Smirnov words and the Delta conjectures

Philippe Nadeau (CNRS \& ICJ, Univ Lyon 1)

Joint with Alessandro Iraci (Pisa) and Anna Vanden Wyngaerd (Brussels)

FPSAC 2024, Bochum (Tief im Westen)

What this talk is about

We are interested a symmetric function in $\left(x_{i}\right)_{i \geq 1}$, with coeffs in $\mathbb{Q}(q)$:

$$
\mathrm{OT}_{q}(n, k, I):=\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\left(x_{1}, x_{2}, \ldots\right)\right|_{t=0}
$$

where Θ_{f}, ∇ are certain operators with parameters q, t.
(Motivation: it is conjecturally the "graded Frobenius characteristic of the (k, I)-component of the \mathbb{S}_{n}-coinvariants $R_{1,2}(n)$ " as we should see in $\simeq 20$ minutes)

What this talk is about

We are interested a symmetric function in $\left(x_{i}\right)_{i \geq 1}$, with coeffs in $\mathbb{Q}(q)$:

$$
\mathrm{OT}_{q}(n, k, I):=\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\left(x_{1}, x_{2}, \ldots\right)\right|_{t=0}
$$

where Θ_{f}, ∇ are certain operators with parameters q, t.
(Motivation: it is conjecturally the "graded Frobenius characteristic of the (k, I)-component of the \mathbb{S}_{n}-coinvariants $R_{1,2}(n)$ " as we should see in $\simeq 20$ minutes)

We first prove a combinatorial expansion: let $\operatorname{SMIR}(n, k, I)$ be the set of segmented Smirnov words with k descents and I rises.
We will determine a statistic sminv such that
Theorem ([Iraci, N., Vanden Wyngaerd '24]).

$$
\mathrm{OT}_{q}(n, k, I)=\sum_{w \in \operatorname{SMIR}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w_{1}} x_{w_{2}} \cdots x_{w_{n}}
$$

We will then explain the connection to the Delta conjectures.

(Segmented) Smirnov words

A Smirnov word of length n is a word $w=w_{1} w_{2} \cdots w_{n}$ with $w_{i} \in \mathbb{Z}_{>0}$ such that $w_{i} \neq w_{i+1}$ for all $i<n$.

Example $: w=1474273435$ has length $n=10$.
i is a descent of w if $w_{i}>w_{i+1}$, and an ascent if $w_{i}<w_{i+1}$.

(Segmented) Smirnov words

A Smirnov word of length n is a word $w=w_{1} w_{2} \cdots w_{n}$ with $w_{i} \in \mathbb{Z}_{>0}$ such that $w_{i} \neq w_{i+1}$ for all $i<n$.

Example : $w=1474273435$ has length $n=10$.
i is a descent of w if $w_{i}>w_{i+1}$, and an ascent if $w_{i}<w_{i+1}$.
A segmented Smirnov word w of shape $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \vDash n$ has the form $w=w^{1} w^{2} \cdots w^{s}$ with w^{i} a Smirnov word of length α_{i}.

Example :23|1242|2|31 has shape $(2,4,1,2)$
i is a descent/ascent of w if it is a descent inside a block.

(Segmented) Smirnov words

A Smirnov word of length n is a word $w=w_{1} w_{2} \cdots w_{n}$ with $w_{i} \in \mathbb{Z}_{>0}$ such that $w_{i} \neq w_{i+1}$ for all $i<n$.

Example : $w=1474273435$ has length $n=10$.
i is a descent of w if $w_{i}>w_{i+1}$, and an ascent if $w_{i}<w_{i+1}$.
A segmented Smirnov word w of shape $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \vDash n$ has the form $w=w^{1} w^{2} \cdots w^{s}$ with w^{i} a Smirnov word of length α_{i}.

Example :23|1242|2|31 has shape (2, 4, 1, 2)

i is a descent/ascent of w if it is a descent inside a block.
Definition. Let $\operatorname{SMIR}(n, k, I)$ be the set of segmented Smirnov words of length n with k descents and l ascents.
Note: Such words have exactly $n-k-I$ blocks.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that $i<j$ is a sminversion if $w_{i}>w_{j}$ and one of the following holds:

1. w_{j} is the first letter of its block ("initial");
2. $w_{j-1}>w_{i}$;
3. $i \neq j-1, w_{j-1}=w_{i}$, and w_{j-1} is initial;
4. $i \neq j-1$ and $w_{j-2}>w_{j-1}=w_{i}$.

We denote by $\operatorname{sminv}(w)$ the number of sminversions of w.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that $i<j$ is a sminversion if $w_{i}>w_{j}$ and one of the following holds:

1. w_{j} is the first letter of its block ("initial");
2. $w_{j-1}>w_{i}$;
3. $i \neq j-1, w_{j-1}=w_{i}$, and w_{j-1} is initial;
4. $i \neq j-1$ and $w_{j-2}>w_{j-1}=w_{i}$.

We denote by $\operatorname{sminv}(w)$ the number of sminversions of w.
Important special case:
If w is a segmented permutation, sminversions are $2-31$ pattern occurrences and inversions with w_{j} initial.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that $i<j$ is a sminversion if $w_{i}>w_{j}$ and one of the following holds:

1. w_{j} is the first letter of its block ("initial");
2. $w_{j-1}>w_{i}$;
3. $i \neq j-1, w_{j-1}=w_{i}$, and w_{j-1} is initial;
4. $i \neq j-1$ and $w_{j-2}>w_{j-1}=w_{i}$.

We denote by $\operatorname{sminv}(w)$ the number of sminversions of w.
Important special case:
If w is a segmented permutation, sminversions are $2-31$ pattern occurrences and inversions with w_{j} initial.
Let $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}, 0,0, \ldots\right)$ with $\mu_{i} \geq 0$.
Define $w \in \operatorname{SMIR}(\mu, k, I)$ if w has μ_{i} occurrences of i for any i, and

$$
\operatorname{SMIR}_{q}(\mu, k, I):=\sum_{w \in \operatorname{SMIR}(\mu, k, I)} q^{\operatorname{sininv}(w)}
$$

Key recurrence

If $\mu=\left(\mu_{1}, \ldots, \mu_{m}, 0, \ldots\right)$, define $\mu^{-}=\left(\mu_{1}, \ldots, \mu_{m-1}, 0,0, \ldots\right)$.

Proposition[Iraci, N., Vanden Wyngaerd '24] Denote $B=\sum_{i} \mu_{i}-k-I$.
$\operatorname{SMIR}_{q}(\mu, k, l)=\sum_{i=0}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} q^{\left(\begin{array}{r}r-i\end{array}\right)}\left[\begin{array}{c}B-\left(\mu_{m}-r-a+i\right) \\ r-i\end{array}\right]_{a} q^{\left(\begin{array}{c}a-i\end{array}\right)}\left[\begin{array}{c}B-\left(\mu_{m}-r-a+i\right) \\ a-i\end{array}\right]_{a}$
$\times\left[\begin{array}{c}B \\ \mu_{m}-r-a+i\end{array}\right]_{q}\left[\begin{array}{c}B-\mu_{m}+r+a-1 \\ i\end{array}\right]_{q} \operatorname{SMIR}_{q}\left(\mu^{-}, k-r, I-a\right)$.

Key recurrence

$$
\text { If } \mu=\left(\mu_{1}, \ldots, \mu_{m}, 0, \ldots\right) \text {, define } \mu^{-}=\left(\mu_{1}, \ldots, \mu_{m-1}, 0,0, \ldots\right)
$$

Proposition[Iraci, N., Vanden Wyngaerd '24] Denote $B=\sum_{i} \mu_{i}-k-I$.

$$
\begin{aligned}
\operatorname{SMIR}_{a}(\mu, k, l)= & \left.\sum_{i=0}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} q^{(r-i}\right)\left[\begin{array}{c}
B-\left(\mu_{m}-r-a+i\right) \\
r-i
\end{array}\right]_{q} q^{(a-i)}\left[\begin{array}{c}
B-\left(\mu_{m}-r-a+i\right) \\
a-i
\end{array}\right]_{a} \\
& \times\left[\begin{array}{c}
B \\
\mu_{m}-r-a+i
\end{array}\right]_{q}\left[\begin{array}{c}
B-\mu_{m}+r+a-1 \\
i
\end{array}\right]_{a} \operatorname{SMIR}_{q}\left(\mu^{-}, k-r, l-a\right) .
\end{aligned}
$$

Note that this is a recurrence with positive integer coefficients, it thus requires a combinatorial proof that we provide.

We sketch it in the standard case $\mu=(1,1, \ldots, 1,0, \ldots)=\left(1^{n}\right)$, that is when we consider segmented permutations.

Proof sketch in the standard case

The recurrence simplifies greatly:

$$
\begin{aligned}
\operatorname{SMIR}_{q}\left(1^{n}, k, I\right)=[n-k-I]_{q} & \left(\operatorname{SMIR}_{q}\left(1^{n-1}, k, I\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I\right)\right. \\
& \left.+\operatorname{SMIR}_{q}\left(1^{n-1}, k, I-1\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I-1\right)\right)
\end{aligned}
$$

Proof sketch in the standard case

The recurrence simplifies greatly:

$$
\begin{aligned}
\operatorname{SMIR}_{q}\left(1^{n}, k, I\right)=[n-k-I]_{q} & \left(\operatorname{SMIR}_{q}\left(1^{n-1}, k, I\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I\right)\right. \\
& \left.+\operatorname{SMIR}_{q}\left(1^{n-1}, k, I-1\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I-1\right)\right)
\end{aligned}
$$

Proof. Insert the value n in a segmented permutation of length $n-1$.

1. replacing a block separator.
2. at the beginning of a block, or
3. at the end of a block, or
4. as a new singleton block.

Proof sketch in the standard case

The recurrence simplifies greatly:

$$
\begin{aligned}
\operatorname{SMIR}_{q}\left(1^{n}, k, I\right)=[n-k-I]_{q} & \left(\operatorname{SMIR}_{q}\left(1^{n-1}, k, I\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I\right)\right. \\
& \left.+\operatorname{SMIR}_{q}\left(1^{n-1}, k, I-1\right)+\operatorname{SMIR}_{q}\left(1^{n-1}, k-1, I-1\right)\right)
\end{aligned}
$$

Proof. Insert the value n in a segmented permutation of length $n-1$.

1. replacing a block separator.
2. at the beginning of a block, or
3. at the end of a block, or
4. as a new singleton block.

In each case, there are B ways to do this, where $B=n-k-l$ is the number of blocks in the resulting segmented permutation.
Moreover, the statistic sminv can augment by $0,1, \ldots, B-1$, leading to the factor $[n-k-I]_{q}$.

Remark. This is essentially the "Laguerre history" for permutations, linked to orhtogonal polynomials and continued fractions.

Recurrence for the symmetric function

Let $\mathrm{OT}_{q}(\mu, k, I)$ be the coefficient of $x^{\mu}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots$ in $\mathrm{OT}_{q}(n, k, I)$.
Proposition ([Iraci, N., Vanden Wyngaerd '24]). Denote $B=\sum_{i} \mu_{i}-k-I$.

$$
\begin{aligned}
\mathrm{OT}_{q}(\mu, k, I)= & \sum_{i=0}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} q^{\binom{-i}{2}}\left[\begin{array}{c}
B-\left(\mu_{m}-r-a+i\right) \\
r-i
\end{array}\right]_{a} q^{\binom{a-i}{2}}\left[\begin{array}{c}
B-\left(\mu_{m}-r-a+i\right) \\
a-i
\end{array}\right]_{a} \\
& \times\left[\begin{array}{c}
B \\
\mu_{m}-r-a+i
\end{array}\right]_{q}\left[\begin{array}{c}
B-\left(\mu_{m}-r-a\right)-1 \\
i
\end{array}\right]_{q} \mathrm{OT}_{q}\left(\mu^{-}, k-r, I-a\right) .
\end{aligned}
$$

The proof is a specialization at $t=0$ of a formula of D'Adderio and Romero + some simplifications by elementary q-identities.

Recurrence for the symmetric function

Let $\mathrm{OT}_{q}(\mu, k, I)$ be the coefficient of $x^{\mu}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots$ in $\mathrm{OT}_{q}(n, k, I)$.
Proposition ([Iraci, N., Vanden Wyngaerd '24]). Denote $B=\sum_{i} \mu_{i}-k-I$.

$$
\begin{aligned}
\mathrm{OT}_{a}(\mu, k, I)= & \sum_{i=0}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} q^{\binom{-1}{2}}\left[\begin{array}{c}
\left.B-\left(\begin{array}{c}
\left.\mu_{m}-r-a+i\right) \\
r-i
\end{array}\right]_{q} a^{(a-i} \begin{array}{c}
2
\end{array}\right)\left[\begin{array}{c}
B-\left(\mu_{m}-r-a+i\right) \\
a-i
\end{array}\right]_{a} \\
\end{array}\right)\left[\begin{array}{c}
B \\
\mu_{m}-r-a+i
\end{array}\right]_{q}\left[\begin{array}{c}
B-\left(\mu_{m}-r-a\right)-1 \\
i
\end{array}\right]_{q} \mathrm{OT}_{a}\left(\mu^{-}, k-r, I-a\right) .
\end{aligned}
$$

The proof is a specialization at $t=0$ of a formula of D'Adderio and Romero + some simplifications by elementary q-identities.

Finally our main theorem

$$
\mathrm{OT}_{q}(n, k, I)=\sum_{w \in \operatorname{SMIR}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w_{1}} x_{w_{2}} \cdots x_{w_{n}}
$$

follows since coefficients on both sides satisfy the same recurrences.

From \mathbb{S}_{n}-representations to combinatorics

Finite dimensional \mathbb{S}_{n}-representation V over \mathbb{C}.

Frobenius characteristic Frob

Symmetric function F_{V}

Combinatorial expansion $F_{V}=\sum_{o \in \text { ObjectsV }} x^{\text {wt }(o)}$

From \mathbb{S}_{n}-representations to combinatorics

Finite dimensional \mathbb{S}_{n}-representation V over \mathbb{C}.

Frobenius characteristic Frob

Symmetric function F_{V}

Combinatorial expansion $F_{V}=\sum_{o \in \text { ObjectsV }} x^{\text {wt }(o)}$
If the \mathbb{S}_{n} representation preserves certain \mathbb{N}-gradings
\Rightarrow use graded Frobenius characteristic grFrob ${ }_{q_{1}, q_{2}, \ldots}$ with indeterminates q_{1}, q_{2}, \ldots to record these gradings in F_{v}.

Coinvariant spaces

\mathbb{S}_{n} acts on $P(n):=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ via $\sigma \cdot f\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)$.
\mathbb{S}_{n} acts on $\wedge(n):=\operatorname{Ext}\left(\xi_{1}, \ldots, \xi_{n}\right)$ via $\sigma \cdot f\left(\xi_{1}, \ldots, \xi_{n}\right):=f\left(\xi_{\sigma(1)}, \ldots, \xi_{\sigma(n)}\right)$.
(Here we have anticommuting variables $\xi_{i} \xi_{j}+\xi_{j} \xi_{i}=0$.)
Both actions have \mathbb{N}-gradings by total degree.

Coinvariant spaces

\mathbb{S}_{n} acts on $P(n):=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ via $\sigma \cdot f\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)$.
\mathbb{S}_{n} acts on $\wedge(n):=\operatorname{Ext}\left(\xi_{1}, \ldots, \xi_{n}\right)$ via $\sigma \cdot f\left(\xi_{1}, \ldots, \xi_{n}\right):=f\left(\xi_{\sigma(1)}, \ldots, \xi_{\sigma(n)}\right)$.
(Here we have anticommuting variables $\xi_{i} \xi_{j}+\xi_{j} \xi_{i}=0$.)
Both actions have \mathbb{N}-gradings by total degree.

Let us combine them.

$T_{a, b}(n)=P(n)^{\otimes a} \otimes \Lambda(n)^{\otimes b}$ with \mathbb{S}_{n} acting diagonally.
\mathbb{S}_{n}-invariants in $T_{a, b}(n)$ with zero constant term generate an ideal $T_{a, b}^{+}(n)$.
Definition. The coinvariant space $R_{a, b}(n)$ is defined as the quotient \mathbb{S}_{n} representation

$$
R_{a, b}(n)=T_{a, b}(n) / T_{a, b}^{+}(n)
$$

Coinvariant spaces

\mathbb{S}_{n} acts on $P(n):=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ via $\sigma \cdot f\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)$.
\mathbb{S}_{n} acts on $\wedge(n):=\operatorname{Ext}\left(\xi_{1}, \ldots, \xi_{n}\right)$ via $\sigma \cdot f\left(\xi_{1}, \ldots, \xi_{n}\right):=f\left(\xi_{\sigma(1)}, \ldots, \xi_{\sigma(n)}\right)$.
(Here we have anticommuting variables $\xi_{i} \xi_{j}+\xi_{j} \xi_{i}=0$.)
Both actions have \mathbb{N}-gradings by total degree.

Let us combine them.

$T_{a, b}(n)=P(n)^{\otimes a} \otimes \Lambda(n)^{\otimes b}$ with \mathbb{S}_{n} acting diagonally.
\mathbb{S}_{n}-invariants in $T_{a, b}(n)$ with zero constant term generate an ideal $T_{a, b}^{+}(n)$.
Definition. The coinvariant space $R_{a, b}(n)$ is defined as the quotient \mathbb{S}_{n} representation

$$
R_{a, b}(n)=T_{a, b}(n) / T_{a, b}^{+}(n)
$$

The action preserves all $a+b$ gradings $\Rightarrow \operatorname{grFrob}_{a_{1}, \ldots, q_{a} ; u_{1}, \ldots, u_{b}} R_{a, b}(n)$. Let us now see small values of a, b.

Delta and Theta

Conjecture.[Zabrocki '18] $\mathrm{grFrob}_{q, t ; \mathrm{z}}\left(R_{2,1}(n)\right)$ is equal to $\sum_{k} z^{k} \Delta_{e_{n-k-1}}^{\prime} e_{n}$. where $\Delta_{e_{n-k-1}}^{\prime}$ is a certain operator with parameters q, t.
Conjecture.[D'Adderio, Iraci and Vanden Wyngaerd '21] $\operatorname{grFrob}_{q, t ; u, v}\left(R_{2,2}(n)\right)$ is equal to $\sum_{k, l} u^{k} v^{\prime} \Theta_{e_{k}} \Theta_{e_{1}} \nabla e_{n-k-1}$.
where $\Theta_{e_{j}}$ is another operator with parameters q, t.
\Rightarrow Thus $O T_{q}(n, k, I)$ is conjecturally the graded Frobenius of $R_{1,2}(n)$.

Delta and Theta

Conjecture.[Zabrocki '18] $\mathrm{grFrob}_{q, t ; \mathrm{z}}\left(R_{2,1}(n)\right)$ is equal to $\sum_{k} z^{k} \Delta_{e_{n-k-1}}^{\prime} e_{n}$. where $\Delta_{e_{n-k-1}}^{\prime}$ is a certain operator with parameters q, t.
Conjecture.[D'Adderio, Iraci and Vanden Wyngaerd '21]

$$
\operatorname{grFrob}_{q, t ; u, v}\left(R_{2,2}(n)\right) \text { is equal to } \sum_{k, l} u^{k} v^{\prime} \Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l .}
$$

where $\Theta_{e_{j}}$ is another operator with parameters q, t.
\Rightarrow Thus $O T_{q}(n, k, l)$ is conjecturally the graded Frobenius of $R_{1,2}(n)$.
Combinatorics:The Delta conjectures (Haglund and al '18) claim that

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}=\sum_{D \in \operatorname{LD}(n)^{\bullet k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D},
$$

The rise version is now a theorem due to D'Adderio and Mellit '22.

Labeled Dyck paths

$L D(n)$ is the set of labeled Dyck paths of length n, where labels stricly increase on consecutive North steps.
A rise is a North step preceded by a North step. A contractible valley is a valley such that "removing the east step gives a good labeling".
Let $\operatorname{LD}(n)^{* k, 01}$ be the subset of $\operatorname{LD}(n)$ with k decorated rises and I decorated contractible valleys, and $\operatorname{LD}(\mu)^{* k, 0}$ those with content μ.
The area of a path is the number of cells under the path that are not east of a decorated valley.

Labeled Dyck paths of area zero

D'Adderio, Iraci and Vanden Wyngaerd conjecture in addition

$$
\left.\Theta_{e_{k}} \Theta_{e,} \nabla e_{n-k-1}\right|_{q=1}=\sum_{D \in \operatorname{LD}(n)^{* k, 01}} t^{\operatorname{area}(D)} x^{D}
$$

A potential unified Delta conjecture consists in finding a q-statistic on paths that restricts to the two Delta conjectures when $k=0$ or $I=0$.

Labeled Dyck paths of area zero

D'Adderio, Iraci and Vanden Wyngaerd conjecture in addition

$$
\left.\Theta_{e_{k}} \Theta_{e,} \nabla e_{n-k-1}\right|_{q=1}=\sum_{D \in \operatorname{LD}(n)^{* k, 01}} t^{\operatorname{area}(D)} x^{D}
$$

A potential unified Delta conjecture consists in finding a q-statistic on paths that restricts to the two Delta conjectures when $k=0$ or $l=0$.
When $t=0$, we get back our series $\mathrm{OT}_{q}(n, k, I)$ at $q=1$. Thus a special case of the conjecture is the following result:

Theorem. [Iraci, N., Vanden Wyngaerd '24] The subset LD ${ }_{0}(n)^{* k, \bullet l}$ of paths of area zero is in bijection with $\operatorname{SMIR}(n, k, I)$.

Recursion for area zero paths.

Unified Delta theorem at $t=0$

We can moreover define a statistic sdinv \neq sminv that coincides with dinv in the Delta conjectures at $t=0$ (via the previous bijection).

Theorem. [Iraci, N., Vanden Wyngaerd '24]

$$
\mathrm{OT}_{q}(n, k, I)=\sum_{D \in \mathrm{LD}_{0}(n)^{*} *, 0 l} q^{\operatorname{sdinv}(D)} x^{D} .
$$

"Unified Delta theorem at $t=0$ "

Unified Delta theorem at $t=0$

We can moreover define a statistic sdinv \neq sminv that coincides with dinv in the Delta conjectures at $t=0$ (via the previous bijection).

Theorem. [Iraci, N., Vanden Wyngaerd '24]

$$
\mathrm{OT}_{q}(n, k, I)=\sum_{D \in \mathrm{LD}_{0}(n)^{*} *, 0 / 1} q^{\operatorname{sdinv}(D)} x^{D}
$$

"Unified Delta theorem at $t=0$ "

DANKE FÜR IHRE

 AUFMERKSAMKEIT