Smirnov words and the Delta conjectures

Philippe Nadeau (CNRS & ICJ, Univ Lyon 1)

Joint with Alessandro Iraci (Pisa) and Anna Vanden Wyngaerd (Brussels)

FPSAC 2024, Bochum (Tief im Westen)

What this talk is about

We are interested a symmetric function in $(x_i)_{i\geq 1}$, with coeffs in $\mathbb{Q}(q)$:

$$\mathsf{OT}_{q}(n,k,l) := \Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}(x_{1},x_{2},...)|_{t=0}$$

where Θ_f , ∇ are certain operators with parameters q, t.

(Motivation: it is conjecturally the "graded Frobenius characteristic of the (k, l)-component of the \mathbb{S}_n -coinvariants $R_{1,2}(n)$ " as we should see in $\simeq 20$ minutes)

What this talk is about

We are interested a symmetric function in $(x_i)_{i\geq 1}$, with coeffs in $\mathbb{Q}(q)$:

$$\mathsf{OT}_{q}(n,k,l) := \Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}(x_{1},x_{2},...)|_{t=0}$$

where Θ_f , ∇ are certain operators with parameters q, t.

(Motivation: it is conjecturally the "graded Frobenius characteristic of the (k, l)-component of the \mathbb{S}_n -coinvariants $R_{1,2}(n)$ " as we should see in $\simeq 20$ minutes)

We first prove a combinatorial expansion: let SMIR(*n*, *k*, *l*) be the set of segmented Smirnov words with *k* descents and *l* rises. We will determine a statistic sminv such that

Theorem ([Iraci, N., Vanden Wyngaerd '24]).

$$OT_q(n, k, l) = \sum_{w \in SMIR(n,k,l)} q^{sminv(w)} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

We will then explain the connection to the Delta conjectures.

(Segmented) Smirnov words

A Smirnov word of length *n* is a word $w = w_1 w_2 \cdots w_n$ with $w_i \in \mathbb{Z}_{>0}$ such that $w_i \neq w_{i+1}$ for all i < n.

Example :w = 1474273435 has length n = 10.

i is a descent of w if $w_i > w_{i+1}$, and an ascent if $w_i < w_{i+1}$.

(Segmented) Smirnov words

A Smirnov word of length *n* is a word $w = w_1 w_2 \cdots w_n$ with $w_i \in \mathbb{Z}_{>0}$ such that $w_i \neq w_{i+1}$ for all i < n.

Example :w = 1474273435 has length n = 10.

i is a descent of w if $w_i > w_{i+1}$, and an ascent if $w_i < w_{i+1}$.

A segmented Smirnov word w of shape $\alpha = (\alpha_1, ..., \alpha_s) \vDash n$ has the form $w = w^1 w^2 \cdots w^s$ with w^i a Smirnov word of length α_i .

Example :23|1242|2|31 has shape (2, 4, 1, 2)

i is a descent/ascent of *w* if it is a descent *inside a block*.

(Segmented) Smirnov words

A Smirnov word of length *n* is a word $w = w_1 w_2 \cdots w_n$ with $w_i \in \mathbb{Z}_{>0}$ such that $w_i \neq w_{i+1}$ for all i < n.

Example :w = 1474273435 has length n = 10.

i is a descent of w if $w_i > w_{i+1}$, and an ascent if $w_i < w_{i+1}$.

A segmented Smirnov word w of shape $\alpha = (\alpha_1, ..., \alpha_s) \vDash n$ has the form $w = w^1 w^2 \cdots w^s$ with w^i a Smirnov word of length α_i .

Example :23|1242|2|31 has shape (2, 4, 1, 2)

i is a descent/ascent of w if it is a descent inside a block.

Definition. Let SMIR(n, k, l) be the set of segmented Smirnov words of length *n* with *k* descents and *l* ascents.

Note: Such words have exactly n - k - l blocks.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that i < j is a sminversion if $w_i > w_j$ and one of the following holds: 1. w_j is the first letter of its block ("initial"); 2. $w_{j-1} > w_i$; 3. $i \neq j - 1$, $w_{j-1} = w_i$, and w_{j-1} is initial; 4. $i \neq j - 1$ and $w_{j-2} > w_{j-1} = w_i$. We denote by sminv(w) the number of sminversions of w.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that i < j is a sminversion if $w_i > w_j$ and one of the following holds: 1. w_j is the first letter of its block ("initial"); 2. $w_{j-1} > w_i$; 3. $i \neq j - 1$, $w_{j-1} = w_i$, and w_{j-1} is initial; 4. $i \neq j - 1$ and $w_{j-2} > w_{j-1} = w_i$. We denote by sminv(w) the number of sminversions of w.

Important special case:

If w is a segmented permutation, sminversions are 2 - 31 pattern occurrences and inversions with w_j initial.

The statistic sminv

Definition. For a segmented Smirnov word w, we say that i < j is a sminversion if $w_i > w_j$ and one of the following holds: 1. w_j is the first letter of its block ("initial"); 2. $w_{j-1} > w_i$; 3. $i \neq j - 1$, $w_{j-1} = w_i$, and w_{j-1} is initial; 4. $i \neq j - 1$ and $w_{j-2} > w_{j-1} = w_i$. We denote by sminv(w) the number of sminversions of w.

Important special case:

If w is a segmented permutation, sminversions are 2 - 31 pattern occurrences and inversions with w_i initial.

Let $\mu = (\mu_1, \mu_2, ..., \mu_m, 0, 0, ...)$ with $\mu_i \ge 0$. Define $w \in SMIR(\mu, k, l)$ if w has μ_i occurrences of *i* for any *i*, and

$$\mathrm{SMIR}_q(\mu, k, l) \coloneqq \sum_{w \in \mathrm{SMIR}(\mu, k, l)} q^{\mathrm{sminv}(w)}.$$

Key recurrence

If
$$\mu = (\mu_1, ..., \mu_m, 0, ...)$$
, define $\mu^- = (\mu_1, ..., \mu_{m-1}, 0, 0, ...)$.

Proposition[Iraci, N., Vanden Wyngaerd '24] Denote $B = \sum_{i} \mu_{i} - k - I$.

$$SMIR_{q}(\mu, k, l) = \sum_{i=0}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} q^{\binom{r-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ r - i \end{bmatrix}_{q} q^{\binom{a-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ a - i \end{bmatrix}_{q}$$
$$\times \begin{bmatrix} B \\ \mu_{m} - r - a + i \end{bmatrix}_{q} \begin{bmatrix} B - \mu_{m} + r + a - 1 \\ i \end{bmatrix}_{q} SMIR_{q}(\mu^{-}, k - r, l - a).$$

Key recurrence

If
$$\mu = (\mu_1, ..., \mu_m, 0, ...)$$
, define $\mu^- = (\mu_1, ..., \mu_{m-1}, 0, 0, ...)$.

Proposition[Iraci, N., Vanden Wyngaerd '24] Denote $B = \sum_{i} \mu_{i} - k - I$.

$$SMIR_{q}(\mu, k, l) = \sum_{i=0}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} q^{\binom{r-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ r - i \end{bmatrix}_{q} q^{\binom{a-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ a - i \end{bmatrix}_{q}$$
$$\times \begin{bmatrix} B \\ \mu_{m} - r - a + i \end{bmatrix}_{q} \begin{bmatrix} B - \mu_{m} + r + a - 1 \\ i \end{bmatrix}_{q} SMIR_{q}(\mu^{-}, k - r, l - a).$$

Note that this is a recurrence with positive integer coefficients, it thus requires a combinatorial proof that we provide.

We sketch it in the standard case $\mu = (1, 1, ..., 1, 0, ...) = (1^n)$, that is when we consider segmented permutations.

Proof sketch in the standard case

The recurrence simplifies greatly:

$$\begin{aligned} \mathsf{SMIR}_q(1^n,k,l) &= [n-k-l]_q \left(\, \mathsf{SMIR}_q(1^{n-1},k,l) + \mathsf{SMIR}_q(1^{n-1},k-1,l) \\ &+ \mathsf{SMIR}_q(1^{n-1},k,l-1) + \mathsf{SMIR}_q(1^{n-1},k-1,l-1) \right) \end{aligned}$$

Proof sketch in the standard case

The recurrence simplifies greatly:

$$\begin{aligned} \mathsf{SMIR}_q(1^n,k,l) &= [n-k-l]_q \left(\, \mathsf{SMIR}_q(1^{n-1},k,l) + \mathsf{SMIR}_q(1^{n-1},k-1,l) \right. \\ &+ \mathsf{SMIR}_q(1^{n-1},k,l-1) + \mathsf{SMIR}_q(1^{n-1},k-1,l-1) \end{aligned}$$

Proof. Insert the value *n* in a segmented permutation of length n - 1.

- 1. replacing a block separator.
- 2. at the beginning of a block, or
- 3. at the end of a block, or
- 4. as a new singleton block.

Proof sketch in the standard case

The recurrence simplifies greatly:

$$\begin{split} \mathsf{SMIR}_q(1^n,k,l) &= [n-k-l]_q \left(\, \mathsf{SMIR}_q(1^{n-1},k,l) + \mathsf{SMIR}_q(1^{n-1},k-1,l) \ + \mathsf{SMIR}_q(1^{n-1},k,l-1) + \mathsf{SMIR}_q(1^{n-1},k-1,l-1) \, + \, \mathsf{SMIR}_q($$

Proof. Insert the value *n* in a segmented permutation of length n - 1.

- 1. replacing a block separator.
- 2. at the beginning of a block, or
- 3. at the end of a block, or
- 4. as a new singleton block.

In each case, there are *B* ways to do this, where B = n - k - l is the number of blocks in the resulting segmented permutation. Moreover, the statistic sminv can augment by 0, 1, ..., B - 1, leading to the factor $[n - k - l]_q$.

Remark. This is essentially the "Laguerre history" for permutations, linked to orhtogonal polynomials and continued fractions.

Recurrence for the symmetric function

Let $OT_q(\mu, k, l)$ be the coefficient of $x^{\mu} = x_1^{\mu_1} x_2^{\mu_2} \cdots$ in $OT_q(n, k, l)$.

Proposition ([Iraci, N., Vanden Wyngaerd '24]). Denote $B = \sum_{i} \mu_{i} - k - l$. $OT_{q}(\mu, k, l) = \sum_{i=0}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} q^{\binom{r-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ r - i \end{bmatrix}_{q} q^{\binom{a-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ a - i \end{bmatrix}_{q}$ $\times \begin{bmatrix} B \\ \mu_{m} - r - a + i \end{bmatrix}_{q} \begin{bmatrix} B - (\mu_{m} - r - a) - 1 \\ i \end{bmatrix}_{q} OT_{q}(\mu^{-}, k - r, l - a).$

The proof is a specialization at t = 0 of a formula of D'Adderio and Romero + some simplifications by elementary *q*-identities.

Recurrence for the symmetric function

Let $OT_q(\mu, k, l)$ be the coefficient of $x^{\mu} = x_1^{\mu_1} x_2^{\mu_2} \cdots$ in $OT_q(n, k, l)$.

Proposition ([Iraci, N., Vanden Wyngaerd '24]). Denote $B = \sum_{i} \mu_{i} - k - l$. $OT_{q}(\mu, k, l) = \sum_{i=0}^{\mu_{m}} \sum_{a=i}^{\mu_{m}} \sum_{r=i}^{\mu_{m}} q^{\binom{r-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ r - i \end{bmatrix}_{q} q^{\binom{a-i}{2}} \begin{bmatrix} B - (\mu_{m} - r - a + i) \\ a - i \end{bmatrix}_{q}$ $\times \begin{bmatrix} B \\ \mu_{m} - r - a + i \end{bmatrix}_{q} \begin{bmatrix} B - (\mu_{m} - r - a) - 1 \\ i \end{bmatrix}_{q} OT_{q}(\mu^{-}, k - r, l - a).$

The proof is a specialization at t = 0 of a formula of D'Adderio and Romero + some simplifications by elementary *q*-identities.

Finally our main theorem

$$\mathsf{OT}_q(n,k,l) = \sum_{w \in \mathsf{SMIR}(n,k,l)} q^{\mathsf{sminv}(w)} x_{w_1} x_{w_2} \cdots x_{w_n}$$

follows since coefficients on both sides satisfy the same recurrences.

From S_n -representations to combinatorics

From S_n -representations to combinatorics

If the S_n representation preserves certain \mathbb{N} -gradings \Rightarrow use graded Frobenius characteristic grFrob_{$q_1,q_2,...$} with indeterminates $q_1, q_2, ...$ to record these gradings in F_V .

Coinvariant spaces

 \mathbb{S}_n acts on $P(n) := \mathbb{C}[t_1, ..., t_n]$ via $\sigma \cdot f(t_1, ..., t_n) := f(t_{\sigma(1)}, ..., t_{\sigma(n)})$. \mathbb{S}_n acts on $\Lambda(n) := Ext(\xi_1, ..., \xi_n)$ via $\sigma \cdot f(\xi_1, ..., \xi_n) := f(\xi_{\sigma(1)}, ..., \xi_{\sigma(n)})$. (Here we have anticommuting variables $\xi_i \xi_j + \xi_j \xi_i = 0$.) Both actions have \mathbb{N} -gradings by total degree.

Coinvariant spaces

 \mathbb{S}_n acts on $P(n) := \mathbb{C}[t_1, ..., t_n]$ via $\sigma \cdot f(t_1, ..., t_n) := f(t_{\sigma(1)}, ..., t_{\sigma(n)})$. \mathbb{S}_n acts on $\Lambda(n) := Ext(\xi_1, ..., \xi_n)$ via $\sigma \cdot f(\xi_1, ..., \xi_n) := f(\xi_{\sigma(1)}, ..., \xi_{\sigma(n)})$. (Here we have anticommuting variables $\xi_i \xi_j + \xi_j \xi_i = 0$.) Both actions have \mathbb{N} -gradings by total degree.

Let us combine them.

 $T_{a,b}(n) = P(n)^{\otimes a} \otimes \Lambda(n)^{\otimes b}$ with \mathbb{S}_n acting diagonally.

 \mathbb{S}_n -invariants in $T_{a,b}(n)$ with zero constant term generate an ideal $T^+_{a,b}(n)$.

Definition. The coinvariant space $R_{a,b}(n)$ is defined as the quotient \mathbb{S}_n representation

$$R_{a,b}(n) = T_{a,b}(n)/T^+_{a,b}(n)$$

Coinvariant spaces

 \mathbb{S}_n acts on $P(n) := \mathbb{C}[t_1, ..., t_n]$ via $\sigma \cdot f(t_1, ..., t_n) := f(t_{\sigma(1)}, ..., t_{\sigma(n)})$. \mathbb{S}_n acts on $\Lambda(n) := Ext(\xi_1, ..., \xi_n)$ via $\sigma \cdot f(\xi_1, ..., \xi_n) := f(\xi_{\sigma(1)}, ..., \xi_{\sigma(n)})$. (Here we have anticommuting variables $\xi_i \xi_j + \xi_j \xi_i = 0$.) Both actions have \mathbb{N} -gradings by total degree.

Let us combine them.

 $T_{a,b}(n) = P(n)^{\otimes a} \otimes \Lambda(n)^{\otimes b}$ with \mathbb{S}_n acting diagonally.

 \mathbb{S}_n -invariants in $T_{a,b}(n)$ with zero constant term generate an ideal $T^+_{a,b}(n)$.

Definition. The coinvariant space $R_{a,b}(n)$ is defined as the quotient \mathbb{S}_n representation

$$R_{a,b}(n) = T_{a,b}(n)/T^+_{a,b}(n)$$

The action preserves all a + b gradings \Rightarrow grFrob_{$q_1,...,q_a;u_1,...,u_b$} $R_{a,b}(n)$. Let us now see small values of a, b.

Delta and Theta

Conjecture. [Zabrocki '18] grFrob_{q,t;z}(
$$R_{2,1}(n)$$
) is equal to $\sum_k z^k \Delta'_{e_{n-k-1}} e_n$.

where $\Delta'_{e_{n-k-1}}$ is a certain operator with parameters q, t.

Conjecture. [D'Adderio, Iraci and Vanden Wyngaerd '21] grFrob_{q,t;u,v}($R_{2,2}(n)$) is equal to $\sum_{k,l} u^k v^l \Theta_{e_k} \Theta_{e_l} \nabla e_{n-k-l}$.

where Θ_{e_i} is another operator with parameters q, t.

 \Rightarrow Thus $OT_q(n, k, l)$ is conjecturally the graded Frobenius of $R_{1,2}(n)$.

Delta and Theta

Conjecture. [Zabrocki '18] grFrob_{q,t;z}(
$$R_{2,1}(n)$$
) is equal to $\sum_{k} z^{k} \Delta'_{e_{n-k-1}} e_{n}$.

where $\Delta'_{e_{n-k-1}}$ is a certain operator with parameters q, t.

Conjecture. [D'Adderio, Iraci and Vanden Wyngaerd '21] grFrob_{q,t;u,v}($R_{2,2}(n)$) is equal to $\sum_{k,l} u^k v^l \Theta_{e_k} \Theta_{e_l} \nabla e_{n-k-l}$.

where Θ_{e_i} is another operator with parameters q, t.

 \Rightarrow Thus $OT_q(n, k, l)$ is conjecturally the graded Frobenius of $R_{1,2}(n)$.

Combinatorics: The Delta conjectures (Haglund and al '18) claim that

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D = \sum_{D \in \mathsf{LD}(n)^{\bullet k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D,$$

rise version valley version

The rise version is now a theorem due to D'Adderio and Mellit '22.

Labeled Dyck paths

LD(n) is the set of labeled Dyck paths of length n, where labels stricly increase on consecutive North steps.

A rise is a North step preceded by a North step. A contractible valley is a valley such that "removing the east step gives a good labeling".

Let $LD(n)^{*k,\bullet l}$ be the subset of LD(n) with k decorated rises and l decorated contractible valleys, and $LD(\mu)^{*k,\bullet l}$ those with content μ .

The area of a path is the number of cells under the path that are *not* east of a decorated valley.

Labeled Dyck paths of area zero

D'Adderio, Iraci and Vanden Wyngaerd conjecture in addition

$$\Theta_{e_k} \Theta_{e_l} \nabla e_{n-k-l} |_{q=1} = \sum_{D \in \mathsf{LD}(n)^{*k, \bullet l}} t^{\operatorname{area}(D)} x^{D}$$

A potential unified Delta conjecture consists in finding a q-statistic on paths that restricts to the two Delta conjectures when k = 0 or l = 0.

Labeled Dyck paths of area zero

D'Adderio, Iraci and Vanden Wyngaerd conjecture in addition

$$\left. \Theta_{e_k} \Theta_{e_l}
abla e_{n-k-l}
ight|_{q=1} = \sum_{D \in \mathsf{LD}(n)^{*k, ullet l}} t^{\mathsf{area}(D)} x^D$$

A potential unified Delta conjecture consists in finding a q-statistic on paths that restricts to the two Delta conjectures when k = 0 or l = 0.

When t = 0, we get back our series $OT_q(n, k, l)$ at q = 1. Thus a special case of the conjecture is the following result:

Theorem. [Iraci, N., Vanden Wyngaerd '24] The subset $LD_0(n)^{*k,\bullet l}$ of paths of area zero is in bijection with SMIR(n, k, l).

Recursion for area zero paths.

Unified Delta theorem at t = 0

We can moreover define a statistic sdinv \neq sminv that coincides with dinv in the Delta conjectures at t = 0 (via the previous bijection).

Unified Delta theorem at t = 0

We can moreover define a statistic sdinv \neq sminv that coincides with dinv in the Delta conjectures at t = 0 (via the previous bijection).

DANKE FÜR IHRE AUFMERKSAMKEIT