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Lecture hall tableaux
Introduced by Corteel and Kim (2020) as fillings of Young diagram
satisfying certain conditions, generalizing both lecture hall partitions
(Bousquet-Eriksson 1997) and anti-lecture hall compositions (Corteel
and Savage 2023).

ARCTIC CURVES PHENOMENA FOR BOUNDED LECTURE HALL TABLEAUX

SYLVIE CORTEEL, DAVID KEATING, AND MATTHEW NICOLETTI

Abstract. Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of
multivariate little q-Jacobi polynomials. They then enumerated bounded lecture hall tableaux and showed

that their enumeration is closely related to standard and semistandard Young tableaux. In this paper we
study the asymptotic behavior of these bounded tableaux thanks to two other combinatorial models: non-

intersecting paths on a graph whose faces are squares and pentagons and dimer models on a lattice whose

faces are hexagons and octagons. We use the tangent method to investigate the arctic curve in the model
of non-intersecting lattice paths with fixed starting points and ending points distributed according to some

arbitrary piecewise di↵erentiable function. We then study the dimer model and use an ansatz to guess

the asymptotics of the inverse of the Kasteleyn, which confirm the arctic curve computed with the tangent
method for two examples.

1. Introduction

Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of multivariate
little q-Jacobi polynomials [10]. They then enumerated bounded lecture hall tableaux and showed that their
enumeration is closely related to standard and semistandard Young tableaux [9].

Given a positive integer t and a partition � = (�1, . . . , �n) with �1 � . . . � �n � 0, the bounded lecture
hall tableaux are fillings of the diagram of � with integers Ti,j such that

(1) Ti,j < t(n � i + j)
(2) Ti,j/(n � i + j) � Ti,j+1/(n � i + j + 1)
(3) Ti,j/(n � i + j) > Ti+1,j/(n � i � 1 + j)

We call them bounded lecture hall tableaux (BLHT) of shape � and bounded by t. On the left of Figure
1, we give an example of such a tableau for t = 3 and � = (2, 2). In this paper we study the asymptotic
behavior of these bounded tableaux thanks to two other combinatorial models: the non-intersecting paths on
a graph whose faces are squares and pentagons and the dimer models on a lattice whose faces are hexagons
and octagons. An example of the path model and the dimer model is given on the middle and the right of
Figure 1. Detailed definitions will be given in Section 2.

One special quality of this model is that the number of configurations is relatively easy to compute [9].
Given t, n and � = (�1, . . . , �n), the number Z�(t) of bounded lecture hall tableaux of shape � bounded by
t is

Z�(t) = t|�| Y

1i<jn

�i � i � �j + j

j � i
,
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Figure 1. Tableau, non-intersecting paths, and dimers
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Figure: Tableau, non-intersecting paths, and dimers (Figure by Corteel,
Keating and Nicoletti). The left graph represents a lecture hall tableaux L of
shape λ = (2, 2) with L(1, 1) = 5, L(1, 2) = 6, L(2, 1) = 3, L(2, 2) = 3 and

n = 2. Then L(1,1)
n+1−1 = 5

2 ;
L(2,1)
n+1−2=2; L(1,2)

n+2−1 = 2; L(2,2)
n+2−2 = 3

2 . The lecture hall
tableaux is bounded by t = 3. The middle graph represents the
corresponding non-intersecting path configuration. The right graph
represents a dimer configuration on a graph which is not doubly-periodic.

Zhongyang Li University of Connecticut Asymptotics of Bounded Lecture Hall Tableaux July 24, 2024 2 / 21



Lecture hall tableaux
Introduced by Corteel and Kim (2020) as fillings of Young diagram
satisfying certain conditions, generalizing both lecture hall partitions
(Bousquet-Eriksson 1997) and anti-lecture hall compositions (Corteel
and Savage 2023).

ARCTIC CURVES PHENOMENA FOR BOUNDED LECTURE HALL TABLEAUX

SYLVIE CORTEEL, DAVID KEATING, AND MATTHEW NICOLETTI

Abstract. Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of
multivariate little q-Jacobi polynomials. They then enumerated bounded lecture hall tableaux and showed

that their enumeration is closely related to standard and semistandard Young tableaux. In this paper we
study the asymptotic behavior of these bounded tableaux thanks to two other combinatorial models: non-

intersecting paths on a graph whose faces are squares and pentagons and dimer models on a lattice whose

faces are hexagons and octagons. We use the tangent method to investigate the arctic curve in the model
of non-intersecting lattice paths with fixed starting points and ending points distributed according to some

arbitrary piecewise di↵erentiable function. We then study the dimer model and use an ansatz to guess

the asymptotics of the inverse of the Kasteleyn, which confirm the arctic curve computed with the tangent
method for two examples.

1. Introduction

Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of multivariate
little q-Jacobi polynomials [10]. They then enumerated bounded lecture hall tableaux and showed that their
enumeration is closely related to standard and semistandard Young tableaux [9].

Given a positive integer t and a partition � = (�1, . . . , �n) with �1 � . . . � �n � 0, the bounded lecture
hall tableaux are fillings of the diagram of � with integers Ti,j such that

(1) Ti,j < t(n � i + j)
(2) Ti,j/(n � i + j) � Ti,j+1/(n � i + j + 1)
(3) Ti,j/(n � i + j) > Ti+1,j/(n � i � 1 + j)

We call them bounded lecture hall tableaux (BLHT) of shape � and bounded by t. On the left of Figure
1, we give an example of such a tableau for t = 3 and � = (2, 2). In this paper we study the asymptotic
behavior of these bounded tableaux thanks to two other combinatorial models: the non-intersecting paths on
a graph whose faces are squares and pentagons and the dimer models on a lattice whose faces are hexagons
and octagons. An example of the path model and the dimer model is given on the middle and the right of
Figure 1. Detailed definitions will be given in Section 2.

One special quality of this model is that the number of configurations is relatively easy to compute [9].
Given t, n and � = (�1, . . . , �n), the number Z�(t) of bounded lecture hall tableaux of shape � bounded by
t is

Z�(t) = t|�| Y

1i<jn

�i � i � �j + j

j � i
,

Date: January 13, 2021.

5 6

32 �•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•

�•
�•
�•
�•
�•
�•

�•�
•�•
�•�
•�•
�•�
•�•

� �

• •

Figure 1. Tableau, non-intersecting paths, and dimers

1

ar
X

iv
:1

90
5.

02
88

1v
2 

 [m
at

h.
C

O
]  

11
 Ja

n 
20

21

Figure: Tableau, non-intersecting paths, and dimers (Figure by Corteel,
Keating and Nicoletti). The left graph represents a lecture hall tableaux L of
shape λ = (2, 2) with L(1, 1) = 5, L(1, 2) = 6, L(2, 1) = 3, L(2, 2) = 3 and

n = 2. Then L(1,1)
n+1−1 = 5

2 ;
L(2,1)
n+1−2=2; L(1,2)

n+2−1 = 2; L(2,2)
n+2−2 = 3

2 . The lecture hall
tableaux is bounded by t = 3. The middle graph represents the
corresponding non-intersecting path configuration. The right graph
represents a dimer configuration on a graph which is not doubly-periodic.

Zhongyang Li University of Connecticut Asymptotics of Bounded Lecture Hall Tableaux July 24, 2024 2 / 21



Partitions and Young diagram

A partition λ = (λ1, . . . , λk) is a sequence of weakly decreasing
nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0.

A partition λ = (λ1, . . . , λk) can be identified with its Young
diagram, which consists of unit squares (cells) with integer
coordinates (i , j) satisfying 1 ≤ i ≤ k and 1 ≤ j ≤ λi .

Figure: partitions and corresponding Young diagram
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Lecture hall tableaux

µ ⊂ λ: the Young diagram of µ is contained in that of λ as a set

If µ ⊂ λ, λ/µ is the set-theoretic difference of their Young diagrams.

A tableaux of shape λ/µ is a filling of cells in λ/µ with nonnegative
integers.

An n-lecture hall tableau of shape λ/µ is a tableau L of shape λ/µ
satisfying the following conditions

L(i , j)

n + c(i , j)
≥ L(i , j + 1)

n + c(i , j + 1)
,

L(i , j)

n + c(i , j)
>

L(i + 1, j)

n + c(i + 1, j)
.

where c(i , j) = j − i is the content of the cell (i , j). The set of
n-lecture hall tableaux is denoted by LHTn(λ/µ).

If

L(i , j) < t(n + j − i)

We say these tableaux are bounded by t > 0.
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Lecture hall tableaux, non-intersecting paths and perfect
matchings

1 Given a positive integer t, the lecture hall graph is a graph
Gt = (Vt ,Et). This graph can be described through an embedding in
the plane with vertex set Vt given by

▶

(
i , j

i+1

)
for i ≥ 0 and 0 ≤ j < t(i + 1).

and the directed edges given by

▶ from
(
i , k + r

i+1

)
to

(
i + 1, k + r

i+2

)
for i ≥ 0, 0 ≤ r ≤ i and

0 ≤ k < t
▶ from

(
i , k + r+1

i+1

)
to

(
i , k + r

i+1

)
for i ≥ 0 and 0 ≤ r ≤ i and

0 ≤ k < t − 1 or for i ≥ 0 and 0 ≤ r < i and k = t − 1.

2 Given a positive integer t and a partition λ = (λ1, λ2, . . . , λn) with
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, a non-intersecting path configuration is a
system of n paths on the graph Gt . For each integer i satisfying

1 ≤ i ≤ n, the ith path starts at
(
n − i , t − 1

n−i+1

)
, ends at

(n − i + λi , 0) and moves only downwards and rightwards. The paths
are said to be not intersecting if they do not share a vertex.
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Limit Shape

 

Figure: Limit shape when λ = (n, . . . , n),n = t = 120; by Corteel, Keating and
Nicoletti
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Combinatorics

LHTn(λ/µ): the set of n-lecture hall tableaux of shape λ/µ.

Lnλ/µ(x) =
∑

T∈LHTn(λ/µ)
x⌊T⌋.

(Corteel and Kim, 2019) Lnλ(x) = |x||λ|sλ(1n).
(Corteel and Kim 2019) Lnλ/µ(x) ̸= |x||λ/µ|sλ/µ(1n).
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Limit shape and complex Burgers equation: a conjecture
by Corteel, Keating and Nicoletti

Conjecture

(Corteel, Keating and Nicoletti, 2019) The function u(x , y) solution of the
Burgers equation

uux + uy = 0

satisfies

ℑ(u) = π
∂h

∂y
and arg(u) = π

∂h

∂x
+ 1

for some branch of the arg.
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(Kenyon and Okounkov 2006) the gradient of height function for
uniform perfect matchings on hexagonal lattice in liquid region

▽h = (argw ,−argz)

satisfies

z + w − 1 = 0.
zx
z

+
wy

w
= 0.

(Pittel and Romik 2004, Sun, W. 2018) The solution complex Burgers
equation is also known to be related to the scaling limit of the
standard Young tableaux, whose corresponding particle configurations
form a Gelfand-Testlin scheme.
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· · ·

· · ·

Figure: Non-intersecting lattice paths on G4 for n = 5. We have
λ(3) = (1, 0, 0, 0, 0), λ(2) = (1, 1, 1, 0, 0), λ(1) = (3, 3, 1, 0, 0) and
λ(0) = (4, 3, 1, 0, 0). The sequence of partitions (λ(0), λ(1), λ(2), λ(3)) do not form
a Gelfand-Tsetlin scheme.

the particle configuration does not satisfy the interlacing condition of
Gelfand-Tsetlin scheme;

the corresponding dimer model is not doubly-periodic.
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Figure: Non-intersecting lattice paths on G4 for n = 5. We have
λ(3) = (1, 0, 0, 0, 0), λ(2) = (1, 1, 1, 0, 0), λ(1) = (3, 3, 1, 0, 0) and
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the particle configuration does not satisfy the interlacing condition of
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1 kth moment of a measure m, Mk(m) =
∫
xkdm;

2 Moment generating function: Sm(z) = z +
∑∞

k=1Mk(m)zk+1;

3 Voiculescu R-transform of m: Rm(z) =
1

S
(−1)
m (z)

− 1
z .

4 Hm(u) =
∫ ln u
0 Rm(t)dt + ln

(
ln u
u−1

)
.
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Main Result: Moment of the Limit Measure

Theorem

Let n be the the total number of non-interacting paths in G, and let t be the
height of G. Let ρκ(n) be the probability distribution of λ(κ). Assume

y := lim
n→∞

κ

n
; s := lim

n→∞
|xκ|
|x| ; α := lim

n→∞
t

n
; (1)

such that

s ∈ (0, 1); y ∈ (0, α).

Then random measures mρκ(n) converge as n → ∞ in probability, in the sense of
moments to a deterministic measure my on R, whose moments are given by

∫

R
x jmy (dx) =

1

2(j + 1)πi

∮

1

dz

z − 1 + s

(
(z − 1 + s)H ′

m0
(z) +

z − 1 + s

z − 1

)j+1

Here m0 is the limit counting measure for the boundary partition λ(0) ∈ Yn as
n → ∞.
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Schur generating functions

M be a random non-intersecting path configuration on G = Gt ;

λ
(κ)
1 is the number of absent vertical edges of M intersecting

y = κ+ ϵ to the left of the rightmost vertical edges present in M;

for j ≥ 2, λ
(κ)
j is the number of absent vertical edges of M

intersecting y = κ+ ϵ to the left of the jth rightmost vertical edges
present in M;

ρκ be the probability distribution of λ(κ);

u = (u1, u2, . . . , un); x = (x1, x2, . . . , xt);
|x| = x1 + x2 + . . .+ xt .

Schur generating function: Sρκ(|x|,u) =
∑

λ∈Y ρκ(λ)
sλ(|x|+u)
sλ(|x|) .
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Differential Operator and Moments

V (u) =
∏

i<j(ui − uj);

Dj ,κSρκ(|xκ|,u) := 1
V (u)

[∑
i

(
(|xκ|+ ui )

∂
∂ui

)j
]
V (u)Sρκ(|xκ|,u);

1
n(j+1)mDm

j Sρκ(|xκ|,u)
∣∣∣
u=0

:= E
(∫

R x jdmρκ

)m
;
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Sρκ(|xκ|,u) =
s
λ(0)

(|x|+u)

s
λ(0)

(|x|) ;

xκ = (xκ, xκ+1, . . . , xt)

Analyzing the leading terms,

E
(∫

R
xpm [λρκ ] dx

)
≈ Ip

E
(∫

R
xpm [λρκ ] dx

)2

≈ I 2p
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Frozen Boundary

The density fµ of a probability measure µ is given by

fµ(x) = − lim
ϵ→0+

1

π
ℑ(Stµ(x + iϵ))

If the density of the limit counting measure of partitions is 0 or 1 at a
point, then that point is in the frozen region; otherwise it is in the
liquid region.

Frozen boundary: the boundary of frozen region.

Stm(x) =
∑∞

j=0 t
−j−1

∫
R x jdm
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Figure: Frozen boundary for the scaling limit of weighted non-interaction paths.
The blue curve is for the uniform weight; the red curve is when the limit weight
function s satisfies y = (1− s)2. Boundary partition given by (2n, 2n− 2, . . . , 2, 0)
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Rescaled Height Function and Complex Burgers Equation

Theorem

(Li, Keating and Prause 2023)Assume G is uniformly weighted such that
s = 1− y. Let

u =
1

z+(χ, y)S
(−1)
m0 (ln z+(χ, y))

Then

∂h

∂x
=

1

π
(2−Arg(u)) ;

∂h

∂y
=

1

π
ℑu (2)

where Arg(·) is the branch of the argument function taking values in
[0, 2π). Moreover, u satisfies the complex Burgers equation

ux − uuy = 0. (3)
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Height Fluctuations and GFF

The fluctuations of the unrescaled height function converges to GFF in the
liquid region when the bottom boundary condition is piecewise.

Gaussian fluctuation obtained by verifying the Wick’s theorem for
Gaussian distribution

The covariance can be expressed as an integral of the Green’s
function.

The liquid region is mapped to H by an explicit homeomorphism; the
height fluctuation is the pull-back of GFF in H.
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Thank you!
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