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Young diagram (Standard) Young tableau

Young diagram: stack of boxes in the upper quarter-plane.

(Standard) Young tableau: filling of a Young diagram with integers from 1
to n, increasing upwards.

Our model: fix a Young diagram λ, and take a uniform random Young
tableau T of shape λ (Biane, Pittel, Romik, Angel, Holroyd, Virag, Gorin,
Rahman, Sun, Banderier, Marchal, Wallner, Śniady, Maślanka, Chan, Pak,
Panova, Gordenko, Xu, . . . ).
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Motivations

Bijection with other models: constrained random permutations (RSK
bijection), random sorting networks (Edelman–Greene bijection).

Asymptotic representation theory: random tableaux encode some
asymptotic information on restrictions of representations of large
symmetric groups.

Link with the well-studied lozenge tiling models (Young tableaux are in
some sense a limit case of lozenge tilings);

Tractable model of random linear extensions of 2-dimensional posets.
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Simulation (first example)

We consider the n-th dilatation n ·λ0

of the following diagram

i.e. we replace each cell by a n× n
square of cells.

A uniform tableau TN of shape n·λ0:

Here, n= 100 so the tableau TN has N = 130000 cells. There seems to be a
smooth limit surface.
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Simulation (second example)

This time, take λ0 to be

thickness: 3 boxes
length:107 boxes

93 boxes

103 boxes

A uniform tableau TN of shape n·λ0:

Here, n= 6 so the diagram/tableau has N = 356400 cells.
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Simulation (second example, with a zoom)

There still seems to be a limiting surface, but this time it is discontinuous!
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Results (informally)

Previous contributions (Biane ’03, Sun ’18): convergence to a limiting
surface with some implicit description (via Markov–Krein
correspondence and free compression or via a variational principle).

Our results:
a more explicit description of the limit surface in the multirectangular
case (dilatation of a fixed diagram λ0);
characterization of the diagrams λ0 leading to discontinuous limit
surfaces;
a local limit result (not in this talk).
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Height function

Notation: if T is a tableau of size N, we let
T (x ,y): content of the cell with coordinates (x ,y) in T ;

HT (x ,t)=#
{
y :T (x ,y)≤Nt

}
: number of entries on the vertical line

x smaller than Nt.
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T (2, 3) = 7

Tableau function

(y 7→T (x ,y) and t 7→HT (x ,t) are roughly inverses of each other.)
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Tableau and height functions
(y 7→T (x ,y) and t 7→HT (x ,t) are roughly inverses of each other.)
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Existence of the limiting height function

Theorem (Biane ’03, Sun ’18)

Let λ0 be a fixed Young diagram. For n≥ 1, we let TN be a uniform
random Young tableau of shape λN := n ·λ0. Then there exists a
deterministic function H∞ such that

1p
N
HTN

(
bx

p
Nc,t

)
−−−−−→
N→+∞

H∞(x ,t),

in probability, uniformly on (x ,t).

Question: How to compute H∞?
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The critical equation

We encode λ0 by its interlacing coor-
dinates a0 < b1 < a1 < ·· · < bm < am:

a0 a1 a2 a3b1 b2 b3

Definition: the critical equation
For parameters (x ,t), we consider
the polynomial equation

U
m∏
i=1

(x −ηbi +U)

= (1− t)
m∏
i=0

(x −ηai +U),

where η= 1/
√

|λ0|.
Lemma
The critical equation has at least m−1 real roots.

We denote Uc(x ,t) its complex root with positive imaginary part, if it
exists (in this case, we say that (x ,t) is in the “liquid region”).
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Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, ’23)

H∞(x ,t)= 1
π

∫ t

0

ImUc(x ,s)

1− s
ds .

Convention: ImUc(x ,s)= 0 if the critical equation has only real root
("frozen region").

Proof: uses a determinantal point process description of random tableaux
(Gorin–Rahman, ’19), and saddle point analysis (Uc is the saddle point).
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Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, ’23)

H∞(x ,t)= 1
π

∫ t

0

ImUc(x ,s)

1− s
ds .

Example: square shape tableaux (Romik–Pittel, ’07), a0 =−1,b1 = 0,a1 = 1

The critical equation U(x +U)= (1− t)(x +1+U)(x −1+U) is a second
degree polynomial equation, and we get

H∞¦ (x ,t)= 1
π

∫ t

0

p
4s −4s2−x2

2s −2s2 ds ,

with the convention that py = 0 if y ≤ 0.
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The heart example
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a realization of TN its height function HTN
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The pipe example

thickness: 3 boxes
length:107 boxes

93 boxes

103 boxes
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Why is there a discontinuity in the pipe example?

Zoom on the boundary of the liquid
region (blue line x = x0 ≈−0.9)

t

H∞(x0, t)

liquid phases

frozen phases

Schematic representation of
the function t 7→H∞(x0,t)

liquid phases

frozen phases

Schematic representation of
the function y 7→T∞(x0,y)
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When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x2 = y3).
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(In general, there are m−1 cusps, where m is the number of distinct parts
in λ0.)
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When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x2 = y3).

With some computation, we get

Theorem (Borga, Boutillier, F., Méliot, ’23)

The limiting surface T∞
λ0

is continuous if and only if the interlacing
coordinates a0 < b1 < a1 < ·· · < bm < am of λ0 satisfy

m∑
i=0
i 6=i0

1
ai0 −ai

=
m∑
i=1

1
ai0 −bi

, for all i0 = 1, . . . ,m−1.

In particular, for m> 1, the limit surfaces are generically discontinuous!
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Thanks for your attention!
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Proof strategy 1 – determinantal point processes

Notation:
E : locally compact Polish space
µ: reference measure on E
K : measurable function E 2 →C.
X : simple point process on E

Definition (determinantal point process)

X is a determinantal point process on E with kernel K if it has a joint
intensity with respect to µ given by

ρn(x1, . . . ,xn)= det[K (xi ,xj)]1≤i ,j≤n,

for every n≥ 1 and distinct x1, . . . ,xn ∈E .

Used a lot in integrable probability theory/statistical physics since 90’s, but
also in random matrix theory, statistics, . . .
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Proof strategy 2 – tableaux and bead configurations

Definition (Poissonized tableaux)

A Poissonized tableau of shape λ is an upward increasing filling of λ with
real numbers in [0,1].

With a Poissonized tableau T , we associate a bead configuration

MT :=
{
(x ,T (x ,y)),(x ,y) ∈λ

}
⊆ Z× [0,1].

t = 0

t = 1

0 1 2 3 4 5−1−2−3−40

.15
.2

.4
.55

.95
.85

.5
.25

.7
.9

t = .5

Note: HT (x ,t) is the number of beads in {x}× [0,t].
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Proof strategy 3 – Gorin–Rahman theorem

Theorem (Gorin, Rahman, ’19)

Let T be a uniform random Poissonized tableau of fixed shape λ. Then its
associated bead process MT is a determinantal point process on Z× [0,1]
with correlation kernel

Kλ((x1,t1),(x2,t2))=− 1
(2iπ)2

·∮
γz

∮
γw

Fλ(z)

Fλ(w)

Γ(w −x1+1)
Γ(z −x2+1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z −w
dw dz ,

where Fλ(u)= Γ(u+1)
∏∞

i=1
u+i

u−λi+i and the double contour integral runs
over counterclockwise paths γw and γz such that

γw is inside (resp. outside) γz if t1 ≥ t2 (resp. t1 < t2);
γw and γz contain all the integers in [−`(λ),x1−1] and in [x2,λ1−1]
respectively;
the ratio 1

z−w remains uniformly bounded.
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Proof strategy 4 – Rewriting the kernel

Consequence of Gorin–Rahman’s formula:

E
[
HT (x ,t)

]= ∫ t

0
K ((x ,s),(x ,s))ds

To compute limN→+∞ 1p
N
HTN

(
bxpNc,t

)
, we look for a limit of

1p
N
K ((bx

p
Nc,s),(bx

p
Nc,s)).

Via Stirling approximation and standard calculus, we get
1p
N
K

(
(bx

p
Nc,s),(bx

p
Nc,s)

)≈− 1
(2iπ)2

·∮
γZ

∮
γW

e
p
N(S(W )−S(Z)) h(W ,Z )

W −Z
dW dZ ,

where
S(U)= g(U)−U log(1− t0)−∑m

i=0g(x0−ηai +U)+∑m
i=1g(x0−ηbi +U)

with g(U)=U log(U) and some function h.
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Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in∮
γZ

∮
γW

e
p
N(S(W )−S(Z)) h(W ,Z )

W −Z
dW dZ .

Idea: deform γZ and γW such that S(W )< S(Z ) on the new contours.

0

Uc

U c

γW γZ

A B C 0

Uc

U c

γnew
W γnew

Z

CBA D E

Schematic representation of the integration contours before and after
transformation: in the white (resp. yellow) regions, we have S(Z )> S(W )
(resp. S(Z )< S(W )).
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The point Uc on the above picture should satisfy S ′(Uc)= 0, which is
exactly the critical equation! (So the above picture is valid in the liquid
region only.)
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After change of contour, the integral tends to 0. The dominant term
asymptotically is the residue term for the pole W −Z , which is an integral
from Uc to Uc .
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