Bijections for Graphs and Lawrence Polytopes

Changxin Ding

Georgia Institute of Technology

FPSAC 2024
July 22

Introduction |

Let G be a finite undirected connected graph. By the matrix-tree theorem, we have

$$
|\operatorname{Jac}(G)|=\# \text { spanning trees of } G
$$

- $\operatorname{Jac}(G)$ is the Jacobian group/sandpile group/Picard group/critical group of G.
- A vague question: under certain conditions, is there a canonical simply transitive action of $\mathrm{Jac}(G)$ on the set of spanning trees? [Jordan Ellenberg, Mathoverflow 2011]
- For plane graphs (not just planar), the answer is yes. [Chan-Church-Grochow '18] [Baker-W'ang '18], [Ganguly-McDonough '23], etc
- For a general graph, we probably need some extra data to define the action

Let G be a finite undirected connected graph. By the matrix-tree theorem, we have

$$
|\operatorname{Jac}(G)|=\# \text { spanning trees of } G
$$

- $\operatorname{Jac}(G)$ is the Jacobian group/sandpile group/Picard group/critical group of G.
- A vague question: under certain conditions, is there a canonical simply transitive action of $\mathrm{Jac}(G)$ on the set of spanning trees? [Jordan Ellenberg, Mathoverflow 2011]
- For plane graphs (not just planar), the answer is yes. [Chan-Church-Grochow '18] [Baker-Wang '18], [Ganguly-McDonough '23], etc.
- For a genera' grap', we probab'ly need some extra data to define the action

Let G be a finite undirected connected graph. By the matrix-tree theorem, we have

$$
|\operatorname{Jac}(G)|=\# \text { spanning trees of } G
$$

- $\operatorname{Jac}(G)$ is the Jacobian group/sandpile group/Picard group/critical group of G.
- A vague question: under certain conditions, is there a canonical simply transitive action of $\mathrm{Jac}(G)$ on the set of spanning trees? [Jordan Ellenberg, Mathoverflow 2011]
- For plane graphs (not just planar), the answer is yes. [Chan-Church-Grochow '18], [Baker-Wang '18], [Ganguly-McDonough '23], etc.
- For a general graph, we probably need some extra data to define the action.

Introduction II

[Backman-Baker-Yuen '19] considered the following way to define the action:

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- The group action is canonical and simply transitive [Backman '17].
- The bijection can be
- the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;
- the Bernardi biiaction which malies on combinatorial ambaddine and initial data. - Gioan and Las Vergnas' active bijection, which relies on a total order on the edges of G We introduce a family of bijections including BBY and Bernardi's bijections. The extra dáá needed to define the bijections are related to Lawrence polyoopes.

Introduction II

[Backman-Baker-Yuen '19] considered the following way to define the action:

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- The group action is canonical and simply transitive [Backman '17].
- The bijection can be
- the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;
- the Bernardi bijection, which relies on combinatorial embedding and initial data
\qquad
- We introduce a family of bijections including BBY and Bernardi's bijections. The extra data needed to define the 'bijections are related to 'Lawrence polytopes.

Introduction II

[Backman-Baker-Yuen '19] considered the following way to define the action:

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- The group action is canonical and simply transitive [Backman '17].
- The bijection can be
- the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;
- the Bernardi bijection, which relies on combinatorial embedding and initial data;

We introduce a family of bijections including BBY and Bernardi's bijections. The extra data needed to define the bijections are related to Lawrence polytopes.
[Backman-Baker-Yuen '19] considered the following way to define the action:

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- The group action is canonical and simply transitive [Backman '17].
- The bijection can be
- the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;
- the Bernardi bijection, which relies on combinatorial embedding and initial data;
- Gioan and Las Vergnas' active bijection, which relies on a total order on the edges of G.
- We introduce a family of bijections including BBY and Bernardi's bijections. The extra data needed to define the bijections are related to Lawrence polytopes.
[Backman-Baker-Yuen '19] considered the following way to define the action:

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- The group action is canonical and simply transitive [Backman '17].
- The bijection can be
- the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;
- the Bernardi bijection, which relies on combinatorial embedding and initial data;
- Gioan and Las Vergnas' active bijection, which relies on a total order on the edges of G.
- We introduce a family of bijections including BBY and Bernardi's bijections. The extra data needed to define the bijections are related to Lawrence polytopes.

Section 1

The Action

$\operatorname{Jac}(G) \curvearrowright\{$ cycle-cocycle reversal classes of $G\} \longleftrightarrow\{$ spanning trees of $G\}$

Directed Cycles and Cocycles (Minimal Cuts)

a directed cycle

a directed cocycle

Cycle-Cocycle Reversals Classes of Orientations

Gioan introduced the cycle-cocycle reversal classes of orientations of G. To obtain one class from a given orientation, we reverse the directed cycles and cocycles in all the possible ways.


```
The Jacobian Group
```


Reference orientation

$$
\left.\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array} \begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{c}
1 \\
1 \\
e_{1}
\end{array} e_{2} \begin{array}{c}
e_{1} \\
e_{2} \\
1
\end{array}\right)
$$

- Let M be the incidence matrix of G w.r.t. the reference orientation.
- $\operatorname{ker}_{\mathbb{Z}}(M):=\operatorname{ker}(M) \cap \mathbb{Z}^{E}=\langle$ directed cycles \rangle.
- $\operatorname{lm}_{\mathbb{Z}}\left(M^{T}\right):=\operatorname{Im}\left(M^{T}\right) \cap \mathbb{Z}^{E}=\langle$ directed cocycles \rangle
- The Jaco'bian group

The Jacobian Group

Reference orientation

$$
\left.\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad \begin{array}{c}
1 \\
e_{1}
\end{array} e_{2} e_{3} \quad \begin{array}{l}
e_{1} \\
1 \\
1
\end{array}\right) e_{2} e_{3}
$$

- Let M be the incidence matrix of G w.r.t. the reference orientation.
- $\operatorname{ker}_{\mathbb{Z}}(M):=\operatorname{ker}(M) \cap \mathbb{Z}^{E}=\langle$ directed cycles \rangle.
- $\operatorname{Im}_{\mathbb{Z}}\left(M^{T}\right):=\operatorname{Im}\left(M^{T}\right) \cap \mathbb{Z}^{E}=\langle$ directed cocycles \rangle.
- The Jacobian group

Reference orientation

$$
\begin{gathered}
v_{1} \\
v_{2} \\
v_{3}
\end{gathered}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{l}
1 \\
e_{1}
\end{array} e_{2} e_{3} \quad \begin{array}{l}
e_{1} \\
1 \\
1
\end{array}\right) e_{2}
$$

- Let M be the incidence matrix of G w.r.t. the reference orientation.
- $\operatorname{ker}_{\mathbb{Z}}(M):=\operatorname{ker}(M) \cap \mathbb{Z}^{E}=\langle$ directed cycles \rangle.
- $\operatorname{Im}_{\mathbb{Z}}\left(M^{T}\right):=\operatorname{Im}\left(M^{T}\right) \cap \mathbb{Z}^{E}=\langle$ directed cocycles \rangle.
- The Jacobian group

$$
\operatorname{Jac}(G):=\mathbb{Z}^{E} /\left(\operatorname{ker}_{\mathbb{Z}}(M) \oplus \operatorname{lm}_{\mathbb{Z}}\left(M^{T}\right)\right) .
$$

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- Cycle-cocycle reversal classes = orientations/(cycle reversals, cocycle reversals).
- $\operatorname{Jac}(G)=\mathbb{Z}^{E} /$ (directed cycles, directed cocycles).
 reversal classes of G.

The Canonical Action

$$
\operatorname{Jac}(G) \curvearrowright\{\text { cycle-cocycle reversal classes of } G\} \longleftrightarrow\{\text { spanning trees of } G\}
$$

- Cycle-cocycle reversal classes $=$ orientations/(cycle reversals, cocycle reversals).
- $\operatorname{Jac}(G)=\mathbb{Z}^{E} /$ (directed cycles, directed cocycles).

Theorem(Backman '17, Backman-Baker-Yuen '19)

The Jacobian $\operatorname{group} \operatorname{Jac}(G)$ admits a simply transitive group action on the set of cycle-cocycle reversal classes of G.

Section 2

Lawrence Polytopes and Bijections

$\operatorname{Jac}(G) \curvearrowright\{$ cycle-cocycle reversal classes of $G\} \longleftrightarrow\{$ spanning trees of $G\}$

- Let M be a totally unimodular matrix that represents the graphic matroid associated to a graph G. E.g., let M be the incidence matrix of G (and remove a row).
- Construct the Lawrence matrix $(n=|E|, r=|T|)$:

$$
\left(\begin{array}{cc}
M_{r \times n} & 0 \\
I_{n \times n} & I_{n \times n}
\end{array}\right) .
$$

- Let $e_{1}, e_{2}, \cdots, e_{n}, e_{-1}, e_{-2}, \cdots, e_{-n}$ be the column vectors.
- The Lawrence polytope P is defined to be the convex hull of $e_{1}, \cdots, e_{n}, e_{-1}, \cdots, e_{-n}$.
- Take the dual matroid and define the Lawrence polytope P^{*}.

Example and Correspondence 1

Example and Correspondence 2

an externally oriented tree \vec{T}

Correspondence 2:
$\{\max$ simplices of $P\} \longleftrightarrow$
\{externally oriented trees of G \}

Definition

- A fourientation is a choice for each edge of G whether to make it one-way oriented, leave it unoriented, or biorient it.
- For a tree T, an externally oriented tree \vec{T} is a fourientation where all the internal edges are bioriented and all the external edges are one-way oriented.

Example and Correspondence 3

Correspondence 3:
$\{$ triangulations of $P\} \longleftrightarrow$
$\{$ triangulating external atlases of G \}

An external atlases \mathcal{A} :

Definition

An external atlas \mathcal{A} of G is a collection of externally oriented trees \vec{T} such that each tree of G appears exactly once. It is called triangulating if the fourientation $\vec{T}_{i} \cap\left(-\vec{T}_{j}\right)$ contains no directed cycle for any $\vec{T}_{i}, \vec{T}_{j} \in \mathcal{A}$.

The Lawrence Polytope P^{*}

- An external atlas \mathcal{A} tells us how to orient external edges for every tree. Triangulations of P orient the external edges in an "interesting" way.
- Dually, triangulations of the Lawrence polytope P^{*} tell us how to orient internal edges for every tree in an "interesting" way.
- We define intemally oriented trees \boldsymbol{T} and internal atlases \mathcal{A}

An internal atlases \mathcal{A}^{*} :

The Lawrence Polytope P^{*}

- An external atlas \mathcal{A} tells us how to orient external edges for every tree. Triangulations of P orient the external edges in an "interesting" way.
- Dually, triangulations of the Lawrence polytope P^{*} tell us how to orient internal edges for every tree in an "interesting" way.
- We define internally oriented trees $\overrightarrow{T^{*}}$ and internal atlases \mathcal{A}^{*}.

An external atlases \mathcal{A} :

An internal atlases \mathcal{A}^{*} :

Definition

(1) An external atlas \mathcal{A} is triangulating
if the fourientation $\vec{T}_{i} \cap\left(-\vec{T}_{j}\right)$ contains no directed cycle for any $\vec{T}_{i}, \vec{T}_{j} \in \mathcal{A}$.
(2) An internal atlas \mathcal{A}^{*} is triangulating
if the fourientation $\vec{T}_{i}^{*} \cap\left(-\vec{T}_{j}^{*}\right)$ contains no directed cocycle for any $\vec{T}_{i}^{*}, \vec{T}_{j}^{*} \in \mathcal{A}^{*}$.

Framework: From Atlases to Tree-Orientation Correspondences

From a pair of atlases $\left(\mathcal{A}, \mathcal{A}^{*}\right)$, we obtain a map

$$
\begin{aligned}
f_{\mathcal{A}, \mathcal{A}^{*}}:\{\text { trees }\} & \longrightarrow\{\text { orientations }\} \\
T & \mapsto \vec{T} \cap \overrightarrow{T^{*}}
\end{aligned}
$$

An external atlases \mathcal{A} :

\cap

An internal atlases \mathcal{A}^{*} :

||

||

[^0]

Main Result

Theorem(D. '23+)

Given a pair of triangulating atlases $\left(\mathcal{A}, \mathcal{A}^{*}\right)$, the map

$$
\begin{aligned}
\overline{\mathcal{A}_{\mathcal{A}, \mathcal{A}^{*}}}:\{\text { trees }\} & \longrightarrow\{\text { cycle-cocycle reversal classes }\} \\
T & \mapsto\left[\vec{T} \cap \overrightarrow{T^{*}}\right]
\end{aligned}
$$

is bijective.

Remark 1: our proof uses the combinatorial definition of triangulating atlases rather than the geometric property of triangulations.

Main Result

Theorem(D. '23+)

Given a pair of triangulating atlases $\left(\mathcal{A}, \mathcal{A}^{*}\right)$, the map

$$
\begin{aligned}
\overline{f_{\mathcal{A}, \mathcal{A}^{*}}}:\{\text { trees }\} & \longrightarrow\{\text { cycle-cocycle reversal classes }\} \\
T & \mapsto\left[\vec{T} \cap \overrightarrow{T^{*}}\right]
\end{aligned}
$$

is bijective.

Remark 2: the result still holds if one of the triangulations is a dissection.

triangulation

dissection

Section 3

Specializations and Extensions

- Our bijections include the BBY bijections: they correspond to regular triangulations.
- Our bijections include the Bernardi bijections: they correspond to a subclass of dissections.
- Our bijections can be canonically extended to a subgraph-orientation correspondence.

Cycle Signatures

For a triangulating external atlas \mathcal{A}, we collect all the directed cycles \vec{C} from \mathcal{A} : $\{$ directed cycle $\vec{C}: \vec{C} \subseteq \vec{T}$ for some $\vec{T} \in \mathcal{A}\}$.

A triangulating external atlas:

A cycle signature:

This set always gives a cycle signature.

Definition

A cycle signature of G is the choice of a direction for each cycle of G. \{triangulating atlases\} \longleftrightarrow \{triangulating cycle signatures

Cycle Signatures

For a triangulating external atlas \mathcal{A}, we collect all the directed cycles \vec{C} from \mathcal{A} : $\{$ directed cycle $\vec{C}: \vec{C} \subseteq \vec{T}$ for some $\vec{T} \in \mathcal{A}\}$.

A triangulating external atlas:

A cycle signature:

This set always gives a cycle signature.

Definition

A cycle signature of G is the choice of a direction for each cycle of G.
\{triangulating atlases $\} \longleftrightarrow$ \{triangulating cycle signatures $\}.$

Cycle Signatures

For a triangulating external atlas \mathcal{A}, we collect all the directed cycles \vec{C} from \mathcal{A} : $\{$ directed cycle $\vec{C}: \vec{C} \subseteq \vec{T}$ for some $\vec{T} \in \mathcal{A}\}$.

A triangulating external atlas:

A cycle signature:

This set always gives a cycle signature.

Definition

A cycle signature of G is the choice of a direction for each cycle of G.
\{triangulating atlases $\} \longleftrightarrow$ \{triangulating cycle signatures $\}.$
Dissections do not induce signatures in general.

Regular Triangulations and the BBY Bijections

Theorem(D. '23+)
\{triangulations of $P\} \quad \longleftrightarrow$ \{triangulating cycle signatures\}
\{regular triangulations of P \} $\longleftrightarrow \quad$ \{acyclic cycle signatures\}

- Similar results hold for P^{*} and cocycle signatures.
- Backman, Baker, and Yuen use an acyclic cycle signature and an acyclic cocycle signature
of G to define the BBY bijection
In our language, their BBY bijection is defined using a pair of special triangulating atlases/triangulations

Regular Triangulations and the BBY Bijections

```
Theorem(D. '23+)
    {triangulations of P} \longleftrightarrow {triangulating cycle signatures}
    UI
    {acyclic cycle signatures}
```

- Similar results hold for P^{*} and cocycle signatures.
- Backman, Baker, and Yuen use an acyclic cycle signature and an acyclic cocycle signature of G to define the BBY bijection.
- In our language, their BBY bijection is defined using a pair of special *rianguláting atlases/triangulations.

Regular Triangulations and the BBY Bijections

```
Theorem(D. '23+)
    {triangulations of P} }\longleftrightarrow\mathrm{ {triangulating cycle signatures}
    UI
    {acyclic cycle signatures}
```

- Similar results hold for P^{*} and cocycle signatures.
- Backman, Baker, and Yuen use an acyclic cycle signature and an acyclic cocycle signature of G to define the BBY bijection.
- In our language, their BBY bijection is defined using a pair of special triangulating atlases/triangulations.

Regular Triangulations and the BBY Bijections

```
Theorem(D. '23+)
    {triangulations of P} }\longleftrightarrow\mathrm{ {triangulating cycle signatures}
    UI UI
{regular triangulations of P} \longleftrightarrow {acyclic cycle signatures}
```

- Similar results hold for P^{*} and cocycle signatures.
- Backman, Baker, and Yuen use an acyclic cycle signature and an acyclic cocycle signature of G to define the BBY bijection.
- In our language, their BBY bijection is defined using a pair of special triangulating atlases/triangulations.

Other Interesting Results on Signatures

- Gleb Nenashev helped me prove that
a cycle signature of a graph is triangulating
\Leftrightarrow for any three directed cycles in the signature, the sum is non-zero.
We don't know whether similar results hold for regular matroids.
- (Backman-Santos-Yuen '23+) For oriented matroids M (which contain regular matroids), a circuit signature is triangulating \Leftrightarrow it is induced' by a generic sing'e-e'ement 'ifting \Leftrightarrow it is induced by a triangulation of the Lawrence polytope of M. The dual result also holds.

Other Interesting Results on Signatures

- Gleb Nenashev helped me prove that
a cycle signature of a graph is triangulating
\Leftrightarrow for any three directed cycles in the signature, the sum is non-zero.
We don't know whether similar results hold for regular matroids.
- (Backman-Santos-Yuen '23+) For oriented matroids M (which contain regular matroids),
a circuit signature is triangulating
\Leftrightarrow it is induced by a generic single-element lifting
\Leftrightarrow it is induced by a triangulation of the Lawrence polytope of M.
The dual result also holds.

The Bernardi Bijections

The Bernardi bijection is defined for a connected graph embedded into an oriented surface with initial data (q, e).

tree

orient internal edges q away from q

orientation

The Bernardi Bijections and Dissections

- The Bernardi bijections cannot be defined using signatures in general.
- Same for dissections.
- The internal part of the Bernardi bijections is a special case of acyclic signatures (i.e regular triangulations)
- The external part of the Bernardi bijections is a special case of dissections. This is proved
in ['Kálmán-Tóthmérész's '20, '22] where they connect the dissections of the root polytope of hypergraphs and the Bernardi tours.
- The Bernardi bijections cannot be defined using signatures in general.
- Same for dissections.
- The internal part of the Bernardi bijections is a special case of acyclic signatures (i.e., regular triangulations).
- The external part of the Bernardi bijections is a special case of dissections. This is proved in [Kálmán-Tóthmérész's '20,'22] where they connect the dissections of the root polytope of hypergraphs and the Bernardi tours.

Extensions

type of subgraph	orientation class	cardinality
trees	cycle-cocycle reversal classes	$T_{G}(1,1)$
forests	cycle reversal classes	$T_{G}(2,1)$
connected subgraphs	cocycle reversal classes	$T_{G}(1,2)$
subgraphs	orientations	$T_{G}(2,2)$

- Recall: given one triangulations and one dissection, the map

$$
\begin{aligned}
\overline{f_{\mathcal{A}, \mathcal{A}^{*}}}:\{\text { trees }\} & \longrightarrow\{\text { cycle-cocycle reversal classes }\} \\
T & \mapsto\left[\vec{T} \cap \overrightarrow{T^{*}}\right]
\end{aligned}
$$

is bijective.

- We extend the map $f_{\mathcal{A} \cdot \mathcal{A}^{*}}$ to a subgraph-orientation correspondence that establishes

Extensions

type of subgraph	orientation class	cardinality
trees	cycle-cocycle reversal classes	$T_{G}(1,1)$
forests	cycle reversal classes	$T_{G}(2,1)$
connected subgraphs	cocycle reversal classes	$T_{G}(1,2)$
subgraphs	orientations	$T_{G}(2,2)$

- Recall: given one triangulations and one dissection, the map

$$
\begin{aligned}
\overline{\mathcal{A}_{\mathcal{A}, \mathcal{A}^{*}}}:\{\text { trees }\} & \longrightarrow\{\text { cycle-cocycle reversal classes }\} \\
T & \mapsto\left[\vec{T} \cap \overrightarrow{T^{*}}\right]
\end{aligned}
$$

is bijective.

- We extend the map $f_{\mathcal{A}, \mathcal{A}^{*}}$ to a subgraph-orientation correspondence that establishes bijections for all the four rows in the table. The extension does not require extra data. $24 / 25$

The End

Thank you!

[^0]: $f_{\mathcal{A}, \mathcal{A}^{*}}$
 trees \longrightarrow orientations

