On the size of Bruhat intervals

Damián de la Fuente Joint work with F. Castillo, N. Libedinsky and D. Plaza

FPSAC 2024

Damián de la Fuente

3

Let (W, S) be a Coxeter system, equipped with a length function ℓ and a partial order \leq (the Bruhat order):

• For $w \in W$, write

$$w = s_1 s_2 \cdots s_k, \quad s_i \in S.$$

If k is minimal, we define $\ell(w) = k$ and we say that $s_1 s_2 \cdots s_k$ is a reduced expression of w.

• We say that $u \le w$ if each reduced expression of w has a subexpression which is a reduced expression of u.

Let (W, S) be a Coxeter system, equipped with a length function ℓ and a partial order \leq (the Bruhat order):

• For $w \in W$, write

$$w = s_1 s_2 \cdots s_k, \quad s_i \in S.$$

If k is minimal, we define $\ell(w) = k$ and we say that $s_1 s_2 \cdots s_k$ is a reduced expression of w.

 We say that u ≤ w if each reduced expression of w has a subexpression which is a reduced expression of u.

Main problem: Compute the cardinalities of Bruhat intervals

$$[u,w] \coloneqq \{z \in W \mid u \le z \le w\},\$$

in particular of lower Bruhat intervals $\leq w \coloneqq [id, w]$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Some known results

• If
$$\ell(w) - \ell(u) = 2$$
, then $[u, w] \cong$

 \sim

<ロト<回ト<Eト<Eト 差 のQC 3/9

Some known results

• If
$$\ell(w) - \ell(u) = 2$$
, then $[u, w] \cong$

 (Oh-Postnikov-Yoo, 2008): For smooth elements in the symmetric group, | ≤ w| is the number of chambers in the hyperplane arrangement corresponding to all inversions of w.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国 …

• If
$$\ell(w) - \ell(u) = 2$$
, then $[u, w] \cong$

- (Oh-Postnikov-Yoo, 2008): For smooth elements in the symmetric group, | ≤ w| is the number of chambers in the hyperplane arrangement corresponding to all inversions of w.
- (Oh-Yoo, 2010): Generalization of the previous result for all (finite) Weyl groups (for rationally smooth elements).

• If
$$\ell(w) - \ell(u) = 2$$
, then $[u, w] \cong$

- (Oh-Postnikov-Yoo, 2008): For smooth elements in the symmetric group, | ≤ w| is the number of chambers in the hyperplane arrangement corresponding to all inversions of w.
- (Oh-Yoo, 2010): Generalization of the previous result for all (finite) Weyl groups (for rationally smooth elements).
- (Libedinsky-Patimo, 2023) and (Batistelli-Bingham-Plaza, 2023): In affine type \widetilde{A}_2 (\widetilde{B}_2 , respectively), explicit formula of all $| \leq w |$. Under some parametrization of the group, these are polynomial formulas.

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - の Q ()

The Lattice Formula

Let Φ be an irreducible root system with finite Weyl group W_f and affine Weyl group W_a . For a dominant coweight λ , we define

 $\mathsf{P}^{\Phi}(\lambda) \coloneqq \mathsf{Conv}(W_f \cdot \lambda).$

The Lattice Formula

Let Φ be an irreducible root system with finite Weyl group W_f and affine Weyl group W_a . For a dominant coweight λ , we define

 $\mathsf{P}^{\Phi}(\lambda) \coloneqq \mathsf{Conv}(W_f \cdot \lambda).$

Theorem: Lattice Formula

For every dominant coweight λ , we have

$$Alcoves(\leq \theta(\lambda)) = \bigsqcup_{\mu} Alcoves(W_f) + \mu,$$

where μ ranges over $\mathsf{P}^{\Phi}(\lambda) \cap (\lambda + \mathbb{Z}\Phi^{\vee})$.

In particular,

$$| \leq heta(\lambda)| = |W_f| |\mathsf{P}^{\Phi}(\lambda) \cap (\lambda + \mathbb{Z} \Phi^{ee})|.$$

$$\begin{split} | \leq \theta(\lambda) | &= \mu_{1,2} \mathsf{Area}(F_{1,2}) + \mu_1 \mathsf{Length}(F_1) + \mu_2 \mathsf{Length}(F_2) + \mu_{\emptyset} \mathsf{Card}(F_{\emptyset}) \\ &= \mu_{1,2} V_{1,2}(\lambda) + \mu_1 V_1(\lambda) + \mu_2 V_2(\lambda) + \mu_{\emptyset} V_{\emptyset}(\lambda) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 7/9

The Geometric Formula (example in A_2)

$$\begin{split} | \leq \theta(\lambda) | &= \mu_{1,2} \mathsf{Area}(F_{1,2}) + \mu_1 \mathsf{Length}(F_1) + \mu_2 \mathsf{Length}(F_2) + \mu_{\emptyset} \mathsf{Card}(F_{\emptyset}) \\ &= \mu_{1,2} V_{1,2}(\lambda) + \mu_1 V_1(\lambda) + \mu_2 V_2(\lambda) + \mu_{\emptyset} V_{\emptyset}(\lambda) \end{split}$$

If $\lambda = (a, b)$ in the fundamental weight basis, then:

• $V_{1,2}(a,b) = \frac{\sqrt{3}}{2}(a^2 + 4ab + b^2),$ $\mu_{1,2} = 2\sqrt{3}$ • $V_1(a,b) = a\sqrt{2},$ $\mu_1 = \frac{9}{2}\sqrt{2}$ • $V_2(a,b) = b\sqrt{2},$ $\mu_2 = \frac{9}{2}\sqrt{2}$ • $V_{\emptyset}(a,b) = 1,$ $\mu_{\emptyset} = 6$

Thus,

$$| \le \theta(a, b)| = 3a^2 + 3b^2 + 12ab + 9a + 9b + 6$$

Let Φ be any irreducible root system and let S_f be the set of simple reflections of the finite Weyl group W_f .

Theorem: Geometric Formula

There exist unique real numbers μ_J^{Φ} such that for any dominant coweight λ ,

$$|\leq heta(\lambda)| = \sum_{J \subset S_f} \mu^{oldsymbol{\Phi}}_J V^{oldsymbol{\Phi}}_J(\lambda).$$

Important: The coefficients μ_J^{Φ} do not depend on λ .

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Let Φ be any irreducible root system and let S_f be the set of simple reflections of the finite Weyl group W_f .

Theorem: Geometric Formula

There exist unique real numbers μ_J^{Φ} such that for any dominant coweight λ ,

$$|\leq heta(\lambda)| = \sum_{J \subset S_f} \mu_J^{\Phi} V_J^{\Phi}(\lambda).$$

Important: The coefficients μ_J^{Φ} do not depend on λ . If $\lambda = (m_1, \ldots, m_n)$ in the fundamental coweight basis, then the volumes $V_J^{\Phi}(\lambda)$ are polynomials in m_1, \ldots, m_n . ($n = \text{rank of } \Phi$) Thus, the Geometric Formula implies that $| \leq \theta(\lambda) |$ is also a polynomial of degree n in m_1, \ldots, m_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

