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Representable matroids

The (real) Grassmannian Grk,n: consists of all k-dim v.s.V in Rn.

◦ choose a basis {v1, · · · , vk} for such V  A =

−v1−...
−vk−


k×n

◦ the set {I ∈
([n]

k

)
: pI 6= 0} is the set of bases of a matroid M = MV .

We say the matrix A represents M .
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Positroids

Positroids [Postnikov’06] [Blum’01]
A matroid M is a positroid if it can be represented by a matrix A such
that pI ≥ 0.

(
1 a 0 0
0 0 1 b

)1 2 3 4

M : {13, 14, 23, 24}

p13 > 0
p14 > 0 : b > 0
p23 > 0 : a > 0
p24 > 0

(
1 0 a 0
0 1 0 b

)1 2 3 4

M ′ : {12, 14, 23, 34}
p12 > 0
p14 > 0 : b > 0
p23 > 0 : a < 0
p34 > 0 : a > 0

The non-negative Grassmannian Gr≥0
k,n consists of all the Ak×n ∈ Grk,n s.t.

pI ≥ 0 for all I ∈
(n
k

)
.

rep. matroid not positroid



Matroids vs. positroids

Given M = ([n],B) its matroid base polytope PM is

PM := conv{eB : B ∈ B} ⊂ Rn

where eB =
∑

i∈B ei.

[GGMS’84]
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Given M = ([n],B) its matroid base polytope PM is

PM := conv{eB : B ∈ B} ⊂ Rn

where eB =
∑

i∈B ei.

[GGMS’84]

Theorem [Gelfand, Goresky, Macpherson, Serganova]
Let P = conv{eB : B ∈ B} be a 0/1-polytope. Then B is the collection of bases
of a matroid iff every edge of P has direction ei − ej .

Matroid (base) polytope



Matroids vs. positroids

Given M = ([n],B) its matroid base polytope PM is

PM := conv{eB : B ∈ B} ⊂ Rn

where eB =
∑

i∈B ei.

[GGMS’84]

Theorem [Gelfand, Goresky, Macpherson, Serganova]
Let P = conv{eB : B ∈ B} be a 0/1-polytope. Then B is the collection of bases
of a matroid iff every edge of P has direction ei − ej .

{Matroids} = {0/1 polytopes} ∩ {gen. permutahedra}

Matroid (base) polytope
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Alcoved polytope: H-description consists of cij ≤ xi + xi+1 + · · ·+ xj ≤ bij

Theorem [Ardila,Rincón,Williams’16] [Lam, Postnikov]

{Positroids} = {Matroids} ∩ {Alcoved}

An application:

◦ LPMs are positroids: alcoved description by [Knauer, Martinez, Ramírez ’13]
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{
~p ∈ Rn

∣∣ 0 ≤ pi ≤ 1 and
∑i

j=1 Lj ≤
∑i

j=1 pj ≤
∑i

j=1 Uj for all i ∈ [n]
}

◦ Alcoved pol. hace a canonical regular unimodular triangulation. [Lam, Postnikov]
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for each i ∈ n define <i : i <i i+ 1 <i · · · <i n <i 1 <i · · · <i i− 1

Grassmann necklace of M : I = (I1, . . . , In) where Is = min<s B
Envelope: P(I) = {B : B ≥s Is, ∀s}
If B = P(I) then M is a positroid

B(M)={13, 14, 23, 24} I = (13, 23, 31, 41)

Example:

 π : 2143 Decorated permutation

π(j) = i if Ij = Ii − i+ j
permutation on [n] whose fixed
points are decorated i or i.

◦ The set of decorated permutations on [n] is in bijection with positroids on [n].
Grassmann necklaces
Le-diagrams
Eq. classes of plabic graphs...

[Postnikov’06]
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M :

1 0 1 0 1 1 1
0 1 1 0 2 2 1
0 0 0 1 1 2 1
0 0 0 0 0 0 1


1 2 3 4 5 6 7 Circuits:minimal dependent sets

C(M) : {1346,2346,1246,1356,2356,
1256,456,1345,2345,1245,123}

N :
(

1 0 1 0 1 1 1
0 1 1 0 2 2 1

)1 2 3 4 5 6 7

C(N) : {4,123,135,235,125,136,236,126,56,
167,157,257,127,37}

Given matroids N,M over [n], we say N is a quotient of M if every circuit
of M is union of circuits of N (denoted N ≤q M).
In this case the sequence (N,M) is a flag matroid.
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Theorem [B., Knauer’22]
Let M = M [U,L] and N = M [U − i, L− j]. Then N <q M if and only if (i, j) is
a good pair. Moreover <q defines a graded poset structure on LPMs over [n].

Problem: Let N,M be positroids s.t. N <q M . Construct a flag
N <q N1 <q · · · <q Nt = M of consecutive ranks.

11

12
13
14

7
8

11

8

<q



Flags of positroids vs LPFMs



Flags of positroids vs LPFMs

◦ Every max chain is a full flag of positroids: F : U0,n < M1 < · · · < Mn−1 < Un,n.



Flags of positroids vs LPFMs

◦ Every max chain is a full flag of positroids: F : U0,n < M1 < · · · < Mn−1 < Un,n.

◦ Every Mi is a point in Gr≥0
k,n.



Flags of positroids vs LPFMs

◦ Every max chain is a full flag of positroids: F : U0,n < M1 < · · · < Mn−1 < Un,n.

◦ Every Mi is a point in Gr≥0
k,n.

◦ Right: every F is a point in the nonnegative (full) flag variety Fl≥0
n :

∃A ∈ Gr≥0
n,n such that

A =


−v1−

.

.

.
−vi−

.

.

.
−vn−

 Ai ∈ Gr≥0
i,n represents Mi



Flag matroid polytope
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Bruhat interval polytopes

[Williams et al.] Bijective correspondence between (polytopes of) F ∈ F`≥0
n

and intervals in Bruhatn.

Theorem [B., Knauer’22]
Every full LPFM F is an interval in Bruhatn. Thus, F corresponds to a point in F`≥0

n



Regular subdivision:

Comes from a height vector on the vertices
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Theorem: [Joswig,Loho,Luber,Olarte’22]
Boretsky,Eur,Williams’22]

Let µ = (µI)I ∈
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YES!
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Coarsest LPFM subdivisions

Theorem [B., Knauer’24]

Each of the following hyperplanes give a coarsest non-trivial subdivision of Permn

into LPFMs
◦ x1 = i for i = 2, . . . , n− 1  [e, ui ↓] ∪ [ui ↑, ω]

Let ω = n n− 1 · · · 21, e = 12 · · ·n
◦ ui ↓= iω̂i

◦ ui ↑= iêi

◦ vi ↓= ω̂ii
◦ vi ↑= êii

◦ xn = i for i = 2, . . . , n− 1  [e, vi ↓] ∪ [vi ↑, ω]

◦ x1 + x2 = 4
◦ x1 + x2 = 2n− 2
◦ xn−1 + xn = 4
◦ xn−1 + xn = 2n− 2

◦ x1 = 2 : [e, 25431] ∪ [21345, ω]
◦ x1 = 3 : [e, 35421] ∪ [31245, ω]
◦ x1 = 4 : [e, 45321] ∪ [41235, ω]
◦ x1 + x2 = 4 : [e, 31|542] ∪ [13|245, ω]
◦ x1 + x2 = 8 : [e, 53|421] ∪ [35|124, ω]

◦ x5 = 2 : [e, 54312] ∪ [13452, ω]
◦ x5 = 3 : [e, 54213] ∪ [12453, ω]
◦ x5 = 4 : [e, 53214] ∪ [12354, ω]
◦ x4 + x5 = 4 : [e, 542|31] ∪ [245|13, ω]
◦ x4 + x5 = 8 : [e, 421|53] ∪ [124|35, ω]

Example: n = 5
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Proposition [B., Knauer’24]

Let P = I1 ∪ · · · ∪ Im be an LPFM subdivision of Permn and let Ij = [uj , vj ].
Then P∗ = I∗1 ∪ · · · ∪ I∗m is an LPFM subdivision of Permn where
u∗j (i) := n+ 1− uj(i) (and similar for v∗j ).
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LPFMs coarsest
subdivisions of Perm4

Polyhedral and Tropical Geometry of Flag Positroids
Boretsky, Eur, Williams ’22
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3 ⊂ 13 ⊂ 134 e3 + e13 + e134 = (3, 1, 4, 2)


