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Matroid Schubert varieties

Let V be a finite-dimensional C-vector space, E a finite set, and
A = {αe}e∈E a spanning set for V ∗.

Definition
The matroid Schubert variety YA(C) is the closure of V in
(P1(C))E = (C ∪ {∞})E under the embedding v 7→ (αe(v))e∈E .

Goal
Understand the topology of YA(C) in terms of the matroid
combinatorics of A.

▶ compute topological invariants of YA(C)
▶ use complicated algebro-geometric machinery to

deduce/motivate combinatorial results
▶ Dowling–Wilson top-heavy conjecture, matroidal

Kazhdan–Lusztig theory...



Matroid Schubert varieties over R
Let V be a finite-dimensional R-vector space, E a finite set, and
A = {αe}e∈E a spanning set for V ∗.

Definition
The matroid Schubert variety YA(R) is the closure of V in
(P1(R))E = (R ∪ {∞})E under the embedding v 7→ (αe(v))e∈E .

Goal
Understand the topology of YA(R) in terms of the oriented
matroid combinatorics of A.

▶ compute topological invariants of YA(R)
▶ use methods of combinatorial topology to deduce/motivate

combinatorial results
▶ ???



Visualising matroid Schubert varieties

V ∼= V ∗ ∼= R, A = {α1 = (1)}, YA(R) ⊂ P1(R)
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YA(R) = P1(R) ∼= S1



Visualising matroid Schubert varieties

V ∼= V ∗ ∼= R2, A = {α1 = (1, 0), α2 = (0, 1)}, YA(R) ⊂ (P1(R))2
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YA(R) = P1(R)× P1(R) ∼= S1 × S1



Visualising matroid Schubert varieties

V ∼= V ∗ ∼= R2, A = {α1, α2, α3 = α1 + α2}, YA(R) ⊂ (P1(R))3
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YA(R) = {(a, b, c) ∈ (P1)3 : a+ b = c}



A combinatorial model for YA(R)

Theorem (J.–Li)

YA(R) is homeomorphic to the zonotope ZA =
∑

e∈E [−1, 1]αe

with parallel faces identified.

Previous work
Bartholdi–Enriquez–Etingof–Rains: considered ZA/∼ for ZA = the
(type A) permutohedron
Ilin–Kamnitzer–Li–Przytycki–Rybnikov: YA(R) ∼= ZA/∼ for A =
Weyl arrangement

Example

If dimV = dimV ∗ = 2, then ZA is a 2n-gon and YA(R) is
homeomorphic to either Σg (if n = 2g is even) or Σg with two
points identified (if n = 2g + 1 is odd).



A combinatorial model for YA(R)
The faces of ZA are in bijection with covectors of A:

C ∈ {+,−, 0}E ↔ FC =
∑

C(e)=+

αe −
∑

C(e)=−

αe +
∑

C(e)=0

[−1, 1]αe .

Identify FC ,FD (by translation) if C−1(0) = D−1(0).
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A combinatorial model for YA(R)

Proof sketch.

YA(R) ZA/∼
???

(P1(R))E [−1, 1]E/∼
∼=

×



A combinatorial model for YA(R)

Proof sketch.

YA(R) ZA/∼

(P1(R))E [−1, 1]E/∼

×

⊂

V Z ◦
A

RE (−1, 1)E
∼=

⟳

Check this extends to a well-defined bijection YA(R) → ZA/∼.



A combinatorial model for YA(R)
Example

A = {α1, α2, α3 = α1 + α2} ⊂ V ∗ ∼= R2

V ↪→ R3 ∼= (−1, 1)3



Fundamental groups

Corollary

π1(YA(R)) has a presentation with generators indexed by rank 1
flats and relations indexed by rank 2 flats.
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Virtual Weyl groups

Definition
The virtual braid group VBn is the free product Sn ∗ Bn modulo
“mixed relations” si si+1σi = σi+1si si+1, siσj = σjsi if |i − j | > 1.
The virtual symmetric group is VSn = VBn/⟨σ2

i = 1⟩.

Example (BEER, IKLPR)

π1(YAn−1(R)) = PVSn = ker(VSn
σi ,si 7→si−−−−−→ Sn) and

πSn
1 (YAn−1(R)) = VSn.

Theorem (J.–Li)

When A is a Weyl arrangement,

π1(YA(R)) ∼= PVW and πW
1 (YA(R)) ∼= VW ,

where VW is the quotient of Bellingeri–Paris–Thiel’s virtual Artin
group VA = W ∗ A/∼ by σ2

i = 1.


