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Walks in the quadrant

Problem

For a given model S, determine q; j , the number of walks in the quadrant
using n steps and terminating at (7, ).
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The generating function and functional equation
QU,Y) = D qiax'yt" € Clx, y[[t]]
S= ij,n>0
1

X
S(,y) =Xy +y+x++—
y o oxy

Q(x,y) = x°° + t®yQ(x, y) + tyQ(x,y) + txQ(x, y)
+ r§ (Q(x,y) — Q(x,0))

walks not ending on the x-axis

+ % (Q(x,y) — Q(x,0) — Q(0,y) + Q(0,0))

walks not ending on the x-axis nor the y-axis

xy (1= tS(x,y)) Q(x,y) = xy — (t(x*> + 1)Q(x, 0) — tQ(0,0)) — tQ(0, y)
—_—
K(x,y) (the kernel)
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Catalytic variables equation and classification

Polynomial equation in two catalytic variables

K(x,y)Q(x, y) = @(t,x,y, Q(x,0), Q(0, y), Q(0,0))

Counting problem — Classification problem

The differential hierarchy

Rational Qlx,y) = ;‘(i };)
Algebraic P(x,y,t,Q(x,y)) =0

D-finite P,(x,y,t,0:)(Q(x,y)) =0Vz € {x,y, t}
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Classification of small steps models: 2008-2018

A model S has small steps if S € {—1,0,1}2.

79 nontrivial cases up to symmetry
e Algebraic: 4 models 714 74 4_(' }
e D-finite: 19 models, e.g. ><
e Non D-finite: 56 models, e.g. \<

Combinatorics: M. Bousquet-Mélou, S. Melczer, M. Mishna, A. Rechnitzer, ...
Computer algebra: A. Bostan, M. Kauers, B. Salvy, D. Zeilberger . ..
Probability theory: G. Fayolle, |. Kurkova, K. Raschel, ...

Difference Galois theory: T. Dreyfus, C. Hardouin, J. Roques, M. Singer, ...

Goal: extension to models with arbitrarily large steps

= algebraic case



An algebraicity strategy
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From two variables to one

Polynomial equation in catalytic variables
K(X,}’)Q(X,}’) = (D(X,y, t, Q(X7 0)7 Q(an)? Q(O7 0))

Polynomial equation in catalytic variable
P(x,t, F(x), (8xF)(0), ..., (9{F)(0)) = 0

Theorem (Bousquet-Mélou and Jehanne, 2006)

The solution F(x) of an equation in one catalytic variable is algebraic.

— derive equations in one catalytic variable for Q(x,0) and Q(O0, y).
[Bousquet-Mélou, Bernardi, Raschel, 21]: for small steps
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Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let K(x,y) be a polynomial in C[t, x, y].

Let /(x), J(y) be in C(x,y)[[t]] such that /(x) = J(y) mod K(x,y).
(I(x),J(y)) is called a pair of invariants.

Invariants Lemma

The following assertions are equivalent:

e the coefficients in the t expansion of (/(x) — J(y))/K(x,y) have no pole at
x=0nory=0.

o /(x) = J(y)= C(t) for some C(t) independent from x and y
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Obtain equations between invariants

Two pairs of invariants
(h(x), h(y)) = (3 + ¢+ O(x), 0(1))
(l(x), 2(y)) = (5= + 0(1), O(y))

(h(x) = ©)* = & + 0(1) = (h(x) — ¢)* — k(x) = O(1)
= (h(x), 5(y)) = (h(x) = )* = (), (J1(y) — ©)* = L(y)) = (0(1), O(1))
Checking (l5(x) — J3(y))/K(x,y) + Invariants Lemma = (x) = J3(y) = C(t)

(h(x) = ) = h(x) = C(t) and (h(y) — c)* = L(y) = C(t)
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){ K(x,y)Q(x,y) = xv — (% + 1)Q(x,0) — tQ(0,0)) — tQ(0, y)
A(x) B(y)

Decoupling

xy = F(x)+ G(y) mod K(x,y) for rational F(x) and G(y)

A(x) — F(x) = G(y) — B(yz mod K(x,y) — Invariants (/1(x), J1(y))

1(x) S(y)
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Algebraicity strategy for models with small backwards steps

Model S of walks with small backwards steps starting at point (ig,Jo)-
K(x,y)Q(x,y) = x°+tyR+t — A(x) — B(y)

Decoupling

Pair of invariants (/1(x), J1(y)) from a rational decoupling of x®*1ydet1,

Rational invariants

Pair of rational invariants (f(x), J2(y)).

Pole elimination

Pair (55(x), J3(y)) of invariants without poles at x =0 nor y = 0.

e Invariants Lemma = h(x) = J3(y) = C(t)
e Bousquet-Mélou & Jehanne implies that A(x) and B(y) are algebraic

e Q(x,y) is algebraic

(]
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Our results

Every kernel polynomial K(x, y) is associated with a graph called the orbit.
e We endow the orbit with the action of two Galois groups.
e Systematic treatment of rational invariants and decoupling mod K(x,y):
e There exists nonconstant rational invariants if and only if the orbit is finite.

e Decoupling of a fraction H(x, y) characterized and computed through an
orbit evaluation.

These constructions are effective when the orbit is finite.

° ){ ){ first models with large steps to have been proved algebraic

= explicit polynomial for the excursion series Q(0, 0) of degree 32.
(conjectured in [Bostan, BM, Raschel, 2018]).

e New algebraic models with large steps extending Gessel's:

N

(given n > 1, algebraic for s.p. (n—1,0) and ((n+ 1)k —1, k — 1) for all k)
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Key point: Galois symmetries = orbit symmetries

Ge = Gal(C(t, x, v, 2)/C(t, X)) = (4, 7) = Zs x Zs

G, = Gal(C(t, x,¥,2)/C(t,y)) = (¢1, 92, 7) = S3
18
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Theorem ((Fried 1978), (B., Hardouin 2023+))

The following are equivalent:

e The orbit is finite

e There exists a nonconstant pair of rational invariants

Construction in case of a finite orbit
Compute 1x(Z) = [y v)e0(Z — u).
Galois theory = ux(Z) € kinv[Z] and ux(Z) is irreducible

Any nonconstant coefficient of . (Z) generates the field of rational invariants.
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Linear combination of pairs of the orbit c =3_, | cuv(u,v).
For H(x, y) a fraction, define H. = >~ , cu,vH(u, v).

Example: killing decoupled fractions F(x) + G(y)
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PN
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N
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Example: if ¢ is fixed under Gy, then o H. = Hy c = H,
= H. = Hc(x) by Galois



Decoupling in the orbit (finite orbit case)

Theorem (Bonnet, Hardouin 2023+)

We can write (x,y) = ~x + vy + «, and for any fraction H(x,y)
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Decoupling in the orbit (finite orbit case)

Theorem (Bonnet, Hardouin 2023+)

We can write (x,y) = ~x + vy + «, and for any fraction H(x,y)
e H, vanishes if and only if H(x,y) = F(x) + G(y) mod K(x,y).
e In this case, F(x) = H,, mod K(x,y) and G(y) = H,, mod K(x,y)
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(1) ——— ()
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(1) ——— ()




(Yoo =2 ==

3tx? — t — 4x

-y

4t(x2+1)

—4
ay +0 mod K(x,y).
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Further questions

e Decide the finiteness of the orbit
e Systematic pole elimination

e Find new models / starting points (ig,jo) on which the strategy applies
(i.e.: finite orbit and decoupling of x/o*1)yJo+1)

Thank you for your attention!
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