Pattern heights and the minimal power of q in a Kazhdan-Lusztig polynomial

Christian Gaetz (UC Berkeley)

joint work with
Yibo Gao (Peking University)

(1) Kazhdan-Lusztig polynomials
(2) The minimal power of q in $P_{\text {ew }}$
(3) An upper bound in simply-laced type
(1) Kazhdan-Lusztig polynomials

Kazhdan-Lusztig polynomials

The Kazhdan-Lusztig polynomials $P_{u v}(q) \in \mathbb{N}[q]$ for u, v in a Coxeter group W are of foundational importance in geometric representation theory.

Singularities of Schubert varieties
Representations of \mathfrak{g}

Hecke algebra of W and its representations

Bruhat order on the symmetric group

Recursive definition of KL polynomials

The Kazhdan-Lusztig polynomials are the unique family of polynomials $P_{u v}(q) \in \mathbb{Z}[q]$ satisfying:
(1) $P_{u v}(q)=0$ unless $u \leq v$.
(2) $P_{u u}(q)=1$ for all u.
(3) $\operatorname{deg} P_{u v}(q) \leq \frac{1}{2}(\ell(v)-\ell(u)-1)$ if $u<v$.
(4) And, if $u<v$ then

$$
q^{\ell(v)-\ell(u)} P_{u v}\left(\frac{1}{q}\right)=\sum_{x \in[u, v]} R_{u x}(q) P_{x v}(q) .
$$

Definition of R polynomials

The R-polynomials are the unique family of polynomials $R_{u v}(q) \in \mathbb{Z}[q]$ satisfying:
(1) $R_{u v}(q)=0$ unless $u \leq v$.
(2) $R_{u u}(q)=1$ for all u.
(3) If s is a descent of both u and v :

$$
R_{u v}(q)=R_{u s, v s}(q)
$$

(4) If s is a descent of v but not of u :

$$
R_{u v}(q)=q R_{u s, v s}(q)+(q-1) R_{u, v s}(q)
$$

(1) Kazhdan-Lusztig polynomials

(2) The minimal power of q in $P_{e w}$

(3) An upper bound in simply-laced type

Smooth Schubert varieties and permutation patterns

Theorem (Kazhdan-Lusztig; Peterson; Lakshmibai-Sandhya)
TFAE for W simply laced:

- $P_{\text {ew }}=1$,
- X_{w} is smooth,
- $[e, w]$ is rank-symmetric,
- w avoids 3412 and 4231 (if $W=S_{n}$)

For example, $P_{e, 3412}=1+q$.

$$
w=3412
$$

Positivity

Theorem (Kazhdan-Lusztig; Elias-Williamson)
For any $v \leq w \in W$ we have $P_{v w} \in \mathbb{N}[q]$.
It is a major open problem to give a positive combinatorial formula for $P_{v w}$.

For any $v \leq w \in W$ we have $P_{v w}(0)=1$. We'll study the next term in the case $v=e$.

Definition
Let $w \in W$ be such that X_{w} is singular (so $P_{\text {ew }} \neq 1$). Define

$$
h(w)=\min \left\{i>0 \mid\left[q^{i}\right] P_{e w} \neq 0\right\} .
$$

So we have $P_{\text {ew }}=1+c q^{h(w)}+$ higher order terms.

How large can $h(w)$ be?

Theorem (Björner-Ekedahl '09)
If X_{w} is singular we have:

$$
\begin{aligned}
h(w) & =\min \left\{i \mid \#[e, w]_{i}<\#[e, w]_{\ell(w)-i}\right\} \\
& =\min \left\{i \mid \operatorname{dim} H^{2 i}\left(X_{w}\right)<\operatorname{dim} H^{2(\ell(w)-i)}\left(X_{w}\right)\right\} .
\end{aligned}
$$

Conjecture (Billey-Postnikov '02)
Let W be of finite simply laced type $(A, D$, or $E)$ with rank r. Suppose that X_{w} is singular. Then $h(w) \leq r$.

This conjecture is surprising, since $P_{e w}$ is of degree $O\left(r^{2}\right)$.

Pattern heights

Definition (Cortez; Woo)

Suppose $1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq n$ are the positions of a 3412 pattern in w. The height of this occurrence is $w\left(i_{1}\right)-w\left(i_{4}\right)$. The minimum height minHeight (w) is the smallest height among all occurrences of 3412 in w.

Example

We have $\operatorname{minHeight}(3412)=1$ and $\operatorname{minHeight(45312)}=2$.

An exact formula for $h(w)$ in Type A

Theorem (G.-Gao)
Let $w \in S_{n}$ with X_{w} singular. Then

$$
h(w)= \begin{cases}1, & \text { if } w \text { contains 4231; } \\ \operatorname{minHeight}(w), & \text { otherwise }\end{cases}
$$

Example

The permutation $w=45312$ avoids 4231 and has $\operatorname{minHeight}(w)=2$. We have $P_{\text {ew }}=1+q^{2}$, so $h(w)=2$.

(1) Kazhdan-Lusztig polynomials

(2) The minimal power of q in $P_{\text {ew }}$
(3) An upper bound in simply-laced type

A tight bound

We resolve Billey and Postnikov's conjecture.
Theorem (G.-Gao)
Let W be of finite simply laced type $(A, D$, or $E)$ with rank r. Suppose that X_{w} is singular. Then $h(w) \leq r-2$, and this bound is tight.

Example

For $w \in S_{n}$, minHeight (w) is maximized when

$$
w=(n-1) n(n-2)(n-3) \cdots 312,
$$

with $\operatorname{minHeight}(w)=(n-1)-2=\operatorname{rank}\left(S_{n}\right)-2$.

For types D and E we prove the bound but we don't have an exact formula for $h(w)$.

Techniques

- We use a hybrid between the Billey and Billey-Postnikov characterizations of smooth Schubert varieties in finite type by generalized permutation patterns.
- For certain of these generalized patterns, we show directly that containment implies $h(w)=1$ or 2 using Björner-Ekedahl.
- If w avoids these patterns and contains others, we find J so that the projection $X_{w} \rightarrow X^{J}\left(w^{J}\right)$ induced by $G / B \rightarrow G / P_{J}$ is a fiber bundle. In this case we can understand $[e, w]$ in terms of $\left[e, w^{J}\right] \cap W^{J}$ and [$\left.e, w_{J}\right]$.

Are there any questions?

