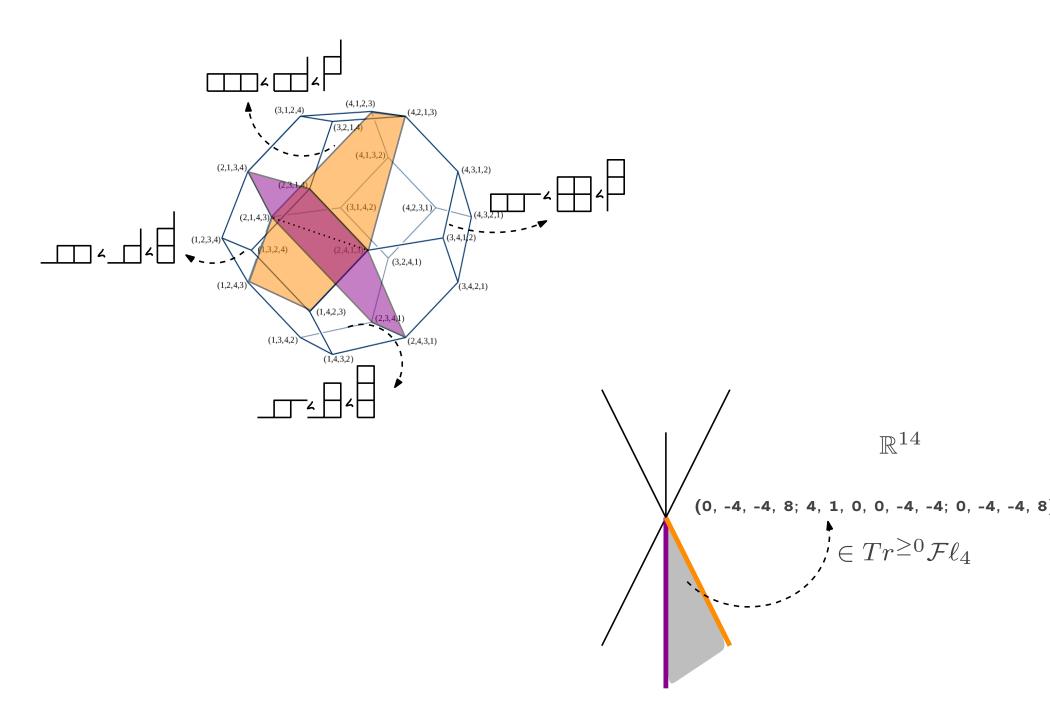
On lattice path matroids subdivisions of the permutahedron

Carolina Benedetti Velásquez Universidad de los Andes

July 22nd 2024 FPSAC Bochum

Overview



A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M

 \circ rank of M: $r_M = |A|$

A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M

 \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]

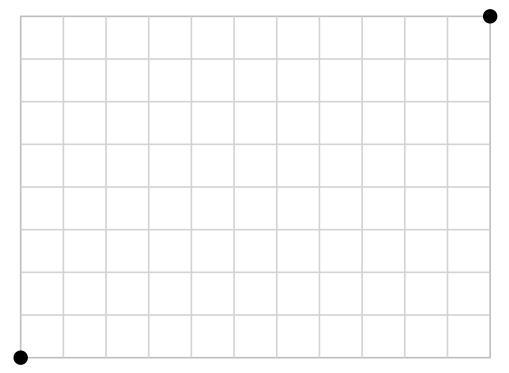
A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M

 \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]

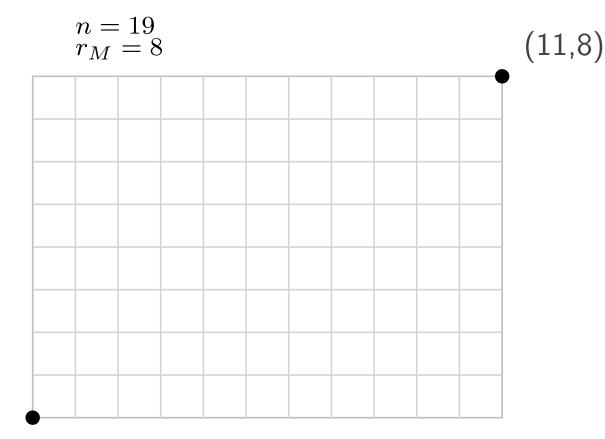
 $n = 19 \\ r_M = 8$



A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]



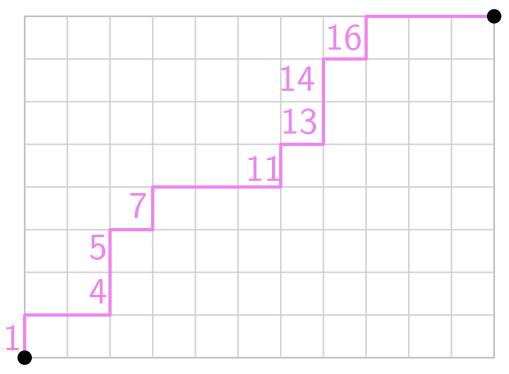
A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M

 \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]

 $n = 19 \\ r_M = 8$

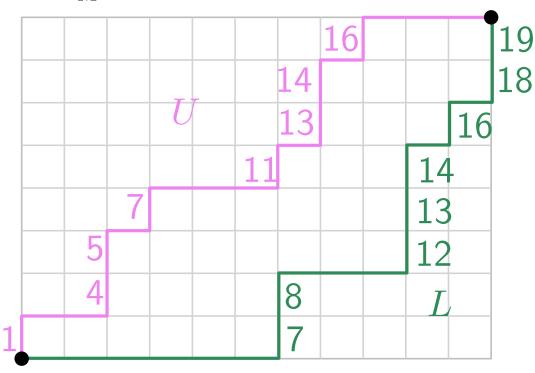


A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]

n = 19 $r_M = 8$

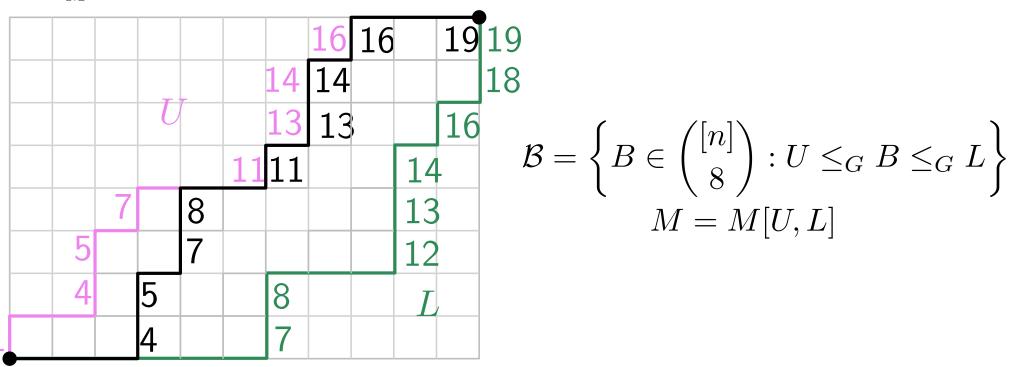


A matroid M is a pair $([n], \mathcal{B})$ where $\emptyset \neq \mathcal{B} \subseteq 2^{[n]}$ satisfies: given $A, B \in \mathcal{B}$, if $a \in A \setminus B$ there is $b \in B \setminus A$ s.t. $A - a + b \in \mathcal{B}$.

 $\circ \mathcal{B}$: bases of M \circ rank of M: $r_M = |A|$

Lattice path matroids (LPMs) [Bonin, de Mier, Noy '02] [Stanley'76]

n = 19 $r_M = 8$



Representable matroids

The (real) Grassmannian $Gr_{k,n}$: consists of all k-dim v.s.V in \mathbb{R}^n .

• choose a basis $\{v_1, \cdots, v_k\}$ for such $V \rightsquigarrow A = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_k - \end{pmatrix}_{k \times k}$

• the set $\{I \in {[n] \choose k} : p_I \neq 0\}$ is the set of bases of a matroid $M = M_V$. We say the matrix A represents M.

Representable matroids

The (real) Grassmannian $Gr_{k,n}$: consists of all k-dim v.s.V in \mathbb{R}^n .

• choose a basis
$$\{v_1, \cdots, v_k\}$$
 for such $V \rightsquigarrow A = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_k - \end{pmatrix}_{k \times n}$

• the set $\{I \in {\binom{[n]}{k}} : p_I \neq 0\}$ is the set of bases of a matroid $M = M_V$. We say the matrix A represents M.

A matroid M over [n] of rank k is representable (over \mathbb{R}) if there is a rank k matrix $A_{k \times n}$ that represents it.

Representable matroids

The (real) Grassmannian $Gr_{k,n}$: consists of all k-dim v.s.V in \mathbb{R}^n .

• choose a basis
$$\{v_1, \cdots, v_k\}$$
 for such $V \rightsquigarrow A = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_k - \end{pmatrix}_{k \times n}$

• the set $\{I \in {\binom{[n]}{k}} : p_I \neq 0\}$ is the set of bases of a matroid $M = M_V$. We say the matrix A represents M.

A matroid M over [n] of rank k is representable (over \mathbb{R}) if there is a rank k matrix $A_{k \times n}$ that represents it.

The non-negative Grassmannian $Gr_{k,n}^{\geq 0}$ consists of all the $A_{k\times n} \in Gr_{k,n}$ s.t. $p_I \geq 0$ for all $I \in \binom{n}{k}$.

The non-negative Grassmannian $Gr_{k,n}^{\geq 0}$ consists of all the $A_{k\times n} \in Gr_{k,n}$ s.t. $p_I \geq 0$ for all $I \in \binom{n}{k}$.

Positroids [Postnikov'06] [Blum'01] A matroid M is a positroid if it can be represented by a matrix A such that $p_I \ge 0$.

The non-negative Grassmannian $Gr_{k,n}^{\geq 0}$ consists of all the $A_{k\times n} \in Gr_{k,n}$ s.t. $p_I \geq 0$ for all $I \in \binom{n}{k}$.

Positroids [Postnikov'06] [Blum'01] A matroid M is a positroid if it can be represented by a matrix A such that $p_I \ge 0$.

 $M:\{13,14,23,24\}$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
(1 & a & 0 & 0 \\
0 & 0 & 1 & b
\end{pmatrix}$$

The non-negative Grassmannian $Gr_{k,n}^{\geq 0}$ consists of all the $A_{k\times n} \in Gr_{k,n}$ s.t. $p_I \geq 0$ for all $I \in \binom{n}{k}$.

Positroids [Postnikov'06] [Blum'01] A matroid M is a positroid if it can be represented by a matrix A such that $p_I \ge 0$.

 $M: \{13, 14, 23, 24\}$

1	2	3	4	$p_{13} > 0$
(1)	a	0	0)	$p_{14} > 0: b > 0$
$\left(\right)$	0	1	b	$p_{23} > 0: a > 0$
$\langle 0 \rangle$	U	*	0)	$p_{24} > 0$

The non-negative Grassmannian $Gr_{k,n}^{\geq 0}$ consists of all the $A_{k\times n} \in Gr_{k,n}$ s.t. $p_I \geq 0$ for all $I \in \binom{n}{k}$.

Positroids [Postnikov'06] [Blum'01] A matroid M is a positroid if it can be represented by a matrix A such that $p_I \ge 0$.

rep. matroid not positroid

Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \qquad [GGMS'84]$ where $e_B = \sum_{i \in B} e_i$.

[GGMS'84]

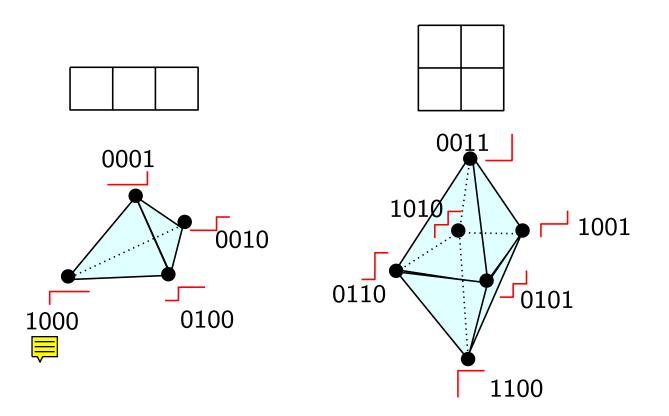
Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$ where $e_B = \sum_{i \in B} e_i$.

- \circ Uniform matroid $U_{k,n} = ([n], \binom{n}{k}))$ is an LPM
- Hypersimplex $\Delta_{k,n}$: matroid polytope of $U_{k,n}$
- Every matroid M over [n] of rank k is such that $P_M \subseteq \Delta_{k,n}$.

[GGMS'84]

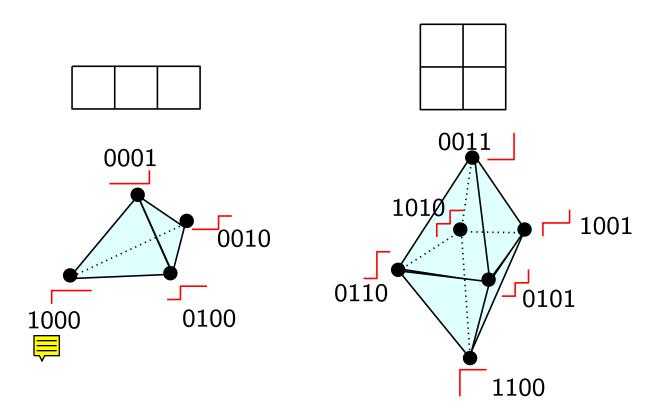
Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$ where $e_B = \sum_{i \in B} e_i$.

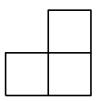
- \circ Uniform matroid $U_{k,n} = ([n], \binom{n}{k}))$ is an LPM
- Hypersimplex $\Delta_{k,n}$: matroid polytope of $U_{k,n}$
- Every matroid M over [n] of rank k is such that $P_M \subseteq \Delta_{k,n}$.



Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \qquad [GGMS'84]$ where $e_B = \sum_{i \in B} e_i$.

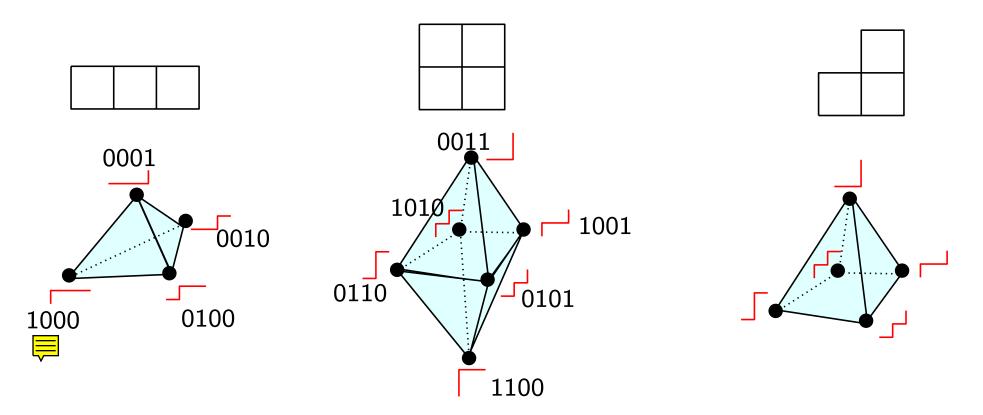
- \circ Uniform matroid $U_{k,n} = ([n], \binom{n}{k}))$ is an LPM
- Hypersimplex $\Delta_{k,n}$: matroid polytope of $U_{k,n}$
- Every matroid M over [n] of rank k is such that $P_M \subseteq \Delta_{k,n}$.





Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \qquad [GGMS'84]$ where $e_B = \sum_{i \in B} e_i$.

- \circ Uniform matroid $U_{k,n} = ([n], \binom{n}{k}))$ is an LPM
- Hypersimplex $\Delta_{k,n}$: matroid polytope of $U_{k,n}$
- Every matroid M over [n] of rank k is such that $P_M \subseteq \Delta_{k,n}$.



Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \qquad [GGMS'84]$ where $e_B = \sum_{i \in B} e_i$.

Theorem [Gelfand, Goresky, Macpherson, Serganova]

Let $P = conv\{e_B : B \in \mathcal{B}\}$ be a 0/1-polytope. Then \mathcal{B} is the collection of bases of a matroid iff every edge of P has direction $e_i - e_j$.

Given $M = ([n], \mathcal{B})$ its matroid base polytope P_M is $P_M := conv\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \qquad [GGMS'84]$ where $e_B = \sum_{i \in B} e_i$.

Theorem [Gelfand, Goresky, Macpherson, Serganova]

Let $P = conv\{e_B : B \in \mathcal{B}\}$ be a 0/1-polytope. Then \mathcal{B} is the collection of bases of a matroid iff every edge of P has direction $e_i - e_j$.

 $\{Matroids\} = \{0/1 \ polytopes\} \cap \{gen. \ permutahedra\}$

Positroid (base) polytope

Alcoved polytope: *H*-description consists of $c_{ij} \leq x_i + x_{i+1} + \cdots + x_j \leq b_{ij}$

Theorem [Ardila, Rincón, Williams'16] [Lam, Postnikov]

 $\{Positroids\} = \{Matroids\} \cap \{Alcoved\}$

Positroid (base) polytope

Alcoved polytope: *H*-description consists of $c_{ij} \leq x_i + x_{i+1} + \cdots + x_j \leq b_{ij}$

Theorem [Ardila, Rincón, Williams'16] [Lam, Postnikov]

 $\{Positroids\} = \{Matroids\} \cap \{Alcoved\}$

An application:

• LPMs are positroids: alcoved description by [Knauer, Martinez, Ramírez '13] $P_M = \left\{ \vec{p} \in \mathbb{R}^n \mid 0 \le p_i \le 1 \text{ and } \sum_{j=1}^i L_j \le \sum_{j=1}^i p_j \le \sum_{j=1}^i U_j \text{ for all } i \in [n] \right\}$

Positroid (base) polytope

Alcoved polytope: *H*-description consists of $c_{ij} \leq x_i + x_{i+1} + \cdots + x_j \leq b_{ij}$

Theorem [Ardila, Rincón, Williams'16] [Lam, Postnikov]

 $\{Positroids\} = \{Matroids\} \cap \{Alcoved\}$

An application:

• LPMs are positroids: alcoved description by [Knauer, Martinez, Ramírez '13] $P_M = \left\{ \vec{p} \in \mathbb{R}^n \mid 0 \le p_i \le 1 \text{ and } \sum_{j=1}^i L_j \le \sum_{j=1}^i p_j \le \sum_{j=1}^i U_j \text{ for all } i \in [n] \right\}$

• Alcoved pol. hace a canonical regular unimodular triangulation. [Lam, Postnikov]

- for each $i \in n$ define $\leq_i : i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i 1$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$
- Envelope: $\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$
- \bullet If $\mathcal{B}=\mathcal{P}(\mathcal{I})$ then M is a positroid

- for each $i \in n$ define $<_i : i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i 1$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$

•Envelope:
$$\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$$

• If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Lxample.

$$I_1$$
 1234

 $\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow$
 I_2
 2341

 I_3
 3412

 I_4
 4123

- for each $i \in n$ define $\langle i : i \langle i | 1 \rangle \langle i | 1 \rangle$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$
- Envelope: $\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$
- If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example: $I_1 = 13$ 1234 $\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow$ $I_2 = 23$ 2341 $I_3 = 31$ $I_{31} = 31$ 3412 $I_4 = 41$ 4123

- for each $i \in n$ define $\langle i : i < i i + 1 < \cdots < i n < i 1 < \cdots < i i 1$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq_s} \mathcal{B}$
- Envelope: $\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$
- If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example:	$I_1 = 13$	1234	$24 >_1 13$
$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow$	$I_2 = 23$	2341	$24 >_2 23$
	$I_3 = 31$	3412	$42 >_3 31$
	$I_4 = 41$	4123	$42 >_4 41$

- for each $i \in n$ define $\langle i : i < i i + 1 < \cdots < i n < i 1 < \cdots < i i 1$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$
- Envelope: $\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$
- If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example:	$I_1 = 13$	1234	$24 >_1 13$
$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow$	$I_2 = 23$	2341	$24 >_2 23$
	$I_3 = 31$	3412	$42 >_3 31$
$\stackrel{``}{\mathcal{P}(\mathcal{I})}$	$I_4 = 41$	4123	$42 >_4 41$

- for each $i \in n$ define $\leq_i : i <_i i + 1 <_i \dots <_i n <_i 1 <_i \dots <_i i 1$
- Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$
- Envelope: $\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$
- \bullet If $\mathcal{B}=\mathcal{P}(\mathcal{I})$ then M is a positroid

$$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow I = (13, 23, 31, 41)$$

• for each $i \in n$ define $\langle i : i \langle i + 1 \rangle \langle i \cdots \rangle \langle i n \rangle \langle i 1 \rangle \langle i \cdots \rangle \langle i n \rangle$

• Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$

•Envelope:
$$\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$$

• If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example:

$$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow I = (13, 23, 31, 41)$$
$$\rightsquigarrow \pi : 2143$$

Decorated permutation

 $\pi(j) = i$ if $I_j = I_i - i + j$ permutation on [n] whose fixed points are decorated \underline{i} or \overline{i} .

• for each $i \in n$ define $\langle i : i \langle i + 1 \rangle \langle i \cdots \rangle \langle i n \rangle \langle i 1 \rangle \langle i \cdots \rangle \langle i n \rangle$

• Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$

•Envelope:
$$\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$$

• If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example:

$$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow I = (13, 23, 31, 41)$$

$$\rightsquigarrow \pi : 2143$$

$$\pi(j) = i \text{ if } I_j = I_i - i + j$$

permutation on $[n]$ whose fixed

points are decorated \underline{i} or \overline{i} .

 \circ The set of decorated permutations on [n] is in bijection with positroids on [n].

• for each $i \in n$ define $\leq_i : i \leq_i i+1 \leq_i \cdots \leq_i n \leq_i 1 \leq_i \cdots \leq_i i-1$

• Grassmann necklace of M: $\mathcal{I} = (I_1, \ldots, I_n)$ where $I_s = \min_{\leq s} \mathcal{B}$

•Envelope:
$$\mathcal{P}(\mathcal{I}) = \{B : B \geq_s I_s, \forall s\}$$

• If $\mathcal{B} = \mathcal{P}(\mathcal{I})$ then M is a positroid

Example:

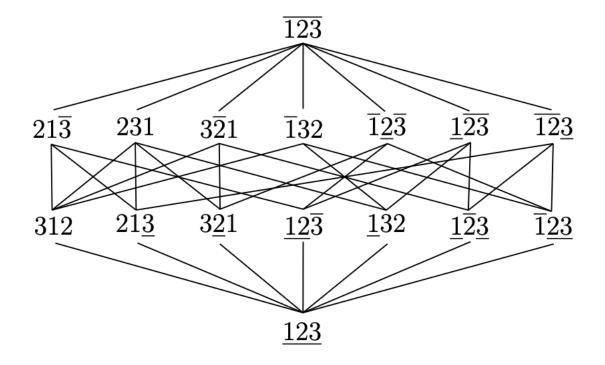
$$\mathcal{B}(M) = \{13, 14, 23, 24\} \rightsquigarrow I = (13, 23, 31, 41)$$

$$\sim \pi : 2143$$

$$\pi(j) = i \text{ if } I_j = I_i - i + j$$
permutation on $[n]$ whose fixed
points are decorated i or \overline{i} .
$$\circ \text{ The set of decorated permutations on } [n] \text{ is in bijection with positroids on } [n].$$
Grassmann necklaces
Le-diagrams
$$[\text{Postnikov'06}]$$

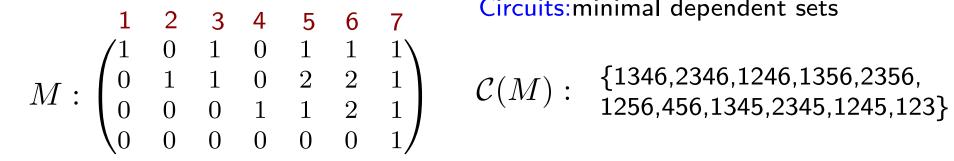
Eq. classes of plabic graphs...

Positroids on [3]

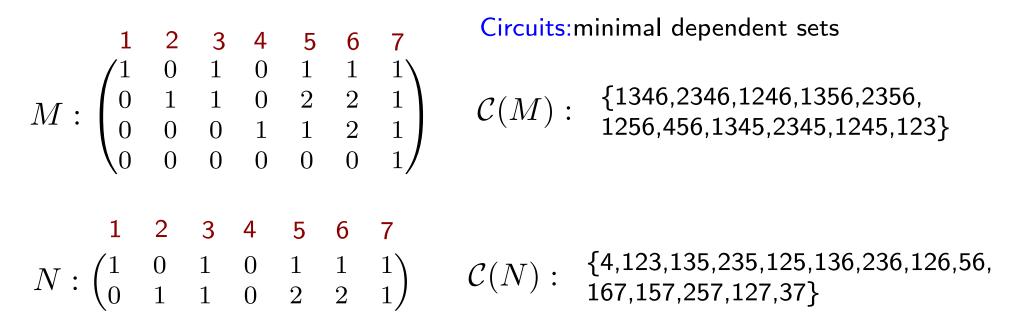


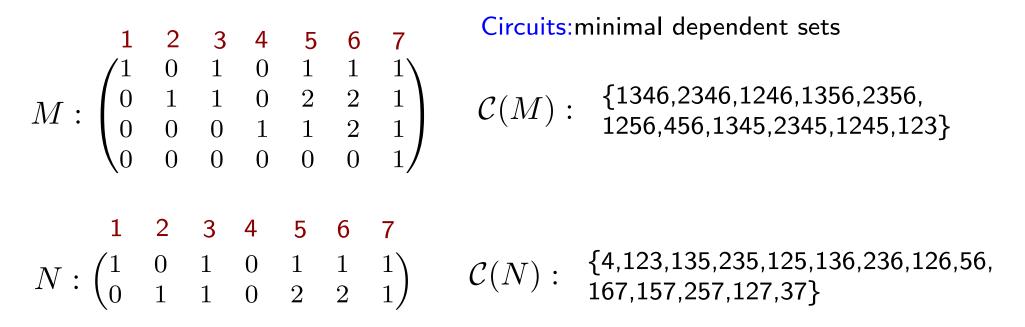
Circuits:minimal dependent sets

$$M: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$



Circuits: minimal dependent sets



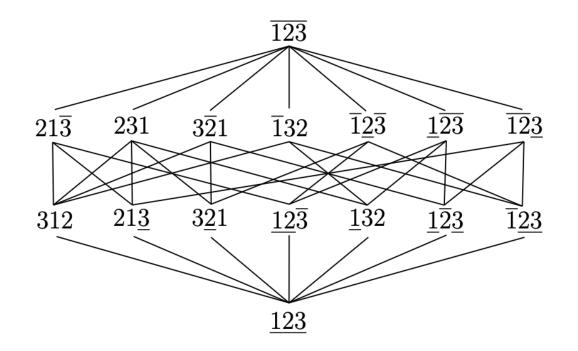


Given matroids N, M over [n], we say N is a quotient of M if every circuit of M is union of circuits of N (denoted $N \leq_q M$). In this case the sequence (N, M) is a flag matroid.

Question: Given positroids N, M over [n], is there a combinatorial rule to determine if $N \leq_q M$, or viceversa?

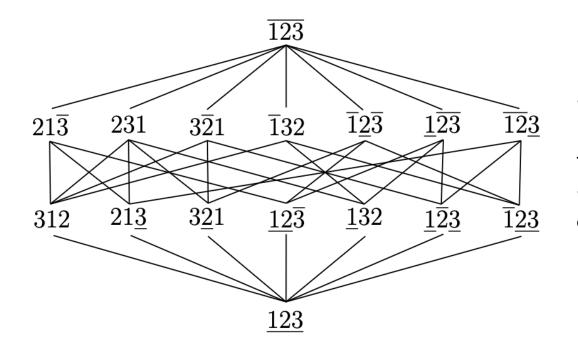
Question: Given positroids N, M over [n], is there a combinatorial rule to determine if $N \leq_q M$, or viceversa?

• Characterization of some positroids N s.t. $N \leq_q U_{k,n}$ via decorated perm. using circuit [B., Chavez, Tamayo'20]



Question: Given positroids N, M over [n], is there a combinatorial rule to determine if $N \leq_q M$, or viceversa?

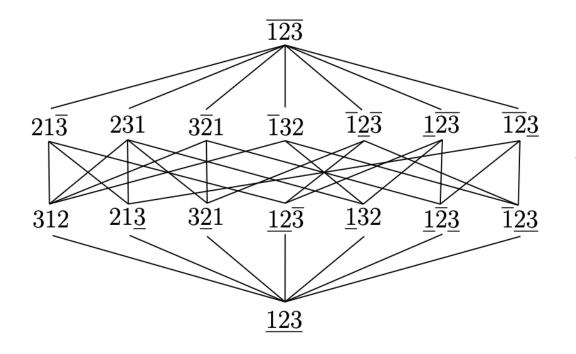
• Characterization of some positroids N s.t. $N \leq_q U_{k,n}$ via decorated perm. using circuit [B., Chavez, Tamayo'20]



the cyclic shift used appeared in later work by Parisi et al. in relation to tilings of the m = 2 amplituhedron.
our rule led to conjecture a full characterization, has been proved by Chen et al (2024).

Question: Given positroids N, M over [n], is there a combinatorial rule to determine if $N \leq_q M$, or viceversa?

• Characterization of some positroids N s.t. $N \leq_q U_{k,n}$ via decorated perm. using circuit [B., Chavez, Tamayo'20]



the cyclic shift used appeared in later work by Parisi et al. in relation to tilings of the m = 2 amplituhedron.
our rule led to conjecture a full characterization, has been proved by Chen et al (2024).

Problem:

Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

Problem:

Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

Problem:

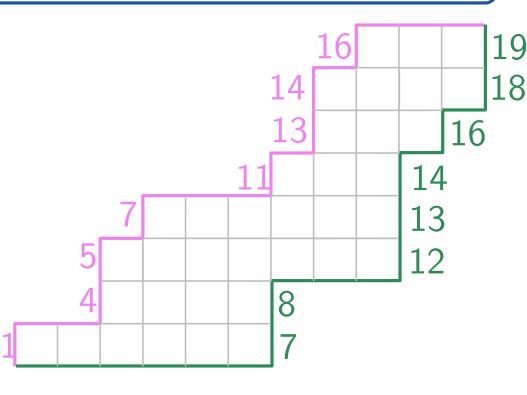
Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

Theorem [B., Knauer'22]

Problem:

Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

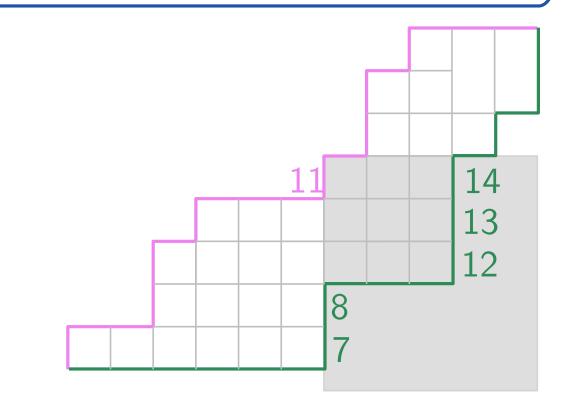
Theorem [B., Knauer'22]



Problem:

Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

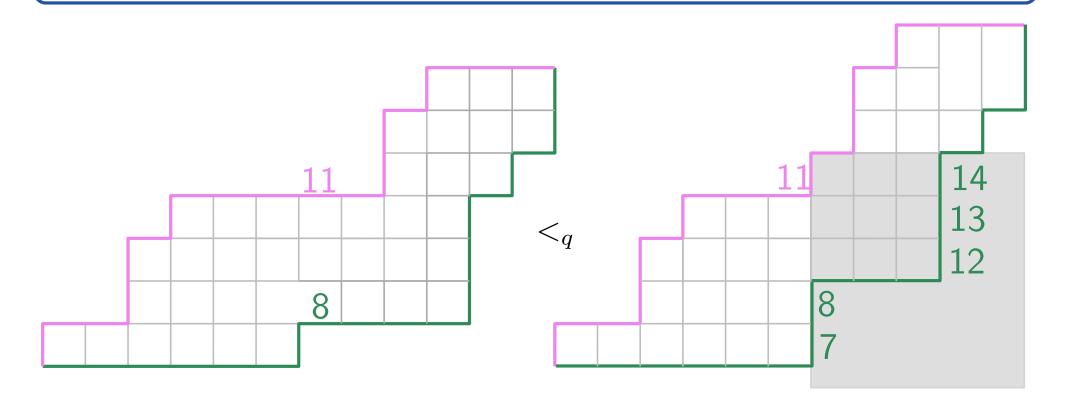
Theorem [B., Knauer'22]

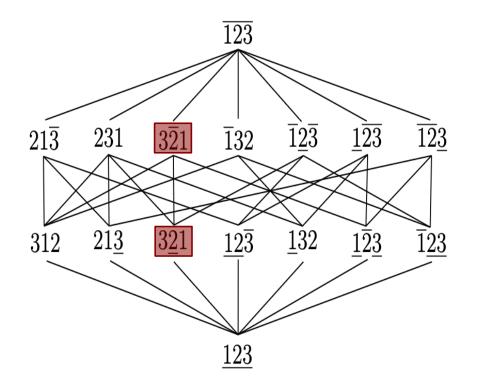


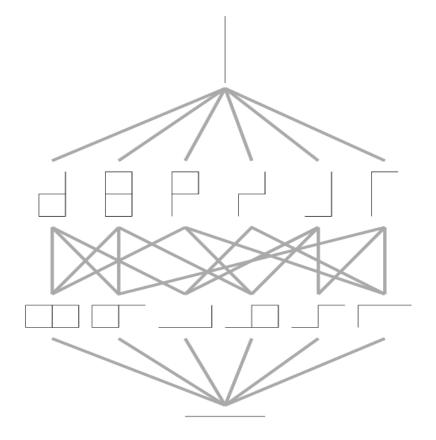
Problem:

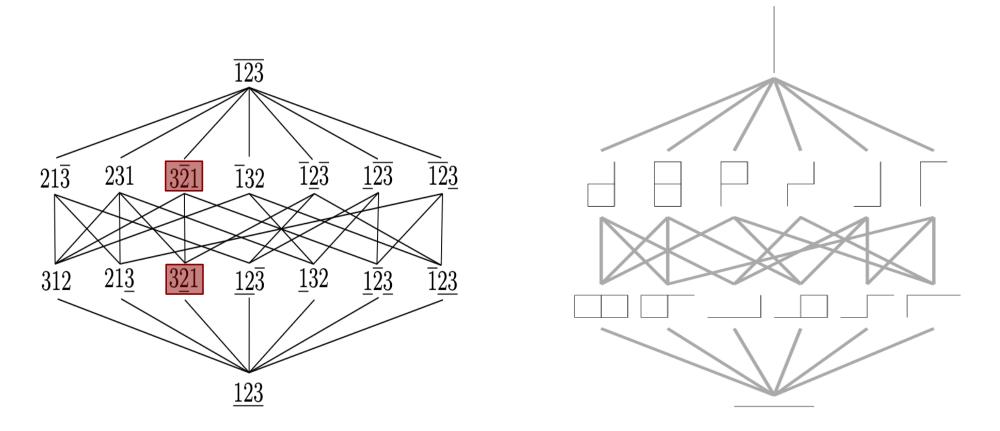
Let N, M be positroids s.t. $N <_q M$. Construct a flag $N <_q N_1 <_q \cdots <_q N_t = M$ of consecutive ranks.

Theorem [B., Knauer'22]

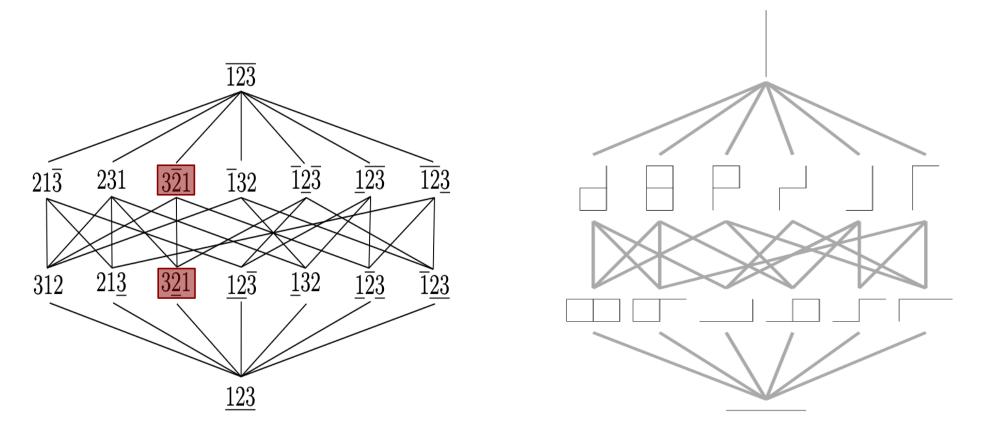




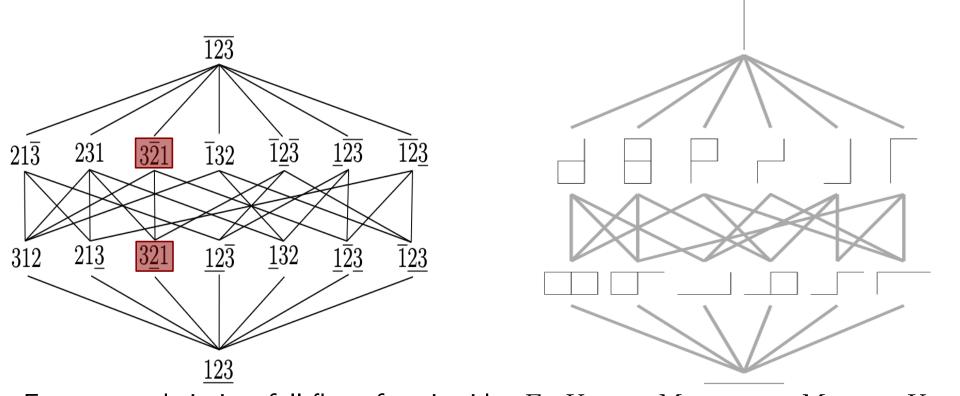




• Every max chain is a full flag of positroids: $F: U_{0,n} < M_1 < \cdots < M_{n-1} < U_{n,n}$.



• Every max chain is a full flag of positroids: $F: U_{0,n} < M_1 < \cdots < M_{n-1} < U_{n,n}$. • Every M_i is a point in $Gr_{k,n}^{\geq 0}$.



◦ Every max chain is a full flag of positroids: $F: U_{0,n} < M_1 < \cdots < M_{n-1} < U_{n,n}$. ◦ Every M_i is a point in $Gr_{k,n}^{\geq 0}$.

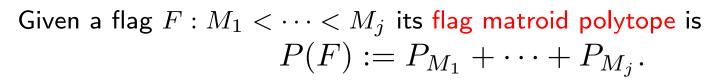
• Right: every F is a point in the nonnegative (full) flag variety $Fl_n^{\geq 0}$: $\exists A \in Gr_{n,n}^{\geq 0}$ such that

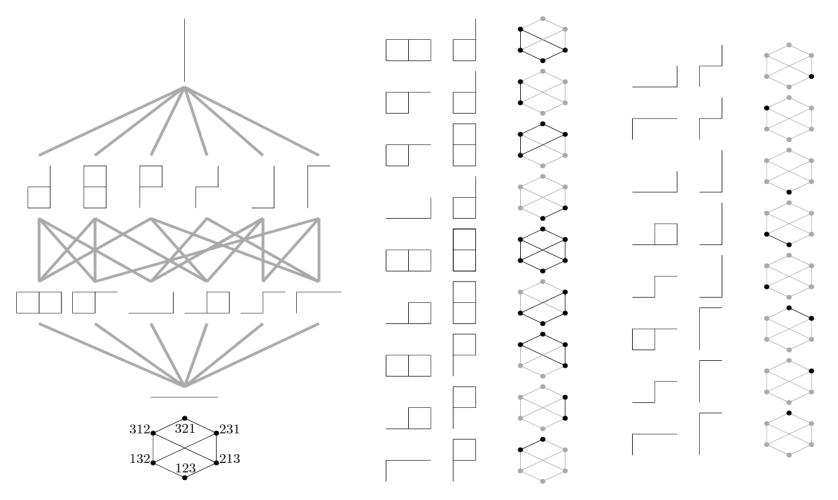
$$A = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_i - \\ \vdots \\ -v_n - \end{pmatrix} A_i \in Gr_{i,n}^{\geq 0} \text{ represents } M_i$$

Flag matroid polytope

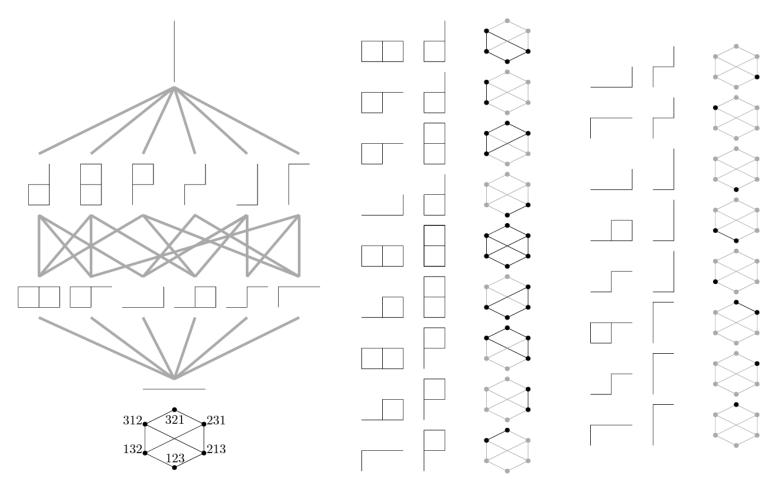
Given a flag $F: M_1 < \cdots < M_j$ its flag matroid polytope is $P(F) := P_{M_1} + \cdots + P_{M_j}.$

Flag matroid polytope





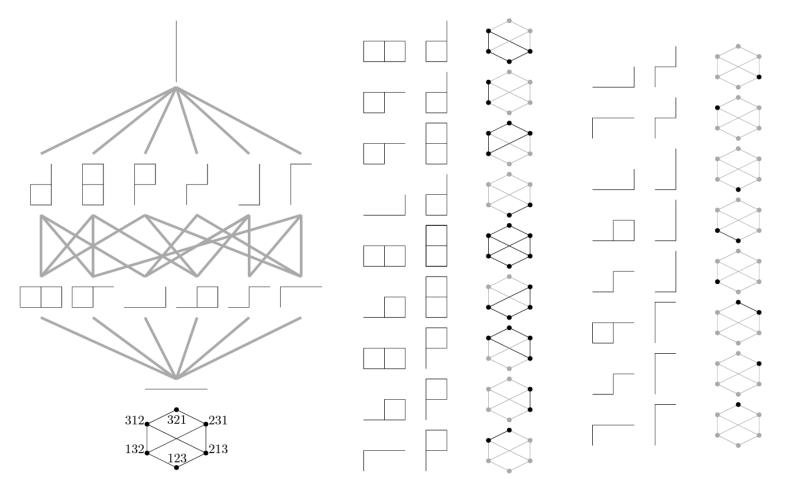
Bruhat interval polytopes



[Williams et al.]

Bijective correspondence between (polytopes of) $F\in \mathcal{F}\ell_n^{\geq 0}$ and intervals in $Bruhat_n$.

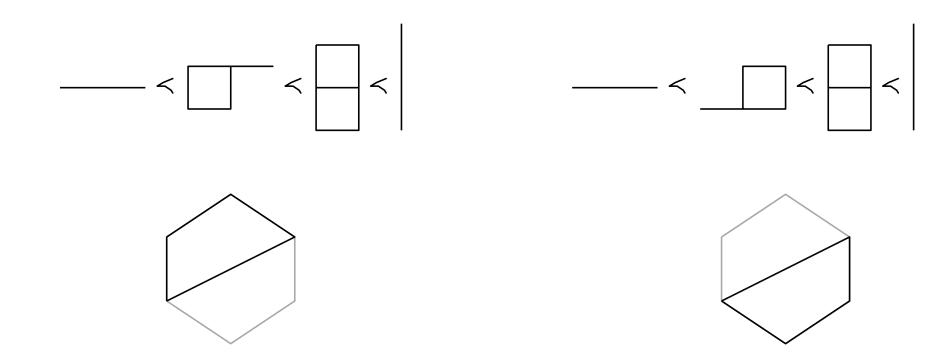
Bruhat interval polytopes



[Williams et al.] Bijective correspondence between (polytopes of) $F \in \mathcal{F}\ell_n^{\geq 0}$ and intervals in $Bruhat_n$.

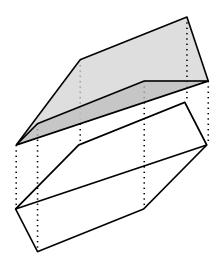
Theorem [B., Knauer'22]

Every full LPFM F is an interval in $Bruhat_n$. Thus, F corresponds to a point in $\mathcal{F}\ell_n^{\geq 0}$



Regular subdivision:

Comes from a height vector on the vertices



.....

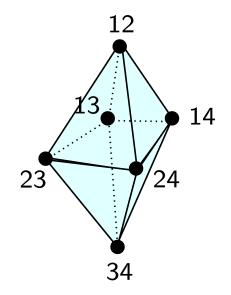
 \circ Polytope of $U_{k,n}$

 \circ Polytope of $U_{k,n}$

Theorem: [Lukowski,Parisi,Williams'20] Let $P = (P_I)_I \in \mathbb{R}^{\binom{[n]}{k}}$. TFAE: (i) The subdivision of Δ_{kn} induced by P is positroidal. (ii) P is a point in $Tr^{\geq 0}Gr_{kn}$.

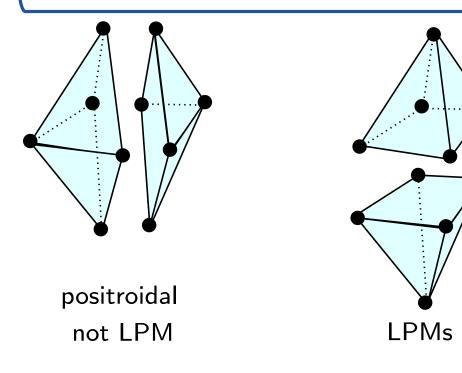
 \circ Polytope of $U_{k,n}$

Theorem: [Lukowski,Parisi,Williams'20] Let $P = (P_I)_I \in \mathbb{R}^{\binom{[n]}{k}}$. TFAE: (i) The subdivision of Δ_{kn} induced by P is positroidal. (ii) P is a point in $Tr^{\geq 0}Gr_{kn}$.



 \circ Polytope of $U_{k,n}$

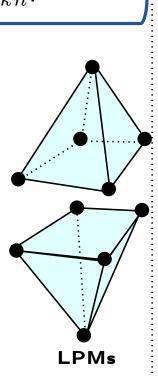
Theorem: [Lukowski,Parisi,Williams'20] Let $P = (P_I)_I \in \mathbb{R}^{\binom{[n]}{k}}$. TFAE: (i) The subdivision of Δ_{kn} induced by P is positroidal. (ii) P is a point in $Tr^{\geq 0}Gr_{kn}$.

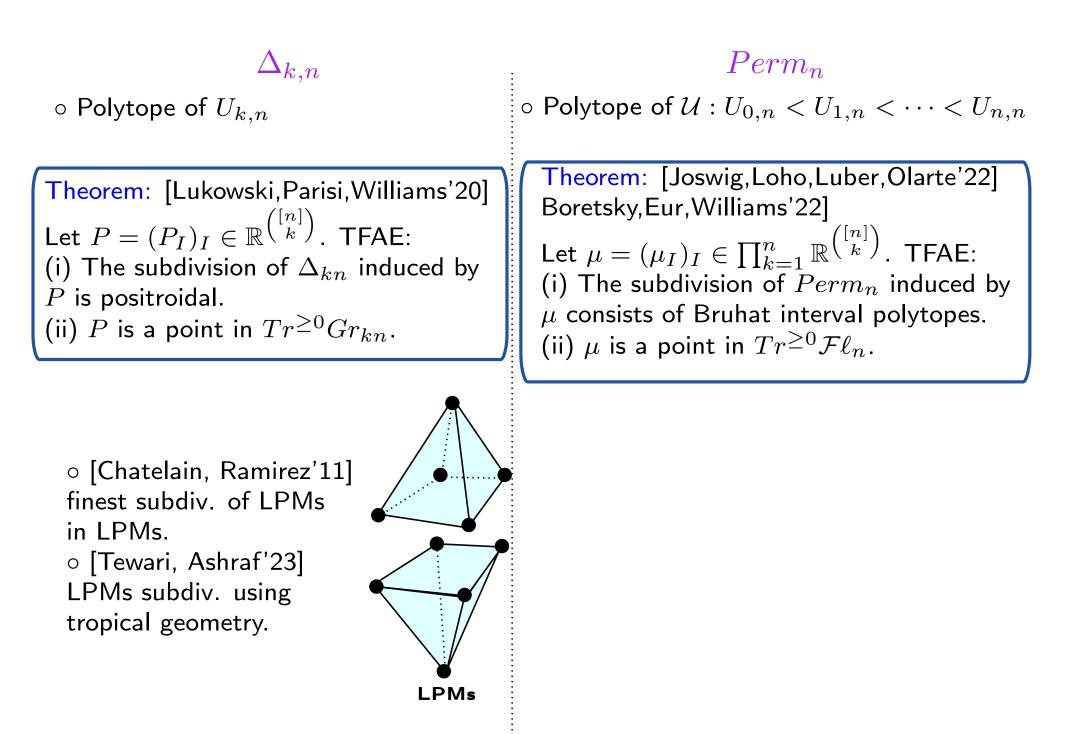


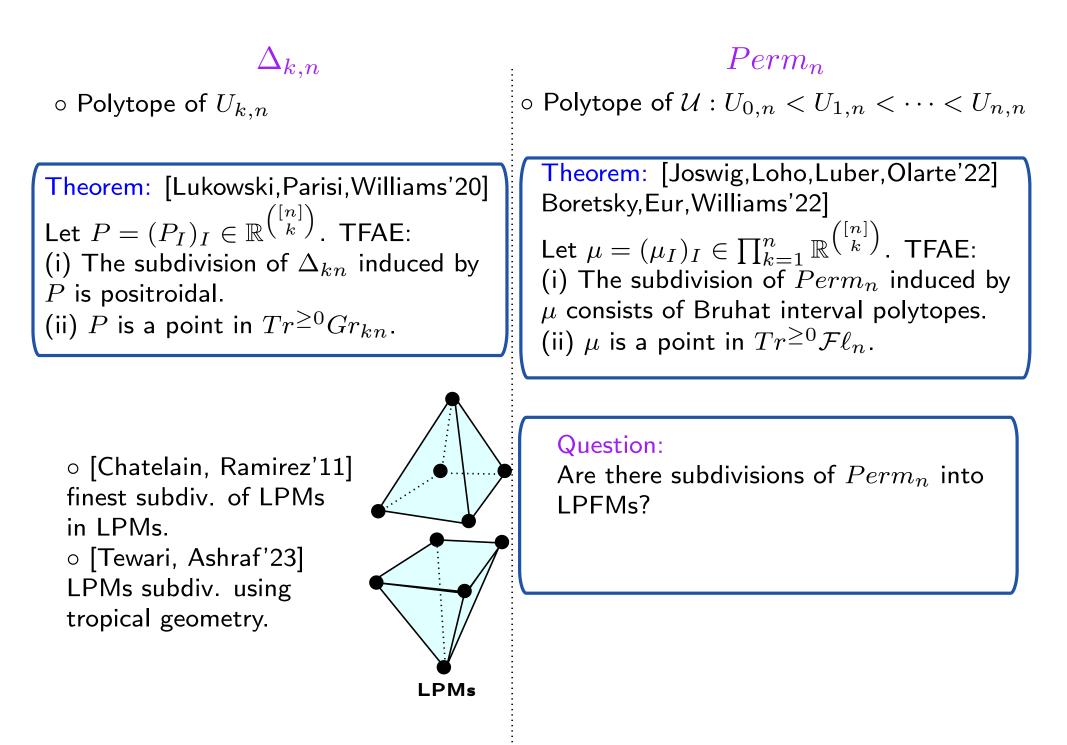
 \circ Polytope of $U_{k,n}$

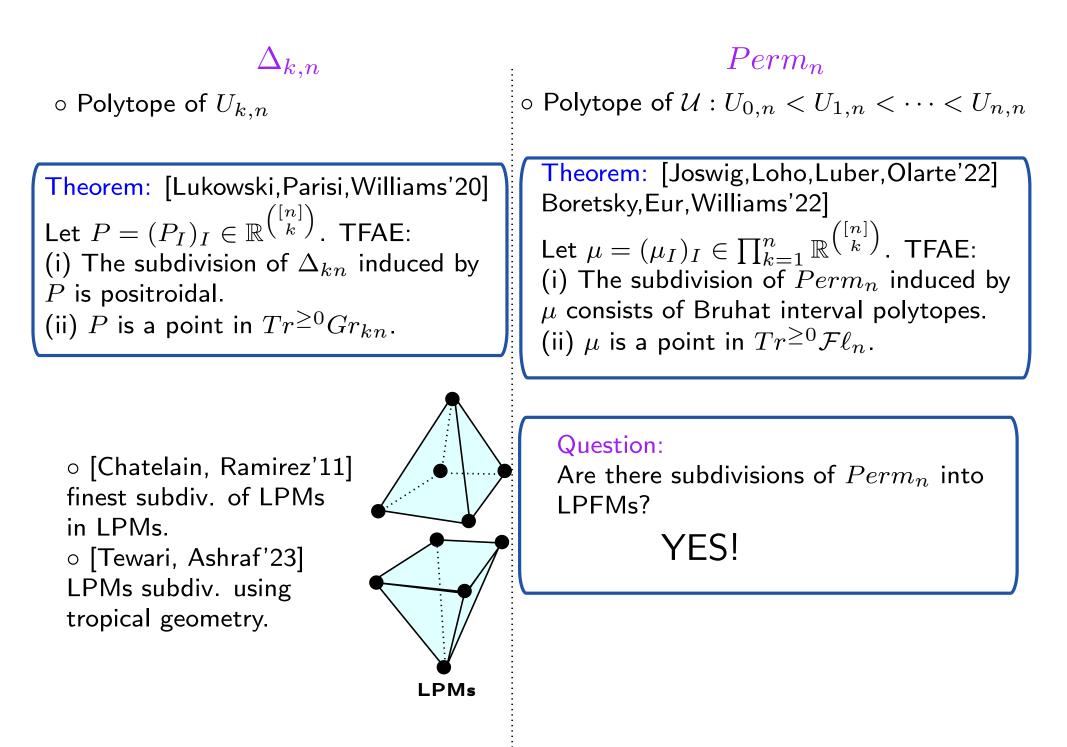
Theorem: [Lukowski,Parisi,Williams'20] Let $P = (P_I)_I \in \mathbb{R}^{\binom{[n]}{k}}$. TFAE: (i) The subdivision of Δ_{kn} induced by P is positroidal. (ii) P is a point in $Tr^{\geq 0}Gr_{kn}$.

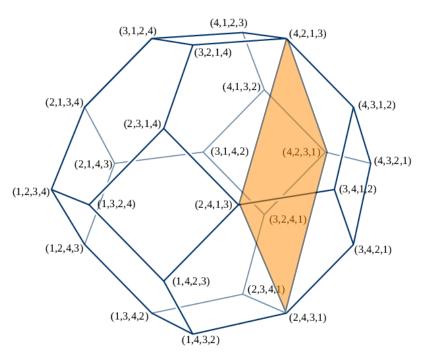
[Chatelain, Ramirez'11]
finest subdiv. of LPMs
in LPMs.
[Tewari, Ashraf'23]
LPMs subdiv. using
tropical geometry.

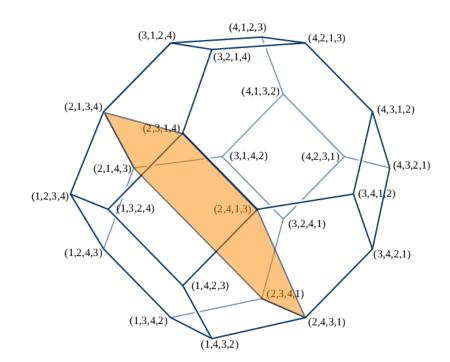


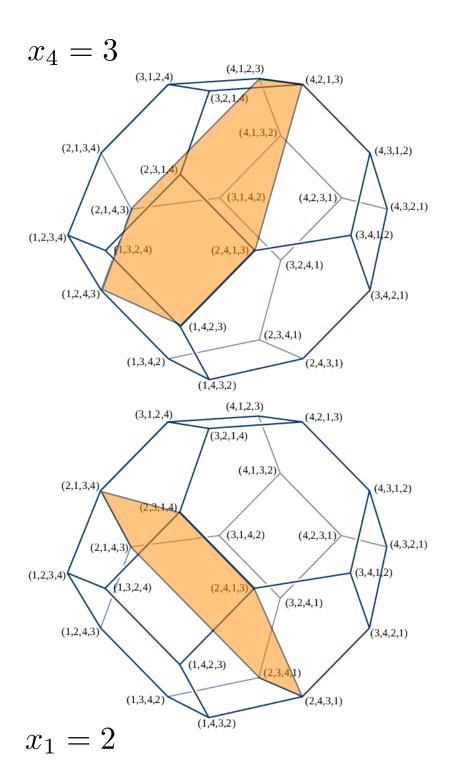


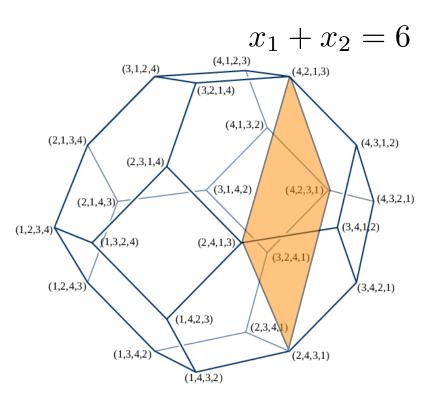


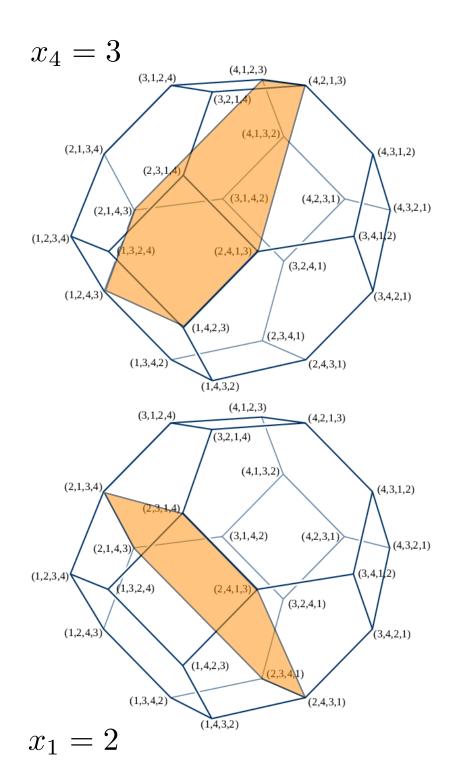


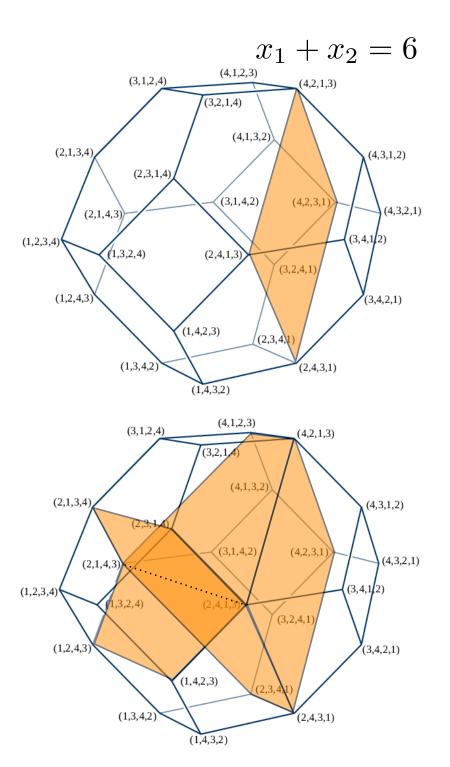












Coarsest LPFM subdivisions

Let
$$\omega = n \ n - 1 \cdots 21$$
, $e = 12 \cdots n$
 $\circ u_i \downarrow = i\hat{\omega}_i$
 $\circ u_i \uparrow = i\hat{e}_i$

Theorem [B., Knauer'24]

Each of the following hyperplanes give a coarsest non-trivial subdivision of $Perm_n$ into LPFMs $\circ x_1 = i$ for $i = 2, ..., n - 1 \rightsquigarrow [e, u_i \downarrow] \cup [u_i \uparrow, \omega]$

Coarsest LPFM subdivisions

Let $\omega = n \ n - 1 \cdots 21$, $e = 12 \cdots n$ $\circ u_i \downarrow = i\hat{\omega}_i \qquad \circ v_i \downarrow = \hat{\omega}_i i$ $\circ u_i \uparrow = i\hat{e}_i \qquad \circ v_i \uparrow = \hat{e}_i i$

Theorem [B., Knauer'24]

Each of the following hyperplanes give a coarsest non-trivial subdivision of $Perm_n$ into LPFMs

$$\circ x_1 = i \text{ for } i = 2, \dots, n-1 \rightsquigarrow [e, u_i \downarrow] \cup [u_i \uparrow, \omega]$$

$$\circ x_n = i \text{ for } i = 2, \dots, n-1 \rightsquigarrow [e, v_i \downarrow] \cup [v_i \uparrow, \omega]$$

Coarsest LPFM subdivisions

Let
$$\omega = n \ n - 1 \cdots 21$$
, $e = 12 \cdots n$
 $\circ u_i \downarrow = i \hat{\omega}_i$ $\circ v_i \downarrow = \hat{\omega}_i i$
 $\circ u_i \uparrow = i \hat{e}_i$ $\circ v_i \uparrow = \hat{e}_i i$

Theorem [B., Knauer'24]

Each of the following hyperplanes give a coarsest non-trivial subdivision of $Perm_n$ into LPFMs $\circ x_1 = i$ for $i = 2, ..., n - 1 \rightsquigarrow [e, u_i \downarrow] \cup [u_i \uparrow, \omega]$ $\circ x_n = i$ for $i = 2, ..., n - 1 \rightsquigarrow [e, v_i \downarrow] \cup [v_i \uparrow, \omega]$ $\circ x_1 + x_2 = 4$ $\circ x_1 + x_2 = 2n - 2$ $\circ x_{n-1} + x_n = 4$ $\circ x_{n-1} + x_n = 2n - 2$

Coarsest LPFM subdivisions

Let
$$\omega = n \ n - 1 \cdots 21$$
, $e = 12 \cdots n$
 $\circ u_i \downarrow = i \hat{\omega}_i$ $\circ v_i \downarrow = \hat{\omega}_i i$
 $\circ u_i \uparrow = i \hat{e}_i$ $\circ v_i \uparrow = \hat{e}_i i$

Theorem [B., Knauer'24]

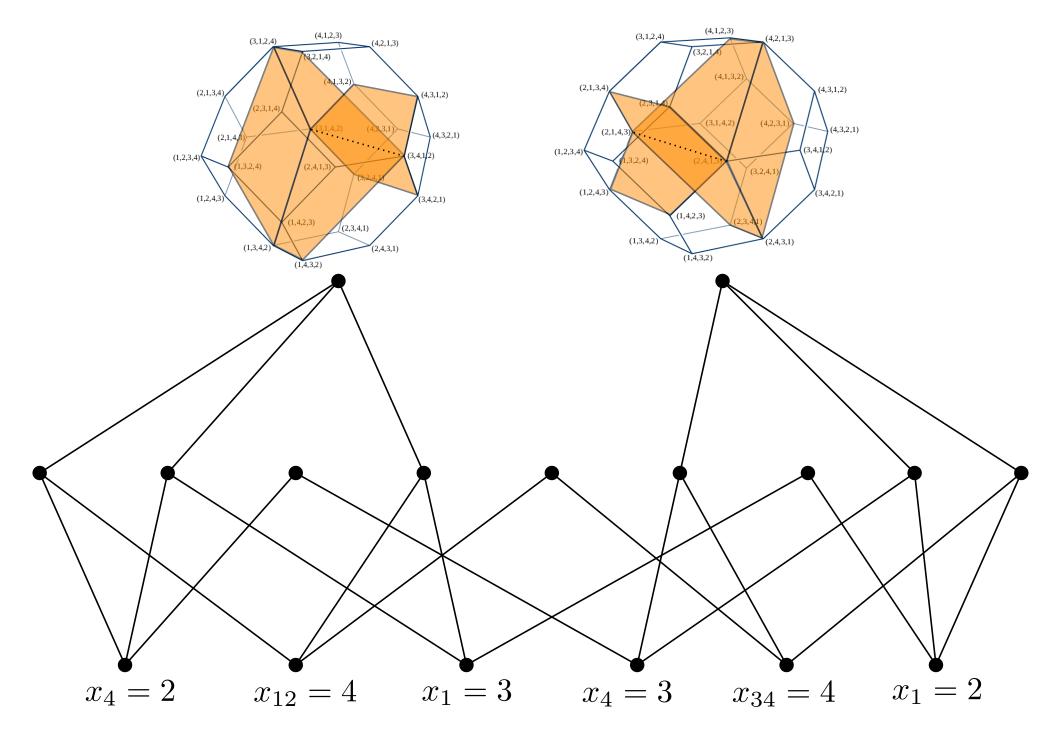
Each of the following hyperplanes give a coarsest non-trivial subdivision of $Perm_n$ into LPFMs $\circ x_1 = i$ for $i = 2, ..., n - 1 \rightsquigarrow [e, u_i \downarrow] \cup [u_i \uparrow, \omega]$ $\circ x_n = i$ for $i = 2, ..., n - 1 \rightsquigarrow [e, v_i \downarrow] \cup [v_i \uparrow, \omega]$ $\circ x_1 + x_2 = 4$ $\circ x_1 + x_2 = 2n - 2$ $\circ x_{n-1} + x_n = 4$ $\circ x_{n-1} + x_n = 2n - 2$

Example: n = 5

$$\begin{array}{l} \circ \ x_1 = 2 : [e, 25431] \cup [21345, \omega] \\ \circ \ x_1 = 3 : [e, 35421] \cup [31245, \omega] \\ \circ \ x_1 = 4 : [e, 45321] \cup [41235, \omega] \\ \circ \ x_1 + x_2 = 4 : [e, 31|542] \cup [13|245, \omega] \\ \circ \ x_1 + x_2 = 8 : [e, 53|421] \cup [35|124, \omega] \end{array}$$

 $\circ x_5 = 2 : [e, 54312] \cup [13452, \omega]$ $\circ x_5 = 3 : [e, 54213] \cup [12453, \omega]$ $\circ x_5 = 4 : [e, 53214] \cup [12354, \omega]$ $\circ x_4 + x_5 = 4 : [e, 542|31] \cup [245|13, \omega]$ $\circ x_4 + x_5 = 8 : [e, 421|53] \cup [124|35, \omega]$

LPFMs subdivisions of $Perm_4$



Proposition [B., Knauer'24]

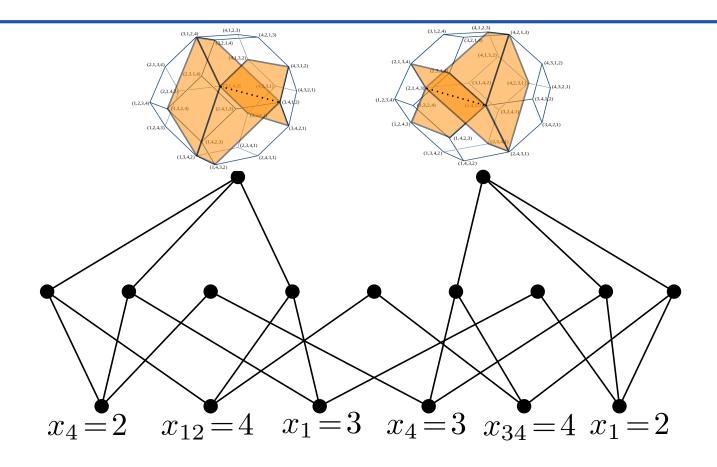
Let $\mathcal{P} = I_1 \cup \cdots \cup I_m$ be an LPFM subdivision of $Perm_n$ and let $I_j = [u_j, v_j]$. Then $\mathcal{P}^* = I_1^* \cup \cdots \cup I_m^*$ is an LPFM subdivision of $Perm_n$ where $u_j^*(i) := n + 1 - u_j(i)$ (and similar for v_j^*).

Proposition [B., Knauer'24]

Let $\mathcal{P} = I_1 \cup \cdots \cup I_m$ be an LPFM subdivision of $Perm_n$ and let $I_j = [u_j, v_j]$. Then $\mathcal{P}^* = I_1^* \cup \cdots \cup I_m^*$ is an LPFM subdivision of $Perm_n$ where $u_j^*(i) := n + 1 - u_j(i)$ (and similar for v_j^*). Moreover, $\circ (x_i = a)^* = x_i = n - a + 1$ for $a = 2, \ldots, n - 1$ $\circ (x_{ij} = 4)^* = x_{ij} = 2n - 2$.

Proposition [B., Knauer'24]

Let $\mathcal{P} = I_1 \cup \cdots \cup I_m$ be an LPFM subdivision of $Perm_n$ and let $I_j = [u_j, v_j]$. Then $\mathcal{P}^* = I_1^* \cup \cdots \cup I_m^*$ is an LPFM subdivision of $Perm_n$ where $u_j^*(i) := n + 1 - u_j(i)$ (and similar for v_j^*). Moreover, $\circ (x_i = a)^* = x_i = n - a + 1$ for $a = 2, \ldots, n - 1$ $\circ (x_{ij} = 4)^* = x_{ij} = 2n - 2$.



Some current questions

• Let $F_1 \cup F_2$ be the subdivision of $Perm_n$ given by $x_i = a$. Deletion of n in each constituent of F_1 and F_2 gives rise to the subdivision of $Perm_{n-1}$ via $x_i = a$.

Some current questions

• Let $F_1 \cup F_2$ be the subdivision of $Perm_n$ given by $x_i = a$. Deletion of n in each constituent of F_1 and F_2 gives rise to the subdivision of $Perm_{n-1}$ via $x_i = a$.

Question:

Does the subdivision given by $x_{ij} = a$ related to some operation(s) on matroids?.

Some current questions

• Let $F_1 \cup F_2$ be the subdivision of $Perm_n$ given by $x_i = a$. Deletion of n in each constituent of F_1 and F_2 gives rise to the subdivision of $Perm_{n-1}$ via $x_i = a$.

Question:

• Does the subdivision given by $x_{ij} = a$ related to some operation(s) on matroids?.

• A collection of hyperplanes is *compatible* if they give rise to an LPFM subdivision.

Questions:

- What are the compatible hyperplanes for $Perm_n$?.
- Are there more hyperplanes that give rise to LPFMs subdivisions?
- What are the finest subdivisions in LPFMs of $Perm_n$?
- What are their *f*-vectors?
- •What weight vectors do LPFM subdivisions correspond to, as points in $Tr^{\geq 0}\mathcal{F}\ell_n$?

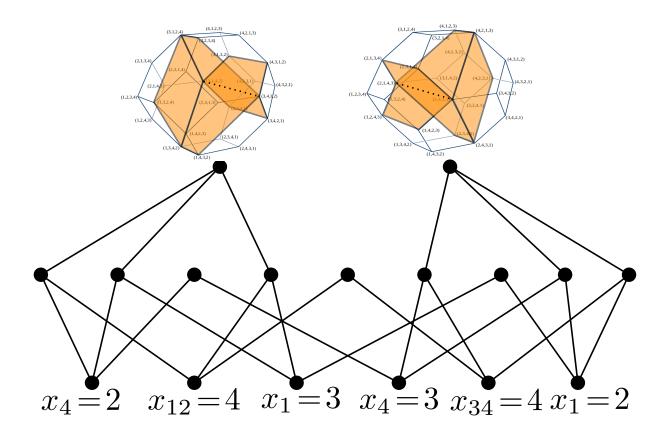
Questions:

- What are the compatible hyperplanes for $Perm_n$?.
- \bullet Are there more hyperplanes that give rise to LPFMs subdivisions?
- What are the finest subdivisions in LPFMs of $Perm_n$?
- What are their *f*-vectors?
- •What weight vectors do LPFM subdivisions correspond to, as points in $Tr^{\geq 0}\mathcal{F}\ell_n$?

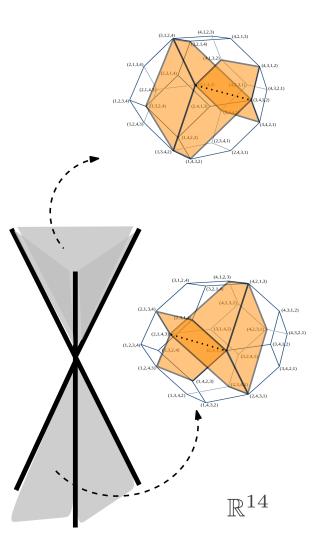
Height function $(P_1, P_2, P_3, P_4; P_{12}, P_{13}, P_{13}, P_{13})$	Bruhat interval polytopes	<i>f</i> -vector
$P_{14}, P_{23}, P_{24}, P_{34}; P_{123}, P_{124}, P_{134}, P_{234})$	in subdivision	
(-1, -1, -1, 0; -1, -1, 0, -1, 0, 0; 0, 0, 0, 0)	$P_{1243,4321}, P_{1234,4213}$	(24,39,18,2)
(-1, -1, -1, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0)	$P_{1342,4321}, P_{1234,4312}$	
(1,0,0,0;0,0,0,0,0,0;0,0,0,0)	$P_{2134,4321}, P_{1234,2431}$	
(1,0,0,0;0,0,0,1,1,1;0,0,0,0)	$P_{3124,4321}, P_{1234,3421}$	
(0,0,0,0;-1,-1,-1,-1,-1,0;0,0,0,0)	$P_{2413,4321}, P_{1234,4231}$	(24,40,19,2)
(0,0,0,0;1,0,0,0,0;0,0,0,0)	$P_{1324,4321}, P_{1234,3142}$	
(-1, -1, 0, 0; -1, -1, -1, -1, -1, 0; 0, 0, 0, 0)	$P_{1423,4321}, P_{1342,4231},$	(24,42,23,4)
	$P_{1324,4213}, P_{1234,4132}$	
(0, -1, -1, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 0)	$P_{3142,4321}, P_{1243,3421},$	
	$P_{2134,4312}, P_{1234,2413}$	
(1, 1, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0)	$P_{2314,4321}, P_{1324,2431},$	
	$P_{3124,4231}, P_{1234,3241}$	

LPFMs coarsest subdivisions of $Perm_4$

Polyhedral and Tropical Geometry of Flag Positroids Boretsky, Eur, Williams '22



 $Tr^{\geq 0}\mathcal{F}\ell_4$



Acknowledgements

- Chris Eur: github code with $Tr^{\geq 0}\mathcal{F}\ell_5$
- Johannes Rau: tropical mentor

Acknowledgements

- Chris Eur: github code with $Tr^{\geq 0}\mathcal{F}\ell_5$
- Johannes Rau: tropical mentor

Anastasia ChavezDaniel TamayoSt. Mary's CollegeAutobiz FranceQuotients of UniformPositroids '22

Kolja Knauer U. of Barcelona LPM quotients '24 LPFMs and subdivisions of $Perm_n >$ '24 Danke schön! ¡Gracias!

