Tamari intervals and blossoming trees

Wenjie Fang, Éric Fusy, Philippe Nadeau

24 July 2024, Ruhr-Universität Bochum, FPSAC 2024

Binary trees

Binary trees : n binary internal nodes and $n+1$ leaves

Counted by Catalan numbers: Cat $_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$
Rotation (from left to right) :

Tamari lattice

Left-to-right rotation defines a self-dual lattice (Tamari 1962)

Deep links with subjects in combinatorics, and many generalizations!

The next level: intervals

A Tamari interval: $[S, T]$ of binary trees with $S \leq T$

Motivation: conjecturally related to trivariate diagonal coinvariant spaces, also with operads... and nice numbers!

Many interesting families!

- Synchronized intervals: ν-Tamari
- New/modern intervals: enumeration, algebraic link
- Infinitely modern intervals: further restriction
- Kreweras intervals: algebraic link

They are often in bijection with families of planar maps!

What is a planar map?

Planar map: drawing of graphs on a plane without extra crossing

planar

bipartite planar

They are rooted, i.e., with a marked corner.
Also many interesting families: triangulation, bipartite, ...

Tamari intervals and planar maps

Intervals	Formula	Planar maps
General	$\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$	3-connected triangulation
Synchronized	$\frac{2}{n(n+1)}\binom{3 n}{n-1}$	non-separable
New/modern	$\frac{3 \cdot 2^{n-2}}{n(n+1)}\binom{2 n-2}{n-1}$	bipartite
Kreweras	$\frac{1}{2 n+1}\binom{3 n}{n}$	stacked triangulation

Also in bijection with other objects: interval posets, closed flow in forest, fighting fish, λ-term,...

Many have worked on them: Bernardi, Bonichon, Bousquet-Mélou, Ceballos, Chapoton, Châtel, Chenevière, Combe, Duchi, F., Fusy, Henriet, Humbert, Préville-Ratelle, Pons, Rognerud, Viennot, Zeilberger, ...
But a different equation / bijection for each family...

Our results

(Bicolored) Blossoming tree: an unrooted plane tree such that

- Each edge is half red and halef blue.
- Each node has two buds, splitting reds and blues.

Many variants, used a lot in enumeration of maps (Poulalhon-Schaeffer 2006)!

Theorem (F.-Fusy-Nadeau 2024+)

Tamari intervals of size n are in bijection with bicolored blossoming trees with n edges (thus $n+1$ nodes).

Inspired by interval-posets (Châtel-Pons 2015), giving uniform enumeration. Many enumerative and structural consequences.

Canonical drawing and smooth drawing

Canonical drawing: larger tree on top, smaller tree flipped on bottom

Smooth drawing: replace wedges by semi-circles
Each leaf has arcs of each color in one direction, due to type.

Smooth drawing and blossoming tree

To blossoming tree: each segment draws two half-edges

Smooth drawing

Smooth drawing and blossoming tree

Break the middle line into buds, conditions satisfied!

Smooth drawing

Forbidden

- in Tamari interval

Smooth drawing and blossoming tree

Just wiggle a bit...

Smooth drawing

Smooth drawing and blossoming tree

Just wiggle a bit...

Smooth drawing

Forbidden

Smooth drawing and blossoming tree

Just wiggle a bit...

Smooth drawing

Forbidden

Smooth drawing and blossoming tree

Just wiggle a bit...

Smooth drawing

Forbidden

in Tamari interval

Smooth drawing and blossoming tree

... and we get a nice blossoming tree

Smooth drawing

Forbidden

in Tamari interval

The reverse direction

To find the order of nodes, we do closure of buds to edges.

The reverse direction

To find the order of nodes, we do closure of buds to edges.

The reverse direction

To find the order of nodes, we do closure of buds to edges.

The reverse direction

To find the order of nodes, we do closure of buds to edges.

The reverse direction

Stretch the thread, and we get the trees.

Refined statistics

Type of a leaf: 0 for right child, 1 for left child
Types of a node (pair of leaves): $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Statistics considered by Chapoton for new intervals.

Types in blossoming tree: presence of blue/red half-edges

First enumeration result

Theorem (Bostan-Chyzak-Pilaud 2023+)

The number of Tamari intervals of size n with k pairs of leaves of type $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is

$$
\frac{2}{n(n+1)}\binom{n+1}{k}\binom{3 n}{k-2} .
$$

Gives the f-vector of canonical complex of the Tamari lattice!
Synchronized intervals: special case $k=n+1$
Obtained by solving functional equations.
Blossoming trees: k nodes with adjacent buds among $n+1$ nodes.
Cyclic lemma suffices!

Duality

Duality on Tamari intervals: just a half-turn.

Duality on blossoming trees: just exchanging colors.

Unified enumeration

Interesting families can be described by forbidden patterns!

Synchronized Modern Infinitely modern Kreweras
Another proof of bijection in the spirit of (Poulalhon-Schaeffer 2006) for

- General intervals \leftrightarrow triangulations (Bernardi-Bonichon 2009)
- Synchronized \leftrightarrow non-separable maps (F.-Préville-Ratelle 2017)
- Kreweras \leftrightarrow ternary trees (Bernardi-Bonichon 2009)

Leads to different tree specifications, thus unified enumeration.
Even with refined by node types and intersection of families!
Self-dual sub-family: those stable by exchanging colors. Doable!

Enumeration results

Types	General size n	Self-dual size $2 k$	Self-dual size $2 k+1$
General	$\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$	$\frac{1}{3 k+1}\binom{4 k}{k}$	$\frac{1}{k+1}\binom{4 k+2}{k}$
Synchronized	$\frac{2}{n(n+1)}\binom{3 n}{n-1}$	0	$\frac{1}{k+1}\binom{3 k+1}{k}$
Modern $/$ new for size-1	$\frac{3 \cdot 2^{n-1}}{(n+1)(n+2)}\binom{2 n}{n}$	$\frac{2^{k-1}}{k+1}\binom{2 k}{k}$	$\frac{2^{k}}{k+1}\binom{2 k}{k}$
Modern and synchronized	$\frac{1}{n+1}\binom{2 n}{n}$	0	$\frac{1}{k+1}\binom{2 k}{k}$
Inf. modern $/$ Kreweras	$\frac{1}{2 n+1}\binom{3 n}{n}$	$\frac{1}{2 k+1}\binom{3 k}{k}$	$\frac{1}{k+1}\binom{3 k+1}{k}$

Discussion

- Mysterious involution: reflection on blossoming trees
- Exchanges infinitely modern and Kreweras
- What are the images of modern intervals?
- How to explain Reiner's observation: self-dual intervals $=q$-analogue of $\#$ general intervals with $q=-1$?
- Breaks the order in canopy, so hard to get m-Tamari?
- Large scale structure?

Discussion

- Mysterious involution: reflection on blossoming trees
- Exchanges infinitely modern and Kreweras
- What are the images of modern intervals?
- How to explain Reiner's observation: self-dual intervals $=q$-analogue of $\#$ general intervals with $q=-1$?
- Breaks the order in canopy, so hard to get m-Tamari?
- Large scale structure?

Thank you for listening!

