Pattern heights and the minimal power of q in a Kazhdan–Lusztig polynomial

Christian Gaetz (UC Berkeley)

joint work with **Yibo Gao** (Peking University)

Kazhdan–Lusztig polynomials

2 The minimal power of q in P_{ew}

3 An upper bound in simply-laced type

▲ 四 ▶

∃ ⇒

1 Kazhdan–Lusztig polynomials

2) The minimal power of q in P_{ew}

3 An upper bound in simply-laced type

Kazhdan-Lusztig polynomials

The Kazhdan–Lusztig polynomials $P_{uv}(q) \in \mathbb{N}[q]$ for u, v in a Coxeter group W are of foundational importance in geometric representation theory.

July 23, 2024

Bruhat order on the symmetric group

Minimal powers in KL polynomials

イロン イ理 とくほとう ほんし

3

Recursive definition of KL polynomials

The Kazhdan–Lusztig polynomials are the unique family of polynomials $P_{uv}(q) \in \mathbb{Z}[q]$ satisfying:

(1)
$$P_{uv}(q) = 0$$
 unless $u \le v$.
(2) $P_{uu}(q) = 1$ for all u .
(3) $\deg P_{uv}(q) \le \frac{1}{2} (\ell(v) - \ell(u) - 1)$ if u

(4) And, if u < v then

$$q^{\ell(\mathbf{v})-\ell(u)}P_{u\mathbf{v}}\left(\frac{1}{q}\right)=\sum_{x\in[u,v]}R_{ux}(q)P_{xv}(q).$$

< v.

Definition of R polynomials

The *R*-polynomials are the unique family of polynomials $R_{uv}(q) \in \mathbb{Z}[q]$ satisfying:

- (1) $R_{uv}(q) = 0$ unless $u \leq v$.
- (2) $R_{uu}(q) = 1$ for all *u*.

(3) If s is a descent of both u and v:

$$R_{uv}(q)=R_{us,vs}(q).$$

(4) If s is a descent of v but not of u:

$$R_{uv}(q) = qR_{us,vs}(q) + (q-1)R_{u,vs}(q).$$

An upper bound in simply-laced type

Smooth Schubert varieties and permutation patterns

Theorem (Kazhdan–Lusztig; Peterson; Lakshmibai–Sandhya)

TFAE for W simply laced:

- $P_{ew} = 1$,
- X_w is smooth,
- [e, w] is rank-symmetric,
- w avoids 3412 and 4231 (if $W = S_n$)

For example, $P_{e,3412} = 1 + q$.

Positivity

Theorem (Kazhdan–Lusztig; Elias–Williamson) For any $v \le w \in W$ we have $P_{vw} \in \mathbb{N}[q]$.

It is a major open problem to give a positive combinatorial formula for P_{vw} .

For any $v \le w \in W$ we have $P_{vw}(0) = 1$. We'll study the next term in the case v = e.

Definition

Let $w \in W$ be such that X_w is singular (so $P_{ew} \neq 1$). Define

$$h(w) = \min\{i > 0 \mid [q^i] P_{ew} \neq 0\}.$$

So we have $P_{ew} = 1 + cq^{h(w)} + higher order terms$.

イロト イヨト イヨト ・

3

How large can h(w) be?

Theorem (Björner–Ekedahl '09)

If X_w is singular we have:

$$\begin{split} h(w) &= \min\{i \mid \#[e, w]_i < \#[e, w]_{\ell(w)-i}\} \\ &= \min\{i \mid \dim H^{2i}(X_w) < \dim H^{2(\ell(w)-i)}(X_w)\} \end{split}$$

Conjecture (Billey-Postnikov '02)

Let W be of finite simply laced type (A, D, or E) with rank r. Suppose that X_w is singular. Then $h(w) \leq r$.

This conjecture is surprising, since P_{ew} is of degree $O(r^2)$.

Pattern heights

Definition (Cortez; Woo)

Suppose $1 \le i_1 < i_2 < i_3 < i_4 \le n$ are the positions of a 3412 pattern in w. The **height** of this occurrence is $w(i_1) - w(i_4)$. The **minimum height** minHeight(w) is the smallest height among all occurrences of 3412 in w.

Example

We have minHeight(3412) = 1 and minHeight(45312) = 2.

An exact formula for h(w) in Type A

Theorem (G.–Gao)

Let $w \in S_n$ with X_w singular. Then

$$h(w) = \begin{cases} 1, & \text{if } w \text{ contains } 4231, \\ \min \text{Height}(w), & \text{otherwise.} \end{cases}$$

Example

The permutation w = 45312 avoids 4231 and has minHeight(w) = 2. We have $P_{ew} = 1 + q^2$, so h(w) = 2.

Kazhdan–Lusztig polynomials

The minimal power of q in P_{ew}

3 An upper bound in simply-laced type

A tight bound

We resolve Billey and Postnikov's conjecture.

Theorem (G.-Gao)

Let W be of finite simply laced type (A, D, or E) with rank r. Suppose that X_w is singular. Then $h(w) \le r - 2$, and this bound is tight.

Example

For $w \in S_n$, minHeight(w) is maximized when

$$w = (n-1) n (n-2) (n-3) \cdots 3 1 2,$$

with minHeight(w) = $(n-1) - 2 = \operatorname{rank}(S_n) - 2$.

For types D and E we prove the bound but we don't have an exact formula for h(w).

Christian Gaetz

Minimal powers in KL polynomials

July 23, 2024

15/17

Techniques

- We use a hybrid between the Billey and Billey-Postnikov characterizations of smooth Schubert varieties in finite type by generalized permutation patterns.
- For certain of these generalized patterns, we show directly that containment implies h(w) = 1 or 2 using Björner–Ekedahl.
- If w avoids these patterns and contains others, we find J so that the projection X_w → X^J(w^J) induced by G/B → G/P_J is a fiber bundle. In this case we can understand [e, w] in terms of [e, w^J] ∩ W^J and [e, w_J].

Are there any questions?

▲ □ ▶ ▲ ⓓ ▶ ▲ ≧ ▶ ▲ ≧ ▶
 July 23, 2024

2