Plane partitions and rowmotion on rectangular and trapezoidal posets

Ricky Liu
University of Washington
July 25, 2024
(joint work with Joseph Johnson)

Two posets

rectangle $R_{6,4}$

trapezoid $T_{6,4}$

Plane partitions

Definition

For a finite poset P, a plane partition of shape P (or P-partition) is an order-preserving map from P to $\mathbf{Z}_{\geq 0}$.
The height of a P-partition is the maximum number in its range.

Plane partitions

Theorem (Proctor '83)

The rectangular poset $R=R_{m, n}$ and the trapezoidal poset $T=T_{m, n}$ have the same number of plane partitions of height $\leq \ell$ for each ℓ.

For R, MacMahon showed that this number is

$$
\prod_{i=1}^{\ell} \prod_{j=1}^{m} \prod_{k=1}^{n} \frac{i+j+k-1}{i+j+k-2}
$$

Plane partitions

Theorem (Proctor '83)

The rectangular poset $R=R_{m, n}$ and the trapezoidal poset $T=T_{m, n}$ have the same number of plane partitions of height $\leq \ell$ for each ℓ.

For R, MacMahon showed that this number is

$$
\prod_{i=1}^{\ell} \prod_{j=1}^{m} \prod_{k=1}^{n} \frac{i+j+k-1}{i+j+k-2}
$$

Proctor's proof uses a branching rule from Lie algebra representation theory and is not bijective. He remarks: "...the question of a combinatorial correspondence for [this theorem] seems to be a complete mystery."

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

A bijective proof was found by Hamaker-Patrias-Pechenik-Williams '18 using K-theoretic jeu de taquin. (They called the rectangle and trapezoid doppelgängers.)

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

A bijective proof was found by Hamaker-Patrias-Pechenik-Williams '18 using K-theoretic jeu de taquin. (They called the rectangle and trapezoid doppelgängers.)

We give a new bijection with some additional properties:

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

A bijective proof was found by Hamaker-Patrias-Pechenik-Williams '18 using K-theoretic jeu de taquin. (They called the rectangle and trapezoid doppelgängers.)
We give a new bijection with some additional properties:

- It extends to a continuous map on the order polytope.

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

A bijective proof was found by Hamaker-Patrias-Pechenik-Williams '18 using K-theoretic jeu de taquin. (They called the rectangle and trapezoid doppelgängers.)

We give a new bijection with some additional properties:

- It extends to a continuous map on the order polytope.
- It intertwines with an action called rowmotion (which implies that rowmotion on T has order $m+n$).

Plane partitions

Partial progress towards a combinatorial proof:

- Stembridge '86 and Reiner '97 for $\ell=1$;
- Elizalde ' 15 for $\ell=2$.

A bijective proof was found by Hamaker-Patrias-Pechenik-Williams '18 using K-theoretic jeu de taquin. (They called the rectangle and trapezoid doppelgängers.)

We give a new bijection with some additional properties:

- It extends to a continuous map on the order polytope.
- It intertwines with an action called rowmotion (which implies that rowmotion on T has order $m+n$).
- It is the tropicalization of a birational map that also respects birational rowmotion (so birational rowmotion on T has order $m+n$).

Order and chain polytopes

Definition

The order polytope $\mathcal{O}(P)$ of a poset P is the set of labelings $y=\left(y_{p}\right)_{p \in P}$ satisfying $0 \leq y_{p} \leq 1$ and $y_{p} \leq y_{q}$ when $p \leq q$ in P.

A P-partition of height $\leq \ell$ is a lattice point in $\ell \mathcal{O}(P)$.
Therefore, Proctor's theorem can be restated as saying that $\mathcal{O}(R)$ and $\mathcal{O}(T)$ have the same Ehrhart polynomial.

Order and chain polytopes

Definition

The chain polytope $\mathcal{C}(P)$ of a poset P is the set of labelings $x=\left(x_{p}\right)_{p \in P}$ satisfying $0 \leq x_{p}$ and $\sum_{p \in C} x_{p} \leq 1$ for all chains $C \subseteq P$.

Order and chain polytopes

Definition

The chain polytope $\mathcal{C}(P)$ of a poset P is the set of labelings $x=\left(x_{p}\right)_{p \in P}$ satisfying $0 \leq x_{p}$ and $\sum_{p \in C} x_{p} \leq 1$ for all chains $C \subseteq P$.

Stanley showed that $\mathcal{O}(P)$ and $\mathcal{C}(P)$ have the same Ehrhart polynomial by exhibiting continuous, piecewise-linear and unimodular, bijective transfer maps that send $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

Order and chain polytopes

Definition

The chain polytope $\mathcal{C}(P)$ of a poset P is the set of labelings $x=\left(x_{p}\right)_{p \in P}$ satisfying $0 \leq x_{p}$ and $\sum_{p \in C} x_{p} \leq 1$ for all chains $C \subseteq P$.

Stanley showed that $\mathcal{O}(P)$ and $\mathcal{C}(P)$ have the same Ehrhart polynomial by exhibiting continuous, piecewise-linear and unimodular, bijective transfer maps that send $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

$$
\begin{aligned}
& x_{p}=y_{p}-\max _{q \lessdot p} y_{q} \\
& y_{p}=\max _{C} \sum_{p \in C} x_{p},
\end{aligned}
$$

where $\max \varnothing=0$, and C ranges over chains with maximum element p.

Order and chain polytopes

Order and chain polytopes

Rowmotion

We have $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q}
$$

Rowmotion

We have $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q}
$$

Dualizing this construction, we can likewise give a correspondence $y \in \mathcal{O}(P) \longleftrightarrow z \in \mathcal{C}(P)$ via

$$
z_{p}=\min _{q \gtrdot p} y_{q}-y_{p}
$$

(where $\min \varnothing=1$).

Rowmotion

We have $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q}
$$

Dualizing this construction, we can likewise give a correspondence $y \in \mathcal{O}(P) \longleftrightarrow z \in \mathcal{C}(P)$ via

$$
z_{p}=\min _{q \gtrdot p} y_{q}-y_{p}
$$

(where $\min \varnothing=1$).
The map $\rho: \mathcal{C}(P) \rightarrow \mathcal{C}(P)$ sending $x \mapsto z$ is called (inverse antichain) rowmotion.

Rowmotion

We have $x \in \mathcal{C}(P) \longleftrightarrow y \in \mathcal{O}(P)$ via

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q}
$$

Dualizing this construction, we can likewise give a correspondence $y \in \mathcal{O}(P) \longleftrightarrow z \in \mathcal{C}(P)$ via

$$
z_{p}=\min _{q \gtrdot p} y_{q}-y_{p}
$$

(where $\min \varnothing=1$).
The map $\rho: \mathcal{C}(P) \rightarrow \mathcal{C}(P)$ sending $x \mapsto z$ is called (inverse antichain) rowmotion.

Note: If x is the indicator for an antichain A, then y gives the order filter F generated by A, and z gives the maximal elements of $P \backslash F$.

Rowmotion

Rowmotion

- For most posets, rowmotion does not behave nicely (e.g. have small order).

Rowmotion

- For most posets, rowmotion does not behave nicely (e.g. have small order).
- However, ρ_{R} for a rectangle $R=R_{m, n}$ has order $m+n$ (Brouwer-Schrijver, Grinberg-Roby).

Rowmotion

- For most posets, rowmotion does not behave nicely (e.g. have small order).
- However, ρ_{R} for a rectangle $R=R_{m, n}$ has order $m+n$ (Brouwer-Schrijver, Grinberg-Roby).

- Williams conjectured that ρ_{T} for a trapezoid $T=T_{m, n}$ also has order $m+n$. (This was proved for the vertices of $\mathcal{C}(T)$ by Dao, Wellman, Yost-Wolff, and Zhang '22.)

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

We construct a map $\zeta: \mathbf{R}^{T} \rightarrow \mathbf{R}^{R}$ that deforms T to R by applying rowmotion on subposets.

The bijection

Theorem (Johnson-L.)

The map ζ is a continuous, piecewise-linear and unimodular map that gives a bijection from $\ell \mathcal{C}(T)$ to $\ell \mathcal{C}(R)$ for all nonnegative integers ℓ, so in particular $\mathcal{C}(T)$ and $\mathcal{C}(R)$ have the same Ehrhart polynomial.

Conjugating ζ by the transfer map then gives a bijection between plane partitions of R and T of the same height.

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q}
$$

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

$$
x_{p}=y_{p}-\max _{q \lessdot p} y_{q} \quad \rightsquigarrow \quad x_{p}=\frac{y_{p}}{\sum_{q \lessdot p} y_{q}}
$$

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

$$
\begin{aligned}
& x_{p}=y_{p}-\max _{q<p} y_{q} \\
& z_{p}=\min _{q \gtrdot p} y_{q}-y_{p}
\end{aligned}
$$

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

$$
\begin{array}{lll}
x_{p}=y_{p}-\max _{q \lessdot p} y_{q} & \rightsquigarrow & x_{p}=\frac{y_{p}}{\sum_{q \lessdot p} y_{q}}, \\
z_{p}=\min _{q \gtrdot p} y_{q}-y_{p} & \rightsquigarrow & z_{p}=\frac{1}{\sum_{q \gtrdot p} \frac{1}{y_{q}}} \cdot \frac{1}{y_{p}} .
\end{array}
$$

Birational maps

We actually prove the birational version obtained by detropicalizing (replacing (max, +) with $(+, \times)$).
Hence the transfer maps (on labelings of \mathbf{R}_{+}^{P}) transform as:

$$
\begin{array}{rll}
x_{p}=y_{p}-\max _{q<p} y_{q} & \rightsquigarrow & x_{p}=\frac{y_{p}}{\sum_{q \lessdot p} y_{q}}, \\
z_{p}=\min _{q \gtrdot p} y_{q}-y_{p} & \rightsquigarrow & z_{p}=\frac{1}{\sum_{q \gtrdot p} \frac{1}{y_{q}}} \cdot \frac{1}{y_{p}} .
\end{array}
$$

Equivalently:

$$
\begin{aligned}
x_{p}^{-1} & =\sum_{q \lessdot p} \frac{y_{q}}{y_{p}} \\
z_{p}^{-1} & =\sum_{q \gtrdot p} \frac{y_{p}}{y_{q}}
\end{aligned}
$$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

Example of the birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$

The total weight of all maximal chains is the same as in the original labeling, $a d f h i+a d g h i+b d f h i+b d g h i+b e g h i+c e g h i$.

Theorem (Johnson-L.)

The birational map $\zeta: \mathbf{R}_{+}^{T} \rightarrow \mathbf{R}_{+}^{R}$ preserves $\sum_{C} \prod_{p \in C} x_{p}$, where C ranges over all maximal chains (of T or R).

This implies the corresponding piecewise-linear result since tropicalizing implies that $\max _{C} \sum_{p \in C} x_{p}$ is unchanged.

Proof idea

- We relate weights of chains in points $x, z \in \mathbf{R}_{+}^{P}$ where $z=\rho(x)$ for a general skew shape poset P.

Proof idea

- We relate weights of chains in points $x, z \in \mathbf{R}_{+}^{P}$ where $z=\rho(x)$ for a general skew shape poset P.
- Since $x_{p}^{-1}=\sum_{q \lessdot p} \frac{y_{q}}{y_{p}}$, we can express the products of x_{p} in terms of upward arborescences (weighted by Laurent monomials in y).

Proof idea

- We relate weights of chains in points $x, z \in \mathbf{R}_{+}^{P}$ where $z=\rho(x)$ for a general skew shape poset P.
- Since $x_{p}^{-1}=\sum_{q<p} \frac{y_{q}}{y_{p}}$, we can express the products of x_{p} in terms of upward arborescences (weighted by Laurent monomials in y).
- Similarly $z_{p}^{-1}=\sum_{q \gtrdot p} \frac{y_{p}}{y_{q}}$, products of z_{p} can be expressed using downward arborescences.

Proof idea

- We relate weights of chains in points $x, z \in \mathbf{R}_{+}^{P}$ where $z=\rho(x)$ for a general skew shape poset P.
- Since $x_{p}^{-1}=\sum_{q<p} \frac{y_{q}}{y_{p}}$, we can express the products of x_{p} in terms of upward arborescences (weighted by Laurent monomials in y).
- Similarly $z_{p}^{-1}=\sum_{q \gtrdot p} \frac{y_{p}}{y_{q}}$, products of z_{p} can be expressed using downward arborescences.
- These can then be related via a form of duality for spanning trees.

Birational rowmotion

Theorem (Johnson-L.)

The birational map ζ intertwines with birational rowmotion:

$$
\zeta \circ \rho_{T}=\rho_{R} \circ \zeta .
$$

Since Grinberg-Roby showed that birational rowmotion on the rectangle $R_{m, n}$ has order $m+n$, we get the following corollary.

Corollary

(Birational) rowmotion on the trapezoid $T_{m, n}$ has order $m+n$.

