Introduction	Bijection	Consequences	Discussion
000000	000	00000	O

Tamari intervals and blossoming trees

Wenjie Fang, Éric Fusy, Philippe Nadeau

Melinda Fawver, CC BY-NC 4.0, from iNaturalist

24 July 2024, Ruhr-Universität Bochum, FPSAC 2024

Introduction	Bijection	Consequences	Discussion
•00000	000	00000	O
Binary trees			

Binary trees : n binary internal nodes and n+1 leaves

Counted by Catalan numbers: $\operatorname{Cat}_n = \frac{1}{2n+1} \binom{2n+1}{n}$

Rotation (from left to right) :

Introduction	Bijection	Consequences	Discussion
OOOOO	000	00000	O
Tamari lattice			

Left-to-right rotation defines a self-dual lattice (Tamari 1962)

Deep links with subjects in combinatorics, and many generalizations!

Introduction	Bijection	Consequences	Discussion
000000	000	00000	O

The next level: intervals

A Tamari interval: [S,T] of binary trees with $S \leq T$

Motivation: conjecturally related to trivariate diagonal coinvariant spaces, also with operads... and nice numbers!

Many interesting families!

- Synchronized intervals: *v*-Tamari
- New/modern intervals: enumeration, algebraic link
- Infinitely modern intervals: further restriction
- Kreweras intervals: algebraic link

They are often in bijection with families of planar maps!

Introduction	Bijection	Consequences	Discussion
000000	000	00000	O
What is a pla	nar map?		

Planar map: drawing of graphs on a plane without extra crossing

They are rooted, *i.e.*, with a marked corner.

Also many interesting families: triangulation, bipartite, ...

Tamari intervals and planar maps

Intervals	Formula	Planar maps
General	$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$	bridgeless 3-connected triangulation
Synchronized	$\frac{2}{n(n+1)}\binom{3n}{n-1}$	non-separable
New/modern	$\frac{3 \cdot 2^{n-2}}{n(n+1)} \binom{2n-2}{n-1}$	bipartite
Kreweras	$\frac{1}{2n+1}\binom{3n}{n}$	stacked triangulation

Also in bijection with other objects: interval posets, closed flow in forest, fighting fish, λ -term, ...

Many have worked on them: Bernardi, Bonichon, Bousquet-Mélou, Ceballos, Chapoton, Châtel, Chenevière, Combe, Duchi, F., Fusy, Henriet, Humbert, Préville-Ratelle, Pons, Rognerud, Viennot, Zeilberger, ...

But a different equation / bijection for each family...

Introduction	Bijection	Consequences	Discussion
000000	000	00000	O
Our results			

Our results

(Bicolored) Blossoming tree: an unrooted plane tree such that

- Each edge is half red and halef blue.
- Each node has two **buds**, splitting reds and blues.

Many variants, used a lot in enumeration of maps (Poulalhon-Schaeffer 2006)!

Theorem (F.–Fusy–Nadeau 2024+)

Tamari intervals of size n are in bijection with bicolored blossoming trees with n edges (thus n + 1 nodes).

Inspired by interval-posets (Châtel-Pons 2015), giving uniform enumeration.

Many enumerative and structural consequences.

Canonical drawing and smooth drawing

Canonical drawing: larger tree on top, smaller tree flipped on bottom

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

To blossoming tree: each segment draws two half-edges

Introduction 000000			Bijection OOO		Consequences 00000	Discussion O
_		_		_		

Break the middle line into buds, conditions satisfied!

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

Introduction	Bijection	Consequences	Discussion
000000	O●O	00000	O

... and we get a nice blossoming tree

Introduction	Bijection	Consequences	Discussion
000000	00●	00000	O
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
000000	00●	00000	O
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
000000	OO●		O
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
000000	OO●		O
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
000000	00●	00000	O
The reverse	direction		

Stretch the thread, and we get the trees.

Introduction	Bijection	Consequences	Discussion
000000	000	• 0000	O
Refined statistics			

- Type of a leaf: 0 for right child, 1 for left child
- Types of a node (pair of leaves): $\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}$

Statistics considered by Chapoton for new intervals.

Types in blossoming tree: presence of blue/red half-edges

Introduction	Bijection	Consequences	Discussion
000000	000	OOOO	O
— .			

First enumeration result

Theorem (Bostan–Chyzak–Pilaud 2023+)

The number of Tamari intervals of size n with k pairs of leaves of type $\begin{bmatrix} 0\\0 \end{bmatrix}$ or $\begin{bmatrix} 1\\1 \end{bmatrix}$ is $\frac{2}{n(n+1)} \binom{n+1}{k} \binom{3n}{k-2}.$

Gives the *f*-vector of canonical complex of the Tamari lattice!

```
Synchronized intervals: special case k = n + 1
```

Obtained by solving functional equations.

Blossoming trees: k nodes with adjacent buds among n + 1 nodes. Cyclic lemma suffices!

Introduction	Bijection	Consequences	Discussion
000000	000		O
Duality			

Duality on Tamari intervals: just a half-turn.

Duality on blossoming trees: just exchanging colors.

Introduction	Bijection	Consequences	Discussion
000000	000		O

Unified enumeration

Interesting families can be described by forbidden patterns!

Synchronized Modern Infinitely modern Kreweras

Another proof of bijection in the spirit of (Poulalhon-Schaeffer 2006) for

- General intervals ↔ triangulations (Bernardi–Bonichon 2009)
- Synchronized ↔ non-separable maps (F.–Préville-Ratelle 2017)
- Kreweras ↔ ternary trees (Bernardi–Bonichon 2009)

Leads to different tree specifications, thus unified enumeration. Even with refined by node types and intersection of families! Self-dual sub-family: those stable by exchanging colors. Doable!

Introduction	Bijection	Consequences	Discussion
000000	000	○○○○●	O

Enumeration results

Types	General size n	Self-dual size $2k$	Self-dual size $2k + 1$
General	$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$	$\frac{1}{3k+1}\binom{4k}{k}$	$\frac{1}{k+1}\binom{4k+2}{k}$
Synchronized	$\frac{2}{n(n+1)}\binom{3n}{n-1}$	0	$\frac{1}{k+1}\binom{3k+1}{k}$
Modern / new for size-1	$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)}\binom{2n}{n}$	$\frac{2^{k-1}}{k+1}\binom{2k}{k}$	$\frac{2^k}{k+1}\binom{2k}{k}$
Modern and synchronized	$\frac{1}{n+1}\binom{2n}{n}$	0	$\frac{1}{k+1}\binom{2k}{k}$
Inf. modern / Kreweras	$\frac{1}{2n+1}\binom{3n}{n}$	$\frac{1}{2k+1}\binom{3k}{k}$	$\frac{1}{k+1}\binom{3k+1}{k}$

Introduction	Bijection	Consequences	Discussion
000000	000	00000	

Discussion

- Mysterious involution: reflection on blossoming trees
 - Exchanges infinitely modern and Kreweras
 - What are the images of modern intervals?
- How to explain Reiner's observation: self-dual intervals = q-analogue of # general intervals with q = -1?
- Breaks the order in canopy, so hard to get *m*-Tamari?
- Large scale structure?

Introduction 000000	Bijection 000	Consequences	Discussion

Discussion

- Mysterious involution: reflection on blossoming trees
 - Exchanges infinitely modern and Kreweras
 - What are the images of modern intervals?
- How to explain Reiner's observation: self-dual intervals = q-analogue of # general intervals with q = -1?
- Breaks the order in canopy, so hard to get *m*-Tamari?
- Large scale structure?

Thank you for listening!