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What this talk is about

We are interested a symmetric function in (xi)i≥1, with coeffs inQ(q):

OTq(n, k, l) := ΘekΘel∇en−k−l(x1, x2, ...)|t=0

whereΘf ,∇ are certain operators with parameters q, t.
(Motivation: it is conjecturally the “graded Frobenius characteristic of the
(k, l)-component of the Sn-coinvariants R1,2(n)” as we should see in≃ 20minutes)



What this talk is about

We are interested a symmetric function in (xi)i≥1, with coeffs inQ(q):

Theorem ([Iraci, N., Vanden Wyngaerd ’24]).

OTq(n, k, l) := ΘekΘel∇en−k−l(x1, x2, ...)|t=0

whereΘf ,∇ are certain operators with parameters q, t.

We first prove a combinatorial expansion: let SMIR(n, k, l) be the set of
segmented Smirnov words with k descents and l rises.
We will determine a statistic sminv such that

OTq(n, k, l) =
X

w∈SMIR(n,k,l)

qsminv(w)xw1xw2 · · · xwn .

(Motivation: it is conjecturally the “graded Frobenius characteristic of the
(k, l)-component of the Sn-coinvariants R1,2(n)” as we should see in≃ 20minutes)

We will then explain the connection to the Delta conjectures.



(Segmented) Smirnov words

A Smirnov word of length n is a word w = w1w2 · · ·wn with wi ∈ Z>0

such that wi ̸= wi+1 for all i < n.

i is a descent of w if wi > wi+1, and an ascent if wi < wi+1.

Example :w = 1474273435 has length n = 10.
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(Segmented) Smirnov words

A Smirnov word of length n is a word w = w1w2 · · ·wn with wi ∈ Z>0

such that wi ̸= wi+1 for all i < n.

A segmented Smirnov word w of shape ¸ = (¸1, ... ,¸s) › n has the
form w = w1w2 · · ·ws with wi a Smirnov word of length ¸i.

i is a descent/ascent of w if it is a descent inside a block.
Example :23|1242|2|31 has shape (2, 4, 1, 2)

i is a descent of w if wi > wi+1, and an ascent if wi < wi+1.

Example :w = 1474273435 has length n = 10.

Definition. Let SMIR(n, k, l) be the set of segmented Smirnov words of
length n with k descents and l ascents.
Note: Such words have exactly n− k− l blocks.



The statistic sminv

Definition. For a segmented Smirnov word w, we say that i < j is a
sminversion if wi > wj and one of the following holds:
1. wj is the first letter of its block (“initial”);
2. wj−1 > wi;
3. i ̸= j− 1, wj−1 = wi, and wj−1 is initial;
4. i ̸= j− 1 and wj−2 > wj−1 = wi.
We denote by sminv(w) the number of sminversions of w.
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If w is a segmented permutation, sminversions are 2− 31 pattern
occurrences and inversions with wj initial.



The statistic sminv

Definition. For a segmented Smirnov word w, we say that i < j is a
sminversion if wi > wj and one of the following holds:
1. wj is the first letter of its block (“initial”);
2. wj−1 > wi;
3. i ̸= j− 1, wj−1 = wi, and wj−1 is initial;
4. i ̸= j− 1 and wj−2 > wj−1 = wi.
We denote by sminv(w) the number of sminversions of w.

SMIRq(—, k, l) :=
X

w∈SMIR(—,k,l)

qsminv(w).

Let — = (—1,—2, ... ,—m, 0, 0, ...) with —i ≥ 0.
Define w ∈ SMIR(—, k, l) if w has —i occurrences of i for any i, and

Important special case:
If w is a segmented permutation, sminversions are 2− 31 pattern
occurrences and inversions with wj initial.



Key recurrence

SMIRq(—, k, l) =
—mX
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—mX
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–
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»
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i
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q
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−, k− r, l− a).

If — = (—1, ... ,—m, 0, ... ), define —− = (—1, ... ,—m−1, 0, 0, ... ).

Proposition[Iraci, N., Vanden Wyngaerd ’24] Denote B =
P

i —i − k− l.
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SMIRq(—, k, l) =
—mX
i=0

—mX
r=i

—mX
a=i

q(
r−i
2 )
»
B− (—m − r− a+ i)

r− i

–
q
q(

a−i
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B− (—m − r− a+ i)

a− i
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×
»

B
—m − r− a+ i

–
q

»
B− —m + r+ a− 1

i

–
q
SMIRq(—

−, k− r, l− a).

If — = (—1, ... ,—m, 0, ... ), define —− = (—1, ... ,—m−1, 0, 0, ... ).

Proposition[Iraci, N., Vanden Wyngaerd ’24] Denote B =
P

i —i − k− l.

Note that this is a recurrence with positive integer coefficients, it thus
requires a combinatorial proof that we provide.

We sketch it in the standard case — = (1, 1, ... , 1, 0, ...) = (1n), that is
when we consider segmented permutations.



Proof sketch in the standard case

SMIRq(1
n, k, l) = [n− k− l]q

`
SMIRq(1

n−1, k, l) + SMIRq(1
n−1, k− 1, l)

+SMIRq(1
n−1, k, l− 1) + SMIRq(1

n−1, k− 1, l− 1)
´

The recurrence simplifies greatly:
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Proof. Insert the value n in a segmented permutation of length n− 1.
1. replacing a block separator.
2. at the beginning of a block, or
3. at the end of a block, or
4. as a new singleton block.

The recurrence simplifies greatly:

4 distinct ways



Proof sketch in the standard case

SMIRq(1
n, k, l) = [n− k− l]q

`
SMIRq(1

n−1, k, l) + SMIRq(1
n−1, k− 1, l)

+SMIRq(1
n−1, k, l− 1) + SMIRq(1

n−1, k− 1, l− 1)
´

Proof. Insert the value n in a segmented permutation of length n− 1.
1. replacing a block separator.
2. at the beginning of a block, or
3. at the end of a block, or
4. as a new singleton block.

Remark. This is essentially the “Laguerre history” for permutations, linked to
orhtogonal polynomials and continued fractions.

In each case, there are B ways to do this, where B = n− k− l is the
number of blocks in the resulting segmented permutation.

The recurrence simplifies greatly:

4 distinct ways

Moreover, the statistic sminv can augment by 0, 1, ... , B− 1, leading to
the factor [n− k− l]q.



Recurrence for the symmetric function
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The proof is a specialization at t = 0 of a formula of D’Adderio and
Romero+ some simplifications by elementary q-identities.



Recurrence for the symmetric function

Let OTq(—, k, l) be the coefficient of x— = x—1

1 x—2

2 · · · in OTq(n, k, l).

OTq(—, k, l) =
—mX
i=0

—mX
a=i

—mX
r=i

q(
r−i
2 )
»
B− (—m − r− a+ i)

r− i

–
q
q(

a−i
2 )
»
B− (—m − r− a+ i)

a− i

–
q

×
»

B
—m − r− a+ i

–
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»
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i

–
q
OTq(—

−, k− r, l− a).

Proposition ([Iraci, N., Vanden Wyngaerd ’24]). Denote B =
P

i —i − k− l.

The proof is a specialization at t = 0 of a formula of D’Adderio and
Romero+ some simplifications by elementary q-identities.

OTq(n, k, l) =
X

w∈SMIR(n,k,l)

qsminv(w)xw1xw2 · · · xwn

Finally our main theorem

follows since coefficients on both sides satisfy the same recurrences.
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Finite dimensional Sn-representation V over C.

Combinatorial expansion FV =
X

o∈ObjectsV

xwt(o)

Frobenius characteristic Frob

Symmetric function FV



From Sn-representations to combinatorics

Finite dimensional Sn-representation V over C.

If the Sn representation preserves certain N-gradings
⇒ use graded Frobenius characteristic grFrobq1,q2,... with

indeterminates q1, q2, ... to record these gradings in FV.

Combinatorial expansion FV =
X

o∈ObjectsV

xwt(o)

Frobenius characteristic Frob

Symmetric function FV



Coinvariant spaces

Sn acts on P(n) := C[t1, ... , tn] via ff · f(t1, ... , tn) := f(tff(1), ... , tff(n)).

Sn acts on Λ(n) := Ext(‰1, ... , ‰n) via ff · f(‰1, ... , ‰n) := f(‰ff(1), ... , ‰ff(n)).
(Here we have anticommuting variables ‰i‰j + ‰j‰i = 0.)
Both actions have N-gradings by total degree.
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Sn-invariants in Ta,b(n) with zero constant term generate an ideal T+a,b(n).

Definition. The coinvariant space Ra,b(n) is defined as the quotient Sn
representation

Ra,b(n) = Ta,b(n)=T+a,b(n)

(Here we have anticommuting variables ‰i‰j + ‰j‰i = 0.)
Both actions have N-gradings by total degree.

Let us combine them.



Coinvariant spaces

Sn acts on P(n) := C[t1, ... , tn] via ff · f(t1, ... , tn) := f(tff(1), ... , tff(n)).

Sn acts on Λ(n) := Ext(‰1, ... , ‰n) via ff · f(‰1, ... , ‰n) := f(‰ff(1), ... , ‰ff(n)).

Ta,b(n) = P(n)⊗a ⊗ Λ(n)⊗b with Sn acting diagonally.

Sn-invariants in Ta,b(n) with zero constant term generate an ideal T+a,b(n).

Definition. The coinvariant space Ra,b(n) is defined as the quotient Sn
representation

Ra,b(n) = Ta,b(n)=T+a,b(n)

The action preserves all a+ b gradings⇒ grFrobq1,...,qa;u1,...,ub Ra,b(n).

(Here we have anticommuting variables ‰i‰j + ‰j‰i = 0.)
Both actions have N-gradings by total degree.

Let us combine them.

Let us now see small values of a, b.



Delta and Theta

Conjecture.[Zabrocki ’18] grFrobq,t;z(R2,1(n)) is equal to
P

k z
k∆′

en−k−1
en.

Conjecture.[D’Adderio, Iraci and Vanden Wyngaerd ’21]
grFrobq,t;u,v(R2,2(n)) is equal to

P
k,l u

kvlΘekΘel∇en−k−l.

⇒ Thus OTq(n, k, l) is conjecturally the graded Frobenius of R1,2(n).

where∆′
en−k−1

is a certain operator with parameters q, t.

whereΘej is another operator with parameters q, t.



Delta and Theta

Conjecture.[Zabrocki ’18] grFrobq,t;z(R2,1(n)) is equal to
P

k z
k∆′

en−k−1
en.

Conjecture.[D’Adderio, Iraci and Vanden Wyngaerd ’21]
grFrobq,t;u,v(R2,2(n)) is equal to

P
k,l u

kvlΘekΘel∇en−k−l.

⇒ Thus OTq(n, k, l) is conjecturally the graded Frobenius of R1,2(n).

Combinatorics:The Delta conjectures (Haglund and al ’18) claim that

∆′
en−k−1

en =
X

D∈LD(n)∗k
qdinv(D)tarea(D)xD =

X
D∈LD(n)•k

qdinv(D)tarea(D)xD,

The rise version is now a theorem due to D’Adderio and Mellit ’22.

where∆′
en−k−1

is a certain operator with parameters q, t.

whereΘej is another operator with parameters q, t.

rise version valley version



Labeled Dyck paths

LD(n) is the set of labeled Dyck paths of length n, where labels stricly increase on
consecutive North steps.

A rise is a North step preceded by a North step. A contractible valley is a valley such
that “removing the east step gives a good labeling”.

Let LD(n)∗k,•l be the subset of LD(n) with k decorated rises and l decorated
contractible valleys, and LD(—)∗k,•l those with content —.

The area of a path is the number of cells under the path that are not east of a
decorated valley.



Labeled Dyck paths of area zero

D’Adderio, Iraci and Vanden Wyngaerd conjecture in addition

ΘekΘel∇en−k−l|q=1 =
X

D∈LD(n)∗k,•l
tarea(D)xD

A potential unified Delta conjecture consists in finding a q-statistic on
paths that restricts to the two Delta conjectures when k = 0 or l = 0.



Labeled Dyck paths of area zero

D’Adderio, Iraci and Vanden Wyngaerd conjecture in addition

ΘekΘel∇en−k−l|q=1 =
X

D∈LD(n)∗k,•l
tarea(D)xD

A potential unified Delta conjecture consists in finding a q-statistic on
paths that restricts to the two Delta conjectures when k = 0 or l = 0.

When t = 0, we get back our series OTq(n, k, l) at q = 1. Thus a special
case of the conjecture is the following result:

Theorem. [Iraci, N., Vanden Wyngaerd ’24] The subset LD0(n)∗k,•l of
paths of area zero is in bijection with SMIR(n, k, l).



Recursion for area zero paths.

m m
m m∗ ∗



Unified Delta theorem at t = 0

We can moreover define a statistic sdinv ̸= sminv that coincides with
dinv in the Delta conjectures at t = 0 (via the previous bijection).

Theorem. [Iraci, N., Vanden Wyngaerd ’24]

OTq(n, k, l) =
X

D∈LD0(n)∗k,•l
qsdinv(D)xD.

“Unified Delta theorem at t = 0”
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We can moreover define a statistic sdinv ̸= sminv that coincides with
dinv in the Delta conjectures at t = 0 (via the previous bijection).

Theorem. [Iraci, N., Vanden Wyngaerd ’24]

OTq(n, k, l) =
X

D∈LD0(n)∗k,•l
qsdinv(D)xD.

“Unified Delta theorem at t = 0”
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