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Introduction I

Let G be a finite undirected connected graph. By the matrix-tree theorem, we have

|Jac(G )| = #spanning trees of G

Jac(G ) is the Jacobian group/sandpile group/Picard group/critical group of G .

A vague question: under certain conditions, is there a canonical simply transitive action of

Jac(G ) on the set of spanning trees? [Jordan Ellenberg, Mathoverflow 2011]

For plane graphs (not just planar), the answer is yes. [Chan-Church-Grochow ’18],

[Baker-Wang ’18], [Ganguly-McDonough ’23], etc.

For a general graph, we probably need some extra data to define the action.
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Introduction II

[Backman-Baker-Yuen ’19] considered the following way to define the action:

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

The group action is canonical and simply transitive [Backman ’17].

The bijection can be

the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;

the Bernardi bijection, which relies on combinatorial embedding and initial data;

Gioan and Las Vergnas’ active bijection, which relies on a total order on the edges of G .

We introduce a family of bijections including BBY and Bernardi’s bijections. The extra

data needed to define the bijections are related to Lawrence polytopes.

3 / 25



Introduction II

[Backman-Baker-Yuen ’19] considered the following way to define the action:

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

The group action is canonical and simply transitive [Backman ’17].

The bijection can be

the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;

the Bernardi bijection, which relies on combinatorial embedding and initial data;

Gioan and Las Vergnas’ active bijection, which relies on a total order on the edges of G .

We introduce a family of bijections including BBY and Bernardi’s bijections. The extra

data needed to define the bijections are related to Lawrence polytopes.

3 / 25



Introduction II

[Backman-Baker-Yuen ’19] considered the following way to define the action:

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

The group action is canonical and simply transitive [Backman ’17].

The bijection can be

the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;

the Bernardi bijection, which relies on combinatorial embedding and initial data;

Gioan and Las Vergnas’ active bijection, which relies on a total order on the edges of G .

We introduce a family of bijections including BBY and Bernardi’s bijections. The extra

data needed to define the bijections are related to Lawrence polytopes.

3 / 25



Introduction II

[Backman-Baker-Yuen ’19] considered the following way to define the action:

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

The group action is canonical and simply transitive [Backman ’17].

The bijection can be

the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;

the Bernardi bijection, which relies on combinatorial embedding and initial data;

Gioan and Las Vergnas’ active bijection, which relies on a total order on the edges of G .

We introduce a family of bijections including BBY and Bernardi’s bijections. The extra

data needed to define the bijections are related to Lawrence polytopes.

3 / 25



Introduction II

[Backman-Baker-Yuen ’19] considered the following way to define the action:

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

The group action is canonical and simply transitive [Backman ’17].

The bijection can be

the Backman-Baker-Yuen bijection, which relies on a cycle signature and a cocycle signature;

the Bernardi bijection, which relies on combinatorial embedding and initial data;

Gioan and Las Vergnas’ active bijection, which relies on a total order on the edges of G .

We introduce a family of bijections including BBY and Bernardi’s bijections. The extra

data needed to define the bijections are related to Lawrence polytopes.

3 / 25



Section 1

The Action

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}
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Directed Cycles and Cocycles (Minimal Cuts)

a directed cycle a directed cocycle
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Cycle-Cocycle Reversals Classes of Orientations

Gioan introduced the cycle-cocycle reversal classes of orientations of G . To obtain one class

from a given orientation, we reverse the directed cycles and cocycles in all the possible ways.

a cycle-cocycle reversal class

G

another cycle-cocycle reversal class

6 / 25



The Jacobian Group

Reference orientation

v1

e2

e3

v2

e1

v3

v1

e2 e3

v2

e1

v3

directed cycle

e2

e3

e1

Let M be the incidence matrix of G w.r.t. the reference orientation.

kerZ(M) := ker(M) ∩ ZE = ⟨directed cycles⟩.

ImZ(M
T ) := Im(MT ) ∩ ZE = ⟨directed cocycles⟩.

The Jacobian group

Jac(G ) := ZE/(kerZ(M)⊕ ImZ(M
T )).
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The Canonical Action

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}

Cycle-cocycle reversal classes = orientations/(cycle reversals, cocycle reversals).

Jac(G ) = ZE/(directed cycles, directed cocycles).

Theorem(Backman ’17, Backman-Baker-Yuen ’19)

The Jacobian group Jac(G ) admits a simply transitive group action on the set of cycle-cocycle

reversal classes of G .
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Section 2

Lawrence Polytopes and Bijections

Jac(G ) ↷ {cycle-cocycle reversal classes of G} ←→ {spanning trees of G}
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Lawrence Polytopes

Let M be a totally unimodular matrix that represents the graphic matroid associated to a

graph G . E.g., let M be the incidence matrix of G (and remove a row).

Construct the Lawrence matrix (n = |E |, r = |T |):Mr×n 0

In×n In×n

 .

Let e1, e2, · · · , en, e−1, e−2, · · · , e−n be the column vectors.

The Lawrence polytope P is defined to be the convex hull of e1, · · · , en, e−1, · · · , e−n.

Take the dual matroid and define the Lawrence polytope P∗.
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Example and Correspondence 1

2

3

1
reference orientation

e2 e3

e1

e
−2 e

−3

e
−1

e2

e3

e1

e
−2

e
−3

e
−1

Correspondence 1:

{vertices of P}←→ {arcs of G}
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Example and Correspondence 2

e2 e3

e1

e
−2 e

−3

e
−1

e2

e3

e1

e
−2

Correspondence 2:

{max simplices of P}←→

{externally oriented trees of G}

an externally

oriented tree
−→
T

Definition

A fourientation is a choice for each edge of G whether to make it one-way oriented, leave

it unoriented, or biorient it.

For a tree T , an externally oriented tree
−→
T is a fourientation where all the internal edges

are bioriented and all the external edges are one-way oriented.

12 / 25



Example and Correspondence 3

e2 e3
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e
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e
−3

Correspondence 3:

{triangulations of P}←→

{triangulating external atlases of G}

An external atlases A:
−→
T1

−→
T2

−→
T3

Definition

An external atlas A of G is a collection of externally oriented trees
−→
T such that each tree of

G appears exactly once. It is called triangulating if the fourientation
−→
Ti ∩ (−

−→
Tj) contains no

directed cycle for any
−→
Ti ,
−→
Tj ∈ A. 13 / 25



The Lawrence Polytope P∗

An external atlas A tells us how to orient external edges for every tree. Triangulations of

P orient the external edges in an “interesting” way.

Dually, triangulations of the Lawrence polytope P∗ tell us how to orient internal edges for

every tree in an “interesting” way.

We define internally oriented trees
−→
T ∗ and internal atlases A∗.

An external atlases A:

An internal atlases A∗:

−→
T1

∗ −→
T2

∗ −→
T3

∗

−→
T1

−→
T2

−→
T3
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Triangulating Internal Atlases

Definition
1 An external atlas A is triangulating

if the fourientation
−→
Ti ∩ (−

−→
Tj) contains no directed cycle for any

−→
Ti ,
−→
Tj ∈ A.

2 An internal atlas A∗ is triangulating

if the fourientation
−→
Ti

∗ ∩ (−
−→
Tj

∗) contains no directed cocycle for any
−→
Ti

∗,
−→
Tj

∗ ∈ A∗.
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Framework: From Atlases to Tree-Orientation Correspondences

From a pair of atlases (A,A∗), we obtain a map

fA,A∗ : {trees} −→ {orientations}

T 7→
−→
T ∩

−→
T ∗

An external atlases A:

An internal atlases A∗:

⋂

‖

⋂

‖

⋂

‖

trees −→ orientations

fA,A∗

−→
T1

∗ −→
T2

∗ −→
T3

∗

−→
T1

−→
T2

−→
T3
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Main Result

Theorem(D. ’23+)

Given a pair of triangulating atlases (A,A∗), the map

fA,A∗ : {trees} −→ {cycle-cocycle reversal classes}

T 7→ [
−→
T ∩

−→
T ∗]

is bijective.

Remark 1: our proof uses the combinatorial definition of triangulating atlases rather than the

geometric property of triangulations.
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fA,A∗ : {trees} −→ {cycle-cocycle reversal classes}

T 7→ [
−→
T ∩
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is bijective.

Remark 2: the result still holds if one of the triangulations is a dissection.

triangulation dissection
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Section 3

Specializations and Extensions

Our bijections include the BBY bijections: they correspond to regular triangulations.

Our bijections include the Bernardi bijections: they correspond to a subclass of

dissections.

Our bijections can be canonically extended to a subgraph-orientation correspondence.

18 / 25



Cycle Signatures

For a triangulating external atlas A, we collect all the directed cycles
−→
C from A:

{directed cycle
−→
C :
−→
C ⊆

−→
T for some

−→
T ∈ A}.

A triangulating external atlas:

A cycle signature:

This set always gives a cycle signature.

Definition

A cycle signature of G is the choice of a direction for each cycle of G .

{triangulating atlases} ←→ {triangulating cycle signatures}.

Dissections do not induce signatures in general. 19 / 25
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Regular Triangulations and the BBY Bijections

Theorem(D. ’23+)

{triangulations of P} ←→ {triangulating cycle signatures}

⊆ ⊆

{regular triangulations of P} ←→ {acyclic cycle signatures}

Similar results hold for P∗ and cocycle signatures.

Backman, Baker, and Yuen use an acyclic cycle signature and an acyclic cocycle signature

of G to define the BBY bijection.

In our language, their BBY bijection is defined using a pair of special

triangulating atlases/triangulations.

20 / 25
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Other Interesting Results on Signatures

Gleb Nenashev helped me prove that

a cycle signature of a graph is triangulating

⇔ for any three directed cycles in the signature, the sum is non-zero.

We don’t know whether similar results hold for regular matroids.

(Backman-Santos-Yuen ’23+) For oriented matroids M (which contain regular matroids),

a circuit signature is triangulating

⇔ it is induced by a generic single-element lifting

⇔ it is induced by a triangulation of the Lawrence polytope of M.

The dual result also holds.

21 / 25
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The Bernardi Bijections

The Bernardi bijection is defined for a connected graph embedded into an oriented surface

with initial data (q, e).

q

e

tree

q

orient external edges

orientation

orient internal edges

use the Bernardi tour to

away from q

22 / 25



The Bernardi Bijections and Dissections

The Bernardi bijections cannot be defined using signatures in general.

Same for dissections.

The internal part of the Bernardi bijections is a special case of acyclic signatures (i.e.,

regular triangulations).

The external part of the Bernardi bijections is a special case of dissections. This is proved

in [Kálmán-Tóthmérész’s ’20,’22] where they connect the dissections of the root polytope

of hypergraphs and the Bernardi tours.
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Extensions

type of subgraph orientation class cardinality

trees cycle-cocycle reversal classes TG (1, 1)

forests cycle reversal classes TG (2, 1)

connected subgraphs cocycle reversal classes TG (1, 2)

subgraphs orientations TG (2, 2)

Recall: given one triangulations and one dissection, the map

fA,A∗ : {trees} −→ {cycle-cocycle reversal classes}

T 7→ [
−→
T ∩

−→
T ∗]

is bijective.

We extend the map fA,A∗ to a subgraph-orientation correspondence that establishes

bijections for all the four rows in the table. The extension does not require extra data. 24 / 25
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The End

Thank you!
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