Real matroid Schubert varieties, zonotopes, and virtual Weyl groups

Leo Jiang (University of Toronto) joint with Yu Li (University of Toronto)

36th International Conference on Formal Power Series and Algebraic Combinatorics

July 22, 2024

Matroid Schubert varieties

Let V be a finite-dimensional \mathbb{C}-vector space, E a finite set, and $\mathcal{A}=\left\{\alpha_{e}\right\}_{e \in E}$ a spanning set for V^{*}.
Definition
The matroid Schubert variety $Y_{\mathcal{A}}(\mathbb{C})$ is the closure of V in $\left(\mathbb{P}^{1}(\mathbb{C})\right)^{E}=(\mathbb{C} \cup\{\infty\})^{E}$ under the embedding $v \mapsto\left(\alpha_{e}(v)\right)_{e \in E}$.

Goal
Understand the topology of $Y_{\mathcal{A}}(\mathbb{C})$ in terms of the matroid combinatorics of \mathcal{A}.

- compute topological invariants of $Y_{\mathcal{A}}(\mathbb{C})$
- use complicated algebro-geometric machinery to deduce/motivate combinatorial results
- Dowling-Wilson top-heavy conjecture, matroidal Kazhdan-Lusztig theory...

Matroid Schubert varieties over \mathbb{R}

Let V be a finite-dimensional \mathbb{R}-vector space, E a finite set, and $\mathcal{A}=\left\{\alpha_{e}\right\}_{e \in E}$ a spanning set for V^{*}.
Definition
The matroid Schubert variety $Y_{\mathcal{A}}(\mathbb{R})$ is the closure of V in $\left(\mathbb{P}^{1}(\mathbb{R})\right)^{E}=(\mathbb{R} \cup\{\infty\})^{E}$ under the embedding $v \mapsto\left(\alpha_{e}(v)\right)_{e \in E}$.

Goal
Understand the topology of $Y_{\mathcal{A}}(\mathbb{R})$ in terms of the oriented matroid combinatorics of \mathcal{A}.

- compute topological invariants of $Y_{\mathcal{A}}(\mathbb{R})$
- use methods of combinatorial topology to deduce/motivate combinatorial results
- ???

Visualising matroid Schubert varieties

$$
V \cong V^{*} \cong \mathbb{R}, \mathcal{A}=\left\{\alpha_{1}=(1)\right\}, Y_{\mathcal{A}}(\mathbb{R}) \subset \mathbb{P}^{1}(\mathbb{R})
$$

$$
\begin{gathered}
(\infty) \cdot \square \alpha_{1} \\
\bullet(\infty) \\
Y_{\mathcal{A}}(\mathbb{R})=\mathbb{P}^{1}(\mathbb{R}) \cong S^{1}
\end{gathered}
$$

Visualising matroid Schubert varieties

$$
V \cong V^{*} \cong \mathbb{R}^{2}, \mathcal{A}=\left\{\alpha_{1}=(1,0), \alpha_{2}=(0,1)\right\}, Y_{\mathcal{A}}(\mathbb{R}) \subset\left(\mathbb{P}^{1}(\mathbb{R})\right)^{2}
$$

$$
\begin{aligned}
& (\infty, \infty) \bullet(0, \infty)(x, \infty) \bullet(\infty, \infty) \\
& (\infty, y)\left|\begin{array}{l}
\\
\\
\\
\\
\\
\alpha_{1}
\end{array}\right| \begin{array}{l}
(\infty, y) \\
(\infty, 0)
\end{array} \\
& (\infty, \infty) \bullet(x, \infty) \bullet(\infty, \infty) \\
& Y_{\mathcal{A}}(\mathbb{R})=\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}^{1}(\mathbb{R}) \cong S^{1} \times S^{1}
\end{aligned}
$$

Visualising matroid Schubert varieties

$$
\begin{gathered}
V \cong V^{*} \cong \mathbb{R}^{2}, \mathcal{A}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}=\alpha_{1}+\alpha_{2}\right\}, Y_{\mathcal{A}}(\mathbb{R}) \subset\left(\mathbb{P}^{1}(\mathbb{R})\right)^{3} \\
(\infty, \infty, \infty) \\
(\infty, \infty, \infty) \\
(\infty, \infty) \\
(\infty, \infty, \infty) \\
\bullet(\infty, \infty)
\end{gathered}
$$

A combinatorial model for $Y_{\mathcal{A}}(\mathbb{R})$

Theorem (J.-Li)
$Y_{\mathcal{A}}(\mathbb{R})$ is homeomorphic to the zonotope $Z_{\mathcal{A}}=\sum_{e \in E}[-1,1] \alpha_{e}$ with parallel faces identified.

Previous work
Bartholdi-Enriquez-Etingof-Rains: considered $Z_{\mathcal{A}} / \sim$ for $Z_{\mathcal{A}}=$ the (type A) permutohedron
Ilin-Kamnitzer-Li-Przytycki-Rybnikov: $Y_{\mathcal{A}}(\mathbb{R}) \cong Z_{\mathcal{A}} / \sim$ for $\mathcal{A}=$ Weyl arrangement

Example

If $\operatorname{dim} V=\operatorname{dim} V^{*}=2$, then $Z_{\mathcal{A}}$ is a $2 n$-gon and $Y_{\mathcal{A}}(\mathbb{R})$ is homeomorphic to either Σ_{g} (if $n=2 g$ is even) or Σ_{g} with two points identified (if $n=2 g+1$ is odd).

A combinatorial model for $Y_{\mathcal{A}}(\mathbb{R})$

The faces of $Z_{\mathcal{A}}$ are in bijection with covectors of \mathcal{A} :
$C \in\{+,-, 0\}^{E} \leftrightarrow F_{C}=\sum_{C(e)=+} \alpha_{e}-\sum_{C(e)=-} \alpha_{e}+\sum_{C(e)=0}[-1,1] \alpha_{e}$. Identify F_{C}, F_{D} (by translation) if $C^{-1}(0)=D^{-1}(0)$.

A combinatorial model for $Y_{\mathcal{A}}(\mathbb{R})$

Proof sketch.

$$
\begin{aligned}
& \left(\mathbb{P}^{1}(\mathbb{R})\right)^{E} \longrightarrow[-1,1]^{E} / \sim \\
& \text { (1) } \\
& Y_{\mathcal{A}}(\mathbb{R}) \text {-------??? }-\cdots---\rightarrow \quad Z_{\mathcal{A}} / \sim
\end{aligned}
$$

A combinatorial model for $Y_{\mathcal{A}}(\mathbb{R})$

Proof sketch.
$\left(\mathbb{P}^{1}(\mathbb{R})\right)^{E} \longleftrightarrow \mathbb{R}^{E} \xrightarrow{\cong}(-1,1)^{E} \subset[-1,1]^{E} / \sim$

$$
Y_{\mathcal{A}}(\mathbb{R}) \longleftrightarrow V \longrightarrow Z_{\mathcal{A}}^{\circ}
$$

Check this extends to a well-defined bijection $Y_{\mathcal{A}}(\mathbb{R}) \rightarrow Z_{\mathcal{A}} / \sim . \quad \square$

A combinatorial model for $Y_{\mathcal{A}}(\mathbb{R})$

$$
\begin{aligned}
& \text { Example } \\
& \mathcal{A}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}=\alpha_{1}+\alpha_{2}\right\} \subset V^{*} \cong \mathbb{R}^{2} \\
& V \hookrightarrow \mathbb{R}^{3} \cong(-1,1)^{3}
\end{aligned}
$$

Fundamental groups

Corollary

$\pi_{1}\left(Y_{\mathcal{A}}(\mathbb{R})\right)$ has a presentation with generators indexed by rank 1 flats and relations indexed by rank 2 flats.

$$
\pi_{1}\left(Y_{A_{2}}(\mathbb{R})\right) \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{2} x_{3} x_{1} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1}=1\right\rangle
$$

Virtual Weyl groups

Definition

The virtual braid group $V B_{n}$ is the free product $S_{n} * B_{n}$ modulo "mixed relations" $s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}, s_{i} \sigma_{j}=\sigma_{j} s_{i}$ if $|i-j|>1$. The virtual symmetric group is $V S_{n}=V B_{n} /\left\langle\sigma_{i}^{2}=1\right\rangle$.

Example (BEER, IKLPR)

$\pi_{1}\left(Y_{A_{n-1}}(\mathbb{R})\right)=P V S_{n}=\operatorname{ker}\left(V S_{n} \xrightarrow{\sigma_{i}, s_{i} \mapsto s_{i}} S_{n}\right)$ and $\pi_{1}^{S_{n}}\left(Y_{A_{n-1}}(\mathbb{R})\right)=V S_{n}$.
Theorem (J.-Li)
When \mathcal{A} is a Weyl arrangement,

$$
\pi_{1}\left(Y_{\mathcal{A}}(\mathbb{R})\right) \cong P V W \text { and } \pi_{1}^{W}\left(Y_{\mathcal{A}}(\mathbb{R})\right) \cong V W
$$

where VW is the quotient of Bellingeri-Paris-Thiel's virtual Artin group $V A=W * A / \sim$ by $\sigma_{i}^{2}=1$.

