A Galois structure on the orbit of walks in the quadrant

Pierre Bonnet (LaBRI, Bordeaux)
joint work with Charlotte Hardouin (IMT, Toulouse)
Thursday July 25th, FPSAC '24

Walks in the quadrant

Walks in the quadrant

Walks in the quadrant

Problem

For a given model \mathcal{S}, determine $q_{i, j, n}$ the number of walks in the quadrant using n steps and terminating at (i, j).

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y-\text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y-\text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& Q(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
& +t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
& +t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y \text {-axis }}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y-\text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
\mathcal{S}(x, y) & =x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
& +t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
& +t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y \text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text { axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y-\text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x \text {-axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x-\text {-axis nor the } y-\text {-axis }}
\end{aligned}
\end{aligned}
$$

The generating function and functional equation

$$
\begin{aligned}
& Q(x, y)=\sum_{i, j, n \geq 0} q_{i, j, n} x^{i} y^{j} t^{n} \in \mathbb{C}[x, y][[t]] \\
& S(x, y)=x^{2} y+y+x+\frac{x}{y}+\frac{1}{x y} \\
& \begin{aligned}
& \mathcal{S}(x, y)=x^{0} y^{0}+t x^{2} y Q(x, y)+t y Q(x, y)+t x Q(x, y) \\
&+ t \frac{x}{y} \underbrace{(Q(x, y)-Q(x, 0))}_{\text {walks not ending on the } x-\text {-axis }} \\
&+t \frac{1}{x y} \underbrace{(Q(x, y)-Q(x, 0)-Q(0, y)+Q(0,0))}_{\text {walks not ending on the } x \text {-axis nor the } y \text {-axis }}
\end{aligned}
\end{aligned}
$$

$$
\underbrace{x y(1-t S(x, y))}_{K(x, y) \text { (the kernel) }} Q(x, y)=x y-\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)-t Q(0, y)
$$

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Counting problem \rightarrow Classification problem

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Counting problem \rightarrow Classification problem

The differential hierarchy

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Counting problem \rightarrow Classification problem

The differential hierarchy

$$
\text { Rational } \quad Q(x, y)=\frac{A(x, y)}{B(x, y)}
$$

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Counting problem \rightarrow Classification problem

The differential hierarchy

Rational

$$
Q(x, y)=\frac{A(x, y)}{B(x, y)}
$$

Algebraic

$$
P(x, y, t, Q(x, y))=0
$$

Catalytic variables equation and classification

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(t, x, y, Q(x, 0), Q(0, y), Q(0,0))
$$

Counting problem \rightarrow Classification problem

The differential hierarchy

Rational

$$
Q(x, y)=\frac{A(x, y)}{B(x, y)}
$$

Algebraic

$$
P(x, y, t, Q(x, y))=0
$$

D-finite

$$
P_{z}\left(x, y, t, \partial_{z}\right)(Q(x, y))=0 \forall z \in\{x, y, t\}
$$

Classification of small steps models: 2008-2018

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

- Algebraic: 4 models $\underset{\sim}{\text { 店 }} \stackrel{H}{\leftrightarrows}$
- D-finite: 19 models, e.g.

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

- Algebraic: 4 models $\underset{\sim}{\text { 店 }} \xrightarrow{4}$
- D-finite: 19 models, e.g.

- Non D-finite: 56 models, e.g.

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

- Algebraic: 4 models $\underset{\sim}{\text { 店 }} \stackrel{H}{\leftrightarrows}$
- D-finite: 19 models, e.g.
- Non D-finite: 56 models, e.g.

Combinatorics: M. Bousquet-Mélou, S. Melczer, M. Mishna, A. Rechnitzer, ... Computer algebra: A. Bostan, M. Kauers, B. Salvy, D. Zeilberger ... Probability theory: G. Fayolle, I. Kurkova, K. Raschel, ...
Difference Galois theory: T. Dreyfus, C. Hardouin, J. Roques, M. Singer, ...

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

- Algebraic: 4 models $\underset{\sim}{\text { 店 }} \stackrel{H}{\leftrightarrows}$
- D-finite: 19 models, e.g.
- Non D-finite: 56 models, e.g.

Combinatorics: M. Bousquet-Mélou, S. Melczer, M. Mishna, A. Rechnitzer, ... Computer algebra: A. Bostan, M. Kauers, B. Salvy, D. Zeilberger ... Probability theory: G. Fayolle, I. Kurkova, K. Raschel, ...
Difference Galois theory: T. Dreyfus, C. Hardouin, J. Roques, M. Singer, ...

Goal: extension to models with arbitrarily large steps

Classification of small steps models: 2008-2018

A model \mathcal{S} has small steps if $\mathcal{S} \subset\{-1,0,1\}^{2}$.
79 nontrivial cases up to symmetry

- Algebraic: 4 models $\underset{\sim}{\text { 店 }} \stackrel{H}{\leftrightarrows}$
- D-finite: 19 models, e.g.
- Non D-finite: 56 models, e.g.

Combinatorics: M. Bousquet-Mélou, S. Melczer, M. Mishna, A. Rechnitzer, ... Computer algebra: A. Bostan, M. Kauers, B. Salvy, D. Zeilberger ... Probability theory: G. Fayolle, I. Kurkova, K. Raschel, ...
Difference Galois theory: T. Dreyfus, C. Hardouin, J. Roques, M. Singer, ...

Goal: extension to models with arbitrarily large steps
\Rightarrow algebraic case

An algebraicity strategy

From two variables to one

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(x, y, t, Q(x, 0), Q(0, y), Q(0,0))
$$

From two variables to one

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(x, y, t, Q(x, 0), Q(0, y), Q(0,0))
$$

Polynomial equation in one catalytic variable

$$
P\left(x, t, F(x),\left(\partial_{x} F\right)(0), \ldots,\left(\partial_{x}^{n} F\right)(0)\right)=0
$$

From two variables to one

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(x, y, t, Q(x, 0), Q(0, y), Q(0,0))
$$

Polynomial equation in one catalytic variable

$$
P\left(x, t, F(x),\left(\partial_{x} F\right)(0), \ldots,\left(\partial_{x}^{n} F\right)(0)\right)=0
$$

Theorem (Bousquet-Mélou and Jehanne, 2006)

The solution $F(x)$ of an equation in one catalytic variable is algebraic.

From two variables to one

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(x, y, t, Q(x, 0), Q(0, y), Q(0,0))
$$

Polynomial equation in one catalytic variable

$$
P\left(x, t, F(x),\left(\partial_{x} F\right)(0), \ldots,\left(\partial_{x}^{n} F\right)(0)\right)=0
$$

Theorem (Bousquet-Mélou and Jehanne, 2006)

The solution $F(x)$ of an equation in one catalytic variable is algebraic.
\rightarrow derive equations in one catalytic variable for $Q(x, 0)$ and $Q(0, y)$.

From two variables to one

Polynomial equation in two catalytic variables

$$
K(x, y) Q(x, y)=\Phi(x, y, t, Q(x, 0), Q(0, y), Q(0,0))
$$

Polynomial equation in one catalytic variable

$$
P\left(x, t, F(x),\left(\partial_{x} F\right)(0), \ldots,\left(\partial_{x}^{n} F\right)(0)\right)=0
$$

Theorem (Bousquet-Mélou and Jehanne, 2006)

The solution $F(x)$ of an equation in one catalytic variable is algebraic.
\rightarrow derive equations in one catalytic variable for $Q(x, 0)$ and $Q(0, y)$. [Bousquet-Mélou, Bernardi, Raschel, 21]: for small steps

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let $K(x, y)$ be a polynomial in $\mathbb{C}[t, x, y]$.

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let $K(x, y)$ be a polynomial in $\mathbb{C}[t, x, y]$.

Invariants

Let $I(x), J(y)$ be in $\mathbb{C}(x, y)[[t]]$ such that $I(x)=J(y) \bmod K(x, y)$. $(I(x), J(y))$ is called a pair of invariants.

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let $K(x, y)$ be a polynomial in $\mathbb{C}[t, x, y]$.

Invariants

Let $I(x), J(y)$ be in $\mathbb{C}(x, y)[[t]]$ such that $I(x)=J(y) \bmod K(x, y)$. $(I(x), J(y))$ is called a pair of invariants.

Invariants Lemma

The following assertions are equivalent:

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let $K(x, y)$ be a polynomial in $\mathbb{C}[t, x, y]$.

Invariants

Let $I(x), J(y)$ be in $\mathbb{C}(x, y)[[t]]$ such that $I(x)=J(y) \bmod K(x, y)$. $(I(x), J(y))$ is called a pair of invariants.

Invariants Lemma

The following assertions are equivalent:

- the coefficients in the t expansion of $(I(x)-J(y)) / K(x, y)$ have no pole at $x=0$ nor $y=0$.

Invariants ([Tutte 70], [BM-Bernardi-Raschel 21])

Let $K(x, y)$ be a polynomial in $\mathbb{C}[t, x, y]$.

Invariants

Let $I(x), J(y)$ be in $\mathbb{C}(x, y)[[t]]$ such that $I(x)=J(y) \bmod K(x, y)$. $(I(x), J(y))$ is called a pair of invariants.

Invariants Lemma

The following assertions are equivalent:

- the coefficients in the t expansion of $(I(x)-J(y)) / K(x, y)$ have no pole at $x=0$ nor $y=0$.
- $I(x)=J(y)=C(t)$ for some $C(t)$ independent from x and y

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right)
\end{gathered}
$$

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right)
\end{gathered}
$$

$$
\left(I_{1}(x)-c\right)^{2}=\frac{1}{x^{2}}+O(1)
$$

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right) \\
\left(I_{1}(x)-c\right)^{2}=\frac{1}{x^{2}}+O(1) \Rightarrow\left(I_{1}(x)-c\right)^{2}-I_{2}(x)=O(1)
\end{gathered}
$$

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(I_{1}(x)-c\right)^{2}=\frac{1}{x^{2}}+O(1) \Rightarrow\left(I_{1}(x)-c\right)^{2}-I_{2}(x)=O(1) \\
\Rightarrow\left(I_{3}(x), J_{3}(y)\right)=\left(\left(I_{1}(x)-c\right)^{2}-I_{2}(x),\left(J_{1}(y)-c\right)^{2}-J_{2}(y)\right)=(O(1), O(1))
\end{gathered}
$$

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(I_{1}(x)-c\right)^{2}=\frac{1}{x^{2}}+O(1) \Rightarrow\left(I_{1}(x)-c\right)^{2}-I_{2}(x)=O(1) \\
\Rightarrow\left(I_{3}(x), J_{3}(y)\right)=\left(\left(I_{1}(x)-c\right)^{2}-I_{2}(x),\left(J_{1}(y)-c\right)^{2}-J_{2}(y)\right)=(O(1), O(1))
\end{gathered}
$$

Checking $\left(I_{3}(x)-J_{3}(y)\right) / K(x, y)+$ Invariants Lemma $\Rightarrow I_{3}(x)=J_{3}(y)=C(t)$

Obtain equations between invariants

Two pairs of invariants

$$
\begin{gathered}
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{1}{x}+c+O(x), O(1)\right) \\
\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{1}{x^{2}}+O(1), O(y)\right) \\
\left(I_{1}(x)-c\right)^{2}=\frac{1}{x^{2}}+O(1) \Rightarrow\left(I_{1}(x)-c\right)^{2}-I_{2}(x)=O(1) \\
\Rightarrow\left(I_{3}(x), J_{3}(y)\right)=\left(\left(I_{1}(x)-c\right)^{2}-I_{2}(x),\left(J_{1}(y)-c\right)^{2}-J_{2}(y)\right)=(O(1), O(1))
\end{gathered}
$$

Checking $\left(I_{3}(x)-J_{3}(y)\right) / K(x, y)+$ Invariants Lemma $\Rightarrow I_{3}(x)=J_{3}(y)=C(t)$

$$
\left(I_{1}(x)-c\right)^{2}-I_{2}(x)=C(t) \text { and }\left(J_{1}(y)-c\right)^{2}-J_{2}(y)=C(t)
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
x y=F(x)+G(y) \bmod K(x, y) \text { for rational } F(x) \text { and } G(y)
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
x y=F(x)+G(y) \bmod K(x, y) \text { for rational } F(x) \text { and } G(y)
$$

$$
\underbrace{A(x)-F(x)}_{I_{1}(x)}=\underbrace{G(y)-B(y)}_{J_{1}(y)} \bmod K(x, y) \rightarrow \text { Invariants }\left(I_{1}(x), J_{1}(y)\right)
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
x y=-\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+\frac{-y-4}{4 y}-\frac{K(x, y)}{t y\left(x^{2}+1\right)}
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\begin{gathered}
x y=-\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+\frac{-y-4}{4 y}-\frac{K(x, y)}{t y\left(x^{2}+1\right)} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
\end{gathered}
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\begin{gathered}
x y=-\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+\frac{-y-4}{4 y}-\frac{K(x, y)}{t y\left(x^{2}+1\right)} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
\end{gathered}
$$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\begin{gathered}
x y=-\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+\frac{-y-4}{4 y}-\frac{K(x, y)}{t y\left(x^{2}+1\right)} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
\end{gathered}
$$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Pole elimination + Invariant Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Pole elimination + Invariant Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
$$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Pole elimination + Invariant Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
$$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Pole elimination + Invariant Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable
$\Rightarrow Q(x, 0)$ and $Q(0, y)$ are algebraic by [BMJ06]

Proof of algebraicity of \mathcal{G}

$$
K(x, y) Q(x, y)=x y-\underbrace{\left(t\left(x^{2}+1\right) Q(x, 0)-t Q(0,0)\right)}_{A(x)}-\underbrace{t Q(0, y)}_{B(y)}
$$

Decoupling

$$
\left(I_{1}(x), J_{1}(y)\right)=\left(\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+A(x), \frac{-y-4}{4 y}-B(y)\right)
$$

Rational invariants

$\left(I_{2}(x), J_{2}(y)\right)=\left(\frac{t^{2} x^{6}+\left(t^{2}+1\right) x^{4}+\left(t^{2}-1\right) x^{3}-\left(t^{2}+1\right) x^{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}}, \frac{t y^{4}-y^{3}-t y-t}{t y^{2}}\right)$

Pole elimination + Invariant Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y}^{2} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable
$\Rightarrow Q(x, 0)$ and $Q(0, y)$ are algebraic by $[\mathrm{BMJ} 06] \Rightarrow Q(x, y)$ is algebraic \square

Another algebraic model

Another algebraic model

Decoupling

$$
\begin{gathered}
x^{8} y^{2}=\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+\frac{y^{2}-1}{y^{2}}+K(x, y) \frac{x^{4} y^{2} t-x^{4} y t+x y-y t+t}{y^{2} t^{2}} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)
\end{gathered}
$$

Another algebraic model

Decoupling

$$
\begin{gathered}
x^{8} y^{2}=\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+\frac{y^{2}-1}{y^{2}}+K(x, y) \frac{x^{4} y^{2} t-x^{4} y t+x y-y t+t}{y^{2} t^{2}} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)
\end{gathered}
$$

Rational invariants

$$
\begin{aligned}
& \left(l_{2}(x), J_{2}(y)\right)= \\
& \left(\frac{-x^{16} t^{3}+3 x^{13} t^{2}+4 x^{12} t^{3}-3 x^{10} t-5 x^{9} t^{2}-6 x^{8} t^{3}+x^{7}+x^{6} t+x^{5} t^{2}+x t^{2}-t^{3}}{x^{4} t^{3}}\right. \\
& \left.\frac{y^{8} t^{4}+4 y^{7} t^{4}+12 y^{6} t^{4}+32 y^{5} t^{4}+54 y^{4} t^{4}+52 y^{3} t^{4}+y^{6}+28 y^{2} t^{4}+8 y t^{4}+t^{4}}{y^{3} t^{4}\left(y^{4}+4 y^{3}+6 y^{2}+4 y+1\right)}\right)
\end{aligned}
$$

Another algebraic model

Decoupling

$$
\begin{gathered}
x^{8} y^{2}=\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+\frac{y^{2}-1}{y^{2}}+K(x, y) \frac{x^{4} y^{2} t-x^{4} y t+x y-y t+t}{y^{2} t^{2}} \\
\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)
\end{gathered}
$$

Rational invariants

$$
\begin{aligned}
& \left(l_{2}(x), J_{2}(y)\right)= \\
& \left(\frac{-x^{16} t^{3}+3 x^{13} t^{2}+4 x^{12} t^{3}-3 x^{10} t-5 x^{9} t^{2}-6 x^{8} t^{3}+x^{7}+x^{6} t+x^{5} t^{2}+x t^{2}-t^{3}}{x^{4} t^{3}},\right. \\
& \left.\frac{y^{8} t^{4}+4 y^{7} t^{4}+12 y^{6} t^{4}+32 y^{5} t^{4}+54 y^{4} t^{4}+52 y^{3} t^{4}+y^{6}+28 y^{2} t^{4}+8 y t^{4}+t^{4}}{y^{3} t^{4}\left(y^{4}+4 y^{3}+6 y^{2}+4 y+1\right)}\right)
\end{aligned}
$$

Another algebraic model

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)$

Rational invariants

Pole elimination + Invariants Lemma
Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

Another algebraic model

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)$

Rational invariants

Pole elimination + Invariants Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

Another algebraic model

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)$

Rational invariants

Pole elimination + Invariants Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable

Another algebraic model

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)$

Rational invariants

Pole elimination + Invariants Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable
$\Rightarrow Q(x, 0)$ and $Q(0, y)$ are algebraic by [BMJ06]

Another algebraic model

Decoupling

$\left(I_{1}(x), J_{1}(y)\right)=\left(-\frac{x^{8} t^{2}-2 x^{5} t+x^{2}-2 x t}{t^{2}}+A(x), \frac{y^{2}-1}{y^{2}}-B(y)\right)$

Rational invariants

Pole elimination + Invariants Lemma

Pair of invariants $\left(I_{3}(x), J_{3}(y)\right)$ without pole at $x=0$ and $y=0$.

$$
\begin{align*}
& I_{3}(x)=U\left(x, t, Q(x, 0), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{1}\\
& J_{3}(y)=V\left(y, t, Q(0, y), Q(0,0),\left(\partial_{y} Q\right)(0,0), \ldots,\left(\partial_{y}^{5} Q\right)(0,0)\right)=C(t) \tag{2}
\end{align*}
$$

each equation (1) and (2) is of one catalytic variable
$\Rightarrow Q(x, 0)$ and $Q(0, y)$ are algebraic by $[\mathrm{BMJ} 06] \Rightarrow Q(x, y)$ is algebraic

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Rational invariants

Pair of rational invariants $\left(I_{2}(x), J_{2}(y)\right)$.

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Rational invariants

Pair of rational invariants $\left(I_{2}(x), J_{2}(y)\right)$.

Pole elimination

Pair $\left(I_{3}(x), J_{3}(y)\right)$ of invariants without poles at $x=0$ nor $y=0$.

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Rational invariants

Pair of rational invariants $\left(I_{2}(x), J_{2}(y)\right)$.

Pole elimination

Pair $\left(l_{3}(x), J_{3}(y)\right)$ of invariants without poles at $x=0$ nor $y=0$.

- Invariants Lemma $\Rightarrow I_{3}(x)=J_{3}(y)=C(t)$

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Rational invariants

Pair of rational invariants $\left(I_{2}(x), J_{2}(y)\right)$.

Pole elimination

Pair $\left(l_{3}(x), J_{3}(y)\right)$ of invariants without poles at $x=0$ nor $y=0$.

- Invariants Lemma $\Rightarrow I_{3}(x)=J_{3}(y)=C(t)$
- Bousquet-Mélou \& Jehanne implies that $A(x)$ and $B(y)$ are algebraic

Algebraicity strategy for models with small backwards steps

Model \mathcal{S} of walks with small backwards steps starting at point $\left(i_{0}, j_{0}\right)$.

$$
K(x, y) Q(x, y)=x^{i_{0}+1} y^{j_{0}+1}-A(x)-B(y)
$$

Decoupling

Pair of invariants $\left(I_{1}(x), J_{1}(y)\right)$ from a rational decoupling of $x^{i_{0}+1} y^{j_{0}+1}$.

Rational invariants

Pair of rational invariants $\left(I_{2}(x), J_{2}(y)\right)$.

Pole elimination

Pair $\left(I_{3}(x), J_{3}(y)\right)$ of invariants without poles at $x=0$ nor $y=0$.

- Invariants Lemma $\Rightarrow I_{3}(x)=J_{3}(y)=C(t)$
- Bousquet-Mélou \& Jehanne implies that $A(x)$ and $B(y)$ are algebraic
- $Q(x, y)$ is algebraic

Our results

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

These constructions are effective when the orbit is finite.

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

These constructions are effective when the orbit is finite.

- K first models with large steps to have been proved algebraic

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

These constructions are effective when the orbit is finite.

- first models with large steps to have been proved algebraic \Rightarrow explicit polynomial for the excursion series $Q(0,0)$ of degree 32 .

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

These constructions are effective when the orbit is finite.

- first models with large steps to have been proved algebraic \Rightarrow explicit polynomial for the excursion series $Q(0,0)$ of degree 32 . (conjectured in [Bostan, BM, Raschel, 2018]).

Our results

Every kernel polynomial $K(x, y)$ is associated with a graph called the orbit.

- We endow the orbit with the action of two Galois groups.
- Systematic treatment of rational invariants and decoupling mod $K(x, y)$:
- There exists nonconstant rational invariants if and only if the orbit is finite.
- Decoupling of a fraction $H(x, y)$ characterized and computed through an orbit evaluation.

These constructions are effective when the orbit is finite.

- first models with large steps to have been proved algebraic \Rightarrow explicit polynomial for the excursion series $Q(0,0)$ of degree 32 . (conjectured in [Bostan, BM, Raschel, 2018]).
- New algebraic models with large steps extending Gessel's:

(given $n \geq 1$, algebraic for s.p. $(n-1,0)$ and $((n+1) k-1, k-1)$ for all k)

Construction of rational invariants and decoupling

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018] Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y}
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic }
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic } \Rightarrow \text { new pairs }(z, y) \text { and }\left(\frac{1}{x y^{2} z}, y\right)
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic } \Rightarrow \text { new pairs }(z, y) \text { and }\left(\frac{1}{x y^{2} z}, y\right)
$$

Solve for x^{\prime} the equation $S\left(x, \frac{1}{x y}\right)=S\left(x^{\prime}, \frac{1}{x y}\right)$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic } \Rightarrow \text { new pairs }(z, y) \text { and }\left(\frac{1}{x y^{2} z}, y\right)
$$

Solve for x^{\prime} the equation $S\left(x, \frac{1}{x y}\right)=S\left(x^{\prime}, \frac{1}{x y}\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=x y^{2} z \text { or } x^{\prime}=-\frac{1}{z}
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic } \Rightarrow \text { new pairs }(z, y) \text { and }\left(\frac{1}{x y^{2} z}, y\right)
$$

Solve for x^{\prime} the equation $S\left(x, \frac{1}{x y}\right)=S\left(x^{\prime}, \frac{1}{x y}\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=x y^{2} z \text { or } x^{\prime}=-\frac{1}{z} \Rightarrow \text { new pairs }\left(x y^{2} z, \frac{1}{x y}\right) \text { and }\left(-\frac{1}{z}, \frac{1}{x y}\right)
$$

The orbit

[Bostan, Bousquet-Mélou, Melczer 2018]
Idea: starting from (x, y), construct pairs of variables (u, v) such that $S(u, v)=S(x, y)$, changing one coordinate at a time.

Example:

$$
S(x, y)=\frac{1}{x y}+\frac{x}{y}+x+x^{2} y+y
$$

Solve for y^{\prime} the equation $S(x, y)=S\left(x, y^{\prime}\right)$

$$
y^{\prime}=y \text { or } y^{\prime}=\frac{1}{x y} \Rightarrow \text { new pair }\left(x, \frac{1}{x y}\right)
$$

Solve for x^{\prime} the equation $S(x, y)=S\left(x^{\prime}, y\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=z \text { or } x^{\prime}=\frac{1}{x y^{2} z} \text { for } z \text { quadratic } \Rightarrow \text { new pairs }(z, y) \text { and }\left(\frac{1}{x y^{2} z}, y\right)
$$

Solve for x^{\prime} the equation $S\left(x, \frac{1}{x y}\right)=S\left(x^{\prime}, \frac{1}{x y}\right)$

$$
x^{\prime}=x \text { or } x^{\prime}=x y^{2} z \text { or } x^{\prime}=-\frac{1}{z} \Rightarrow \text { new pairs }\left(x y^{2} z, \frac{1}{x y}\right) \text { and }\left(-\frac{1}{z}, \frac{1}{x y}\right)
$$

The orbit

Key point: Galois symmetries $=$ orbit symmetries

$$
\begin{aligned}
G_{x} & =\operatorname{Gal}(\mathbb{C}(t, x, y, z) / \mathbb{C}(t, x))=\langle\psi, \tau\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
G_{y} & =\operatorname{Gal}(\mathbb{C}(t, x, y, z) / \mathbb{C}(t, y))=\left\langle\phi_{1}, \phi_{2}, \tau\right\rangle \simeq S_{3}
\end{aligned}
$$

Rational invariants

Rational invariants

Theorem ((Fried 1978), (B., Hardouin 2023+))

The following are equivalent:

- The orbit is finite
- There exists a nonconstant pair of rational invariants

Rational invariants

Theorem ((Fried 1978), (B., Hardouin 2023+))
The following are equivalent:

- The orbit is finite
- There exists a nonconstant pair of rational invariants

Construction in case of a finite orbit

Rational invariants

Theorem ((Fried 1978), (B., Hardouin 2023+))

The following are equivalent:

- The orbit is finite
- There exists a nonconstant pair of rational invariants

Construction in case of a finite orbit

Compute $\mu_{x}(Z)=\prod_{(u, v) \in \mathcal{O}}(Z-u)$.

Rational invariants

Theorem ((Fried 1978), (B., Hardouin 2023+))

The following are equivalent:

- The orbit is finite
- There exists a nonconstant pair of rational invariants

Construction in case of a finite orbit

Compute $\mu_{x}(Z)=\prod_{(u, v) \in \mathcal{O}}(Z-u)$.
Galois theory $\Rightarrow \mu_{x}(Z) \in k_{\text {inv }}[Z]$ and $\mu_{x}(Z)$ is irreducible

Rational invariants

Theorem ((Fried 1978), (B., Hardouin 2023+))

The following are equivalent:

- The orbit is finite
- There exists a nonconstant pair of rational invariants

Construction in case of a finite orbit

Compute $\mu_{x}(Z)=\prod_{(u, v) \in \mathcal{O}}(Z-u)$.
Galois theory $\Rightarrow \mu_{x}(Z) \in k_{\text {inv }}[Z]$ and $\mu_{x}(Z)$ is irreducible
Any nonconstant coefficient of $\mu_{x}(Z)$ generates the field of rational invariants.

Rational invariants for

$$
\begin{aligned}
\mu_{x}(Z) & =Z^{6}-\frac{\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{5}+\frac{t+1}{t} Z^{4} \\
& -2 \frac{x^{6} t^{2}+\left(-\frac{t^{2}}{2}+\frac{1}{2}\right) x^{5}+t(t+1) x^{4}+\left(-t^{2}-t\right) x^{2}-\frac{\left(t^{2}-1\right) x}{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{3} \\
& -\frac{t+1}{t} Z^{2}-\frac{\left(\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}\right)}{t^{2} x\left(x^{2}+1\right)^{2}} Z-1
\end{aligned}
$$

Rational invariants for

$$
\begin{aligned}
\mu_{x}(Z) & =Z^{6}-\frac{\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{5}+\frac{t+1}{t} Z^{4} \\
& -2 \frac{x^{6} t^{2}+\left(-\frac{t^{2}}{2}+\frac{1}{2}\right) x^{5}+t(t+1) x^{4}+\left(-t^{2}-t\right) x^{2}-\frac{\left(t^{2}-1\right) x}{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{3} \\
& -\frac{t+1}{t} Z^{2}-\frac{\left(\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}\right)}{t^{2} x\left(x^{2}+1\right)^{2}} Z-1 \\
& =Z^{6}-\frac{t y^{4}-t y-y^{3}-t}{t y^{2}} Z^{5}+\frac{t+1}{t} Z^{4}-2 \frac{\left(y^{4}-\frac{1}{2} y^{2}-y-1\right) t^{2}-t y^{3}+\frac{y^{2}}{2}}{t^{2} y^{2}} Z^{3} \\
& -\frac{(t+1)}{t} Z^{2}+\frac{\left(-t y^{4}+t y+y^{3}+t\right)}{t y^{2}} Z-1 .
\end{aligned}
$$

Rational invariants for

$$
\begin{aligned}
\mu_{x}(Z) & =Z^{6}-\frac{\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{5}+\frac{t+1}{t} Z^{4} \\
& -2 \frac{x^{6} t^{2}+\left(-\frac{t^{2}}{2}+\frac{1}{2}\right) x^{5}+t(t+1) x^{4}+\left(-t^{2}-t\right) x^{2}-\frac{\left(t^{2}-1\right) x}{2}-t^{2}}{t^{2} x\left(x^{2}+1\right)^{2}} Z^{3} \\
& -\frac{t+1}{t} Z^{2}-\frac{\left(\left(x^{3}+x^{6}+x^{4}-x^{2}-1\right) t^{2}+x^{2}\left(x^{2}-1\right) t-x^{3}\right)}{t^{2} x\left(x^{2}+1\right)^{2}} Z-1 \\
& =Z^{6}-\frac{t y^{4}-t y-y^{3}-t}{t y^{2}} Z^{5}+\frac{t+1}{t} Z^{4}-2 \frac{\left(y^{4}-\frac{1}{2} y^{2}-y-1\right) t^{2}-t y^{3}+\frac{y^{2}}{2}}{t^{2} y^{2}} Z^{3} \\
& -\frac{(t+1)}{t} Z^{2}+\frac{\left(-t y^{4}+t y+y^{3}+t\right)}{t y^{2}} Z-1 .
\end{aligned}
$$

Evaluation in the orbit

Evaluation in the orbit

Evaluation

Linear combination of pairs of the orbit $c=\sum_{u, v} c_{u, v}(u, v)$. For $H(x, y)$ a fraction, define $H_{c}=\sum_{u, v} c_{u, v} H(u, v)$.

Evaluation in the orbit

Evaluation

Linear combination of pairs of the orbit $c=\sum_{u, v} c_{u, v}(u, v)$.
For $H(x, y)$ a fraction, define $H_{c}=\sum_{u, v} c_{u, v} H(u, v)$.
Example: killing decoupled fractions $F(x)+G(y)$

Evaluation in the orbit

Evaluation

Linear combination of pairs of the orbit $c=\sum_{u, v} c_{u, v}(u, v)$.
For $H(x, y)$ a fraction, define $H_{c}=\sum_{u, v} c_{u, v} H(u, v)$.
Example: killing decoupled fractions $F(x)+G(y)$

Example: if c is fixed under G_{χ}, then $\sigma_{x} H_{c}=H_{\sigma_{\chi} c}=H_{c}$

Evaluation in the orbit

Evaluation

Linear combination of pairs of the orbit $c=\sum_{u, v} c_{u, v}(u, v)$.
For $H(x, y)$ a fraction, define $H_{c}=\sum_{u, v} c_{u, v} H(u, v)$.
Example: killing decoupled fractions $F(x)+G(y)$

Example: if c is fixed under G_{x}, then $\sigma_{x} H_{c}=H_{\sigma_{x} c}=H_{c}$
$\Rightarrow H_{c}=H_{c}(x)$ by Galois

Decoupling in the orbit (finite orbit case)

Theorem (Bonnet, Hardouin 2023+)
We can write $(x, y)=\gamma_{x}+\gamma_{y}+\alpha$, and for any fraction $H(x, y)$

Decoupling in the orbit (finite orbit case)

Theorem (Bonnet, Hardouin 2023+)
We can write $(x, y)=\gamma_{x}+\gamma_{y}+\alpha$, and for any fraction $H(x, y)$

- H_{α} vanishes if and only if $H(x, y)=F(x)+G(y) \bmod K(x, y)$.

Decoupling in the orbit (finite orbit case)

Theorem (Bonnet, Hardouin 2023+)

We can write $(x, y)=\gamma_{x}+\gamma_{y}+\alpha$, and for any fraction $H(x, y)$

- H_{α} vanishes if and only if $H(x, y)=F(x)+G(y) \bmod K(x, y)$.
- In this case, $F(x)=H_{\gamma_{x}} \bmod K(x, y)$ and $G(y)=H_{\gamma_{y}} \bmod K(x, y)$

$$
\begin{gathered}
(x, y)=\left(\frac{X_{0}}{2}-\frac{X_{1}}{8}+\frac{X_{2}}{8}\right)+\left(\frac{Y_{0}}{4}-\frac{Y_{1}}{4}\right)+\alpha, \\
(x y)_{(x, y)}=x y=-\frac{3 t x^{2}-t-4 x}{4 t\left(x^{2}+1\right)}+\frac{-y-4}{4 y}+0 \bmod K(x, y) .
\end{gathered}
$$

Further questions

Further questions

- Decide the finiteness of the orbit

Further questions

- Decide the finiteness of the orbit
- Systematic pole elimination

Further questions

- Decide the finiteness of the orbit
- Systematic pole elimination
- Find new models / starting points (i_{0}, j_{0}) on which the strategy applies (i.e.: finite orbit and decoupling of $x^{i_{0}+1} y^{j_{0}+1}$)

Further questions

- Decide the finiteness of the orbit
- Systematic pole elimination
- Find new models / starting points (i_{0}, j_{0}) on which the strategy applies (i.e.: finite orbit and decoupling of $x^{i_{0}+1} y^{j_{0}+1}$)

Thank you for your attention!

