(2,1)

χ(3) 1 1 1

1 1−1
−12 0

(1)(2)(3) (1,2)(3) (1,2,3)

✦ Restriction of  representations: Res𝖲k+m
𝖲k×𝖲m

𝕊ν = ⨁
λ⊢k,μ⊢m

(𝕊λ ⊗ 𝕊μ)cν
λ,μ

Example: k = 6, m = 5. The representation  occurs 3 times in the 𝕊(3,2,1) ⊗ 𝕊(3,2)

restriction of   from  to 𝕊(5,3,2,1) 𝖲11 𝖲6 × 𝖲5 .
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The General Linear Group
✦   The general linear group  is the group of  invertible  matrices. GLn = GLn(ℂ) n × n

✦   A representation is a homomorphism:   . 

✦   For any  is an  matrix.   

ρ : GLn → GLm
g ∈ GLn, ρ(g) m × m

✦   Irreducible polynomial representation are indexed by partitions  with at most  parts: λ n 𝕍 λ

[a b
c d] ↦

a2 2ab b2

ac ad + bc bd
c2 2cd d2

Example: 𝕍(2)

✦  The module,  is spanned by semistandard tableaux of  shape  with entries in .  𝕍 λ λ {1,…, n}

T =

Example:  in   has basis 𝕍 (2) GL2

1 1 1 12 2 2 23 3 3 3 in   has basis 𝕍 (2) GL3

1 21 1 2 2



The General Linear Group
✦  The character of  a representation:  , for .trace(ρ(g)) g ∈ GLn

✦  The characters of  the polynomial irreducible representations of   are evaluations of   
Schur functions (Schur polynomials). 

GLn

sλ(x) = ∑
T ∈ SSYT(λ)

xT

Example: T =λ = (6,4,3,1) xT = x1x3
3x2

4 x2
5 x6x2

7 x2
8 x9

If   has eigenvalues  and , then  trace   g = [a b
c d] θ1 θ2 (ρ(2)(g)) = s(2)(θ1, θ2) = θ2

1 + θ1θ2 + θ2
2 .

Schur Functions: 

Example: The character of  the  representation  is  GL2 𝕍(2) s(2)(x1, x2) = x2
1 + x1x2 + x2

2

✦  Computing characters of  elements:

SSYT “semistandard Young tableaux”



Characters and symmetric functions
Polynomial 

Representation of GLn

Symmetric  
Functions

“formal (universal) character”

 are the Littlewood-Richarson coeffs.  

Same as for restriction of   -representations.

cν
λ,μ

𝖲n

sλsμ = ∑
ν

cν
λ,μsν

𝕍λ ⊗ 𝕍μ ≅ ⨁
ν

(𝕍ν)cν
λ,μ

Representation Character

𝕍λ sλ(x1, …, xn)

Symλ1V ⊗ ⋯ ⊗ SymλℓV hλ(x1, …, xn)

∧λ1 V ⊗ ⋯ ⊗ ∧λℓV eλ(x1, …, xn)



Plethysm - composing characters

τ ∘ ρ : GLn → GLr

 representation:    

 representation:     

Then the composition is a representation of  

GLn ρ : GLn → GLm
GLm τ : GLm → GLr

GLn .

We call the character of  the composition: plethysm.

If   are symmetric functions, then the plethysm is denoted by  f and g f[g] .

Example: s(2)(x1, x2) = x2
1 + x1x2 + x2

2 s(2)(x1, x2, x3) = x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3

s(2)[s(2)(x1, x2)] = s2(x2
1 , x1x2, x2

2)
x4

1 + x3
1x2 x2

1 x2
2+ x2

1 x2
2 x1x3

2 x4
2+ + +=

= s4(x1, x2) + s2,2(x1, x2)



Plethysm Problem

Remark: A solution for  would help prove Foulkes’ Conjecture:  For sm[sn] n > m

sn[sm] − sm[sn]
Subproblem: We are interested in the plethysm .sλ[sm]

Very few special cases are known:
Carre and Leclerc:   s2[sμ] and s1,1[sμ]
COSSZ:   when . sλ[sm] λ ⊢ 3
Howe:  complicated expressions for the coefficients.s4[sm]

Problem: Find a combinatorial interpretation for the coefficients  in the 
expansion 

aν
λ,μ ∈ ℤ≥0

sλ[sμ] = ∑
ν

aν
λ,μsν                                 

     

Littlewood (see Macdonal page 138): .sn[s2], sn[s1,1], sn
1[s2] and s1n[s1,1]

Bowman, Paget, Wildon - stable coefficients in . s[n](s[m])

is  Schur-positive.



Restriction to the symmetric group
✦ The symmetric group as the group of  permutation matrices is a subgroup of .GLn

The Restriction Problem: Given an irreducible representation of  , decompose 
it as a representation of . 

GLn
Sn

ResGLn
𝖲n

𝕍λ ≅ ⨁
μ

(𝕊μ)rλ,μ
                                 

     

𝖲n

GLn

ResGL4
𝖲4

𝕍 (2) ≅ (𝕊(4))⊕2 ⊕ (𝕊 (3,1))⊕2 ⊕ 𝕊 (2,2)Example: 

Littlewood, Buttler and King, Narayanan, Paul, Prasad and Srivastava ‘22

𝖲n ⊂ GLn



Restricting Characters
✦  Every character of   is a character of  .GLn 𝖲n

< 6,2,0 > = 2 < 1,1,1 > + 2 < 2,0, − 1 >χ(1,1,1)

χ(2,1)

χ(3) 1 1 1

1 1−1
−12 0

(1)(2)(3) (1,2)(3) (1,2,3)

s(2)(x1, x2, x3) = x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3

Example: Restrict the representation  of   to .𝕍(2) GL3 S3

= 2 χ(3) + 2 χ(2,1)

The decomposition for  as an  character is s(2)(x1, x2, x3) S3

Permutation 
matrix for each 
conjugacy class:

Eigenvalues 1,1,1 1, − 1,1 1,ξ, ξ2

s2(1,1,1) = 6 s2(1, − 1,1) = 2 s2(1,ξ, ξ2) = 0



Restricting Characters - Symmetric Functions
✦  Zabrocki and I introduced a new basis of  symmetric functions :   such 
that if   are the eigenvalues of  permutation matrices, we have

{s̃λ : λ a partition }
Ξμ

s̃α(Ξμ) = χ(n−|α|,α)(μ)

χ(1,1,1)

χ(2,1)

χ(3) 1 1 1

1 1−1
−12 0

(1)(2)(3) (1,2)(3) (1,2,3)

✦ Using this basis, the restriction problem is reformulated as: sλ = ∑
μ

rλ,μs̃μ

restriction 
coefficient

Example: s̃()(x1, x2, x3) = 1 s̃1(x1, x2, x3) = x1 + x2 + x2 − 1
s̃1,1(x1, x2, x3) = x1x2 + x1x3 + x2x3 − x1 − x2 − x3 + 1

Eigenvalues: 1,1,1 1, − 1,1 1,ξ, ξ2

s̃1(1,1,1) = 2 s̃1(1, − 1,1) = 0 s̃1(1,ξ, ξ2) = − 1



Theorem:  [O - Zabrocki]

                                 

     

✦  Recall:   is the character of  .hμ Symμ1V ⊗ ⋯ ⊗ SymμℓV

Restricting Characters - Symmetric Functions
hμ = ∑

λ

Mλ,μs̃λ

where  is the number of  semi standard multiset filled tableaux of  shape  

and content .  

Mλ,μ (r, λ)/λ1
μ

Example: If   the entries are multisets of  1,1,2.μ = (2,1)



Plethysm and Restriction

Littlewood ‘1950s and reformulated by Scharf  and Thibon

Theorem: rλ,μ = ⟨sλ, sμ[1 + s1 + s2 + s3 + ⋯]⟩                                 
     

ResGLn
Sn

𝕍λ ≅ ⨁
μ

(𝕊μ)rλ,μ

Subproblem: We are interested in the plethysm .sλ[sm]



See-saw pairs
Let  be groups/algebras such that . All acting on the same vector space .A1, A2, B1, B2 B1 ⊂ A1, B2 ⊂ A2 W

W

A1 A2

B1 B2

If    are centralizer pairs then(A2, B1) and (A1, B2)

ResA1
B1

Vλ
A1

≅ ⨁
μ

(Vμ
B1

)mλ,μ ResA2
B2

Vμ
A2

≅ ⨁
λ

(Vλ
B2

)mλ,μand

A2 ≅ EndB1(W)

B2 ≅ EndA1(W)



Restricting Characters - See-saw approach

Think of   as the subgroup of  permutation matrices acting diagonally on Sn ⊆ GLn V⊗k

σ ⋅ (v1 ⊗ v2 ⊗ ⋯ ⊗ vk) = σv1 ⊗ σv2 ⊗ ⋯ ⊗ σvk

Sn Sk

V⊗k

GLn ?

1990s: Jones and Martin 

By Schur-Weyl duality  
is a centralizer pair 

(GLn, Sk)

what commutes with this action?



Partition Algebra
✦ For any positive integer , let k [k] = {1,…, k} and [k] = {1, …, k}
✦ The partition algebra,  hasPk(n)

Basis: set partitions of  [k] ∪ [k]
Example:

k = 9 {{1,2,4,2, 5}, {3}, {5,6,7,3, 4, 6, 7}, {8,8}, {1}}

Product:

dd′ =

✦ The partition algebra,  has an identity  and it has 

dimension equal , the Bell number. 

Pk(n) 1 = {{1,1}, …, {k, k}}
B(2k)

✦ Halverson-Ram, Halverson, Jacobson-Halverson, etc. 



 and  form a centralizer pairPk(n) Sn

The irreducible representations are indexed by partitions  such that λ
λ1 + λ2 + ⋯ ≤ k

  -V(n−|λ|,λ)
Pk(n)

Irreducible have bases consisting of  standard tableau where entries are sets .

Jones 1994 -  form a centralizer pair (Pk(n), Sn)

The partition algebra is not always semisimple, but in the cases when it is semisimple, 
we have



Our see-saw pair

Sn

Pk(n)

Sk

V⊗k

GLn

Idea: To solve the restriction problem, solve the restriction of   to Pk(n) Sk

ResPk(n)
𝖲k

Vμ
Pk(n) ≅ ⨁

λ
(𝕊λ)⊕rλ,μ

ResGLn
𝖲n

𝕍λ ≅ ⨁
μ

(𝕊μ)⊕rλ,μ



An approach for restriction

Why   It is smaller and  has a rich structure. 𝖴k?

1 2 15 877 21,147 678,570 27,644,437
0 1 2 3 4 65

1 1 3 16 131 22,4821,496

dim(𝖯k(n))

dim(𝖴k)

 the uniform block permutation algebra. 𝖴k

𝖲k 𝖴k 𝖯k(n)
generalized LR coefficientsspecial cases of plethysm

Goal:  Give a combinatorial construction of  representations of   using tableaux.𝖴k



Uniform Block permutations
Tanabe and Kosuda:  Centralizer algebra for complex reflection groups.  “Party Algebra”

Elements:  Uniform set partitions 

A set partition   of   is uniform if   for all 

.

d = {d1, d2, …, dℓ} [k] ∪ [k] |di ∩ [k] | = |di ∩ [k] |
1 ≤ i ≤ ℓ

𝖴k := {d ⊢ [k] ∪ [k] is uniform}

Example: {{1,3,1, 2}, {2,4}, {4,6,3, 6}, {5,7}, {7,8,9,5, 8, 9}}

Product:

Note:  is a monoid algebra.𝖴k

No parameter! 



Idempotents and -classes𝒥
Idempotents:  For each , we define an idempotentπ ⊢ [k]

eπ = {A ∪ A : A ∈ π}

e{{2},{7},{1,4},{3,6},{5,8,9}} =Example: 

The set  is a complete set of  idempotents. E(𝖴k) = {eπ : π ⊢ [k]}

:   For each   and  of  type  the set :𝒥 − classes λ ⊢ k π ⊢ [k] λ Jλ = {σeπτ : σ, τ ∈ Sn}

This idempotent has 
type λ = (3,2,2,1,1)

Example: 

Note:  is the union of  .𝖴k 𝒥 − classes



Uniform block permutations
 is semisimple and its irreducible representations are indexed by 𝖴k

Example: 

A uniform tableau  of  shape  is a tableau where each  is filled with 

blocks of  size   and the blocks in  form a set partition of  .

T = (T(1), …, T(k)) ⃗λ ∈ Ik T(i)

i T [k]

The irreducible representations of   :𝖴k

V ⃗λ
𝖴k

:= span {T is a uniform tableau of shape  ⃗λ}
Example: V((1),(1),⋅)

U3



Characters for UBP
Explicit formulas for the characters!

Theorem: [OSSZ] For   and  ⃗λ, ⃗μ ∈ Ik, ai = |λ(i) | , λ = (1a12a2…kak) Gλ ≅ Sa1
× ⋯ × Sak

χ ⃗λ
𝖴k

(d ⃗μ) = ∑
⃗ν∈Ik:|ν(i)|=ai

b ⃗ν
⃗μ χ ⃗λ

Gλ
(d ⃗ν)

Example: 

Note: Coefficients are always integers. We found and explicit formula for  .b ⃗ν
⃗μ

Let μ = ( ⋅ , (1,1), ⋅ , ⋅ ),  so that λ = (2,2)

                                



Connection to plethysm

Defined a Frobenius map and connected to symmetric functions.
𝖲k

𝖴kOur problem:  We want to compute: 

Res𝖴k
Sk

V ⃗λ
Uk

≅ ⨁
μ⊢k

(𝕊)⊕a ⃗λ,μ

Theorem:  Multiplicity of  in    is 𝕊μ Res𝖴k
Sk

V ⃗λ
Uk

⟨sλ(1)[s1]sλ(2)[s2]⋯sλ(k)[sk], sμ⟩ = a ⃗λ,μ

Res𝖴k
𝖲k

V ⃗λ
Uk

If  where  is in  position:⃗λ = ( ⋅ , …, ⋅ ,λ, ⋯) λ mth

Question: How do we do the restriction/induction so that we get new information? 

⟨sλ[sm], sμ > = aμ
λ,(m)

                                



Submonoids of UBP
We are interested in the submonoids of  that contain  and how they are related.𝖴k Sk

Proposition: Every submonoid of  containing  is the union of 𝖴k Sk 𝒥 − classes.

Theorem: The set  with order  is a distributive lattice.{M monoid such that Sk ⊆ M ⊆ 𝖴k} ⊆

Example: 

k = 3

Monoids :  S3 = J(1,1,1) ⊂ (S3 ∪ J(3)) ⊂ (S3 ∪ J(3) ∪ J(2,1)) = 𝖴k

(2,1)      

(3)      

∅      Number of submonoids: 

                                                                

                                                                



A new order on partitions

(2,1,1)

(3,1)(2,2)

(4)

Definition:  , then  if there are set partitions 
 of type  with join  of type 

λ, μ ⊢ k μ ⪯ λ
π0, π1, …, πℓ ⊢ [k] λ πo ∨ … ∨ πℓ μ .

Example: 

                          

π0 π1

                          

                          λ = (2,1)

Theorem: Every monoid  containing  is of the form:   M ⊆ 𝖴k Sk

(Park∖{(1k)}, ⪯ )Poset: 

M = Sk ∪ ⋃
μ∈I

Jμ where  is an order ideal of  I (Park∖{(1k)}, ⪯ )

Theorem: . Then λ, μ ∈ Partk∖{(1k)}
μ ⪯ λ iff μ is coarser than λ and SP>1(μ) ≥ SP>1(λ) .

Example: 

                                

      

                           

                                



Final Remarks 
New combinatorics:

(2,1,1,1)

(3,1,1)(2,2,1)

(4,1)(3,2)

(5)



Interesting connections:   Partitions in box , symmetric chain decompositions  
correspond to the plethysm:

w × h
sw[sh(x, y)] = ∑

ν

aν
(w),(h)sν

For  partitions with at most two parts.  ν

Final Remarks 

Faulstich, Sturmfels, and Sverrisdottir - connections of UBP to algebraic varieties.





Special Semester @ ICERM


