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Abstract. Although both noncrossing partitions and nonnesting partitions are uni-
formly enumerated for Weyl groups, the exact relationship between these two sets of
combinatorial objects remains frustratingly mysterious. In this abstract, we give a pre-
cise combinatorial answer in the case of the symmetric group using a new definition
of charmed roots.

Résumé. Les partitions non-croisées et les partitions non-emboîtées soient uniformé-
ment énumérées pour les groupes de Weyl, la relation exacte entre ces deux ensembles
d’objets combinatoires reste frustrante. Dans cet abstrait, nous donnons une réponse
combinatoire précise dans le cas du groupe symétrique en utilisant une nouvelle défi-
nition de racines charmées.

Keywords: Catalan combinatorics, noncrossing, nonnesting, Kreweras complement

1 Introduction

1.1 Noncrossing and nonnesting partitions

Let W ⊆ GL(V) be a finite complex reflection group acting in its reflection representation
on a complex vector space V of dimension r with reflections T [10, 13]. Our results will
mostly concern the symmetric group W = Sn, where the set of reflections is the set of
all transpositions (i, j). The ring of W-invariants C[V]W is a polynomial ring generated
by invariants of degrees d1 ≤ d2 ≤ · · · ≤ dr. The Coxeter number of a well-generated W
(that is, W is generated by r reflections) is h = dr and the W-Catalan number is
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Cat(W) :=
r

∏
i=1

h + di

di
. (1.1)

The c-noncrossing partition lattice NC(W, c) is the interval [e, c]T in the absolute order.
For Sn, the absolute length of a permutation w ∈ Sn is n minus the number of cycles
of w; the cycles of w ∈ NC(W, c) are the blocks of a noncrossing partition. Until very
recently, the number of noncrossing partitions had only been computed case-by-case; a
uniform proof was found in the case of real W in [8]. For W a well-generated finite
complex reflection group with Coxeter element c, |NC(W, c)| = Cat(W).

Let now W be a Weyl group (a crystallographic real reflection group), with positive
roots Φ+. In this abstract, we will systematically replace positive roots by their corre-
sponding reflections. The positive root poset is the partial order on Φ+ defined by α ≤ β

iff β − α is a nonnegative sum of positive roots; for Sn, Φ+ is the partial order defined on
the transpositions (i, j) with covering relations (i + 1, j)⋖ (i, j)⋖ (i, j + 1) (see Figure 1
for an example). The nonnesting partitions NN(W) are the order ideals in the positive
root poset [16, Remark 2]. There are uniform proofs that |NN(W)| = Cat(W).

Despite the fact that they are both counted by Cat(W), there are at least two Incon-
gruities between NC(W, c) and NN(W):

1. NC(W, c) is defined for well-generated complex reflection groups, while NN(W)
is only defined for Weyl groups;

2. the definition of NC(W, c) requires the choice of a Coxeter element, while NN(W)
has no such dependence;

The exact relationship between noncrossing and nonnesting partitions remains frustrat-
ingly mysterious, and finding a uniform “natural” bijection is perhaps the biggest open
question in Coxeter–Catalan combinatorics. To our taste, there are two approaches to
this problem: the first approach is based on the case-by-case combinatorial models avail-
able in the classical types A, B, D [9, 19, 6, 11, 18, 3]; the second approach was pioneered
in [2] based on observations in [14, 4], and uses a mysterious coincidence of two cyclic
actions to induce a bijection. Our main theorem refines both of these approaches in the
special case of the symmetric group Sn.

1.2 Cyclic actions

For W a well-generated complex reflection group and c a Coxeter element, the c-Kreweras
complement on the noncrossing partition lattice is the anti-automorphism of NC(W, c)
defined by Krewc(π) = π−1c [1, Section 4.2], [12]. Since Krew2

c(π) = c−1πc and c has
order h, Krewc has order h if −1 ∈ W, and 2h otherwise.
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For W a Weyl group, rowmotion on nonnesting partitions is the map Row(p) =
minΦ+{α | α ̸≤ β for any β ∈ p}. Panyushev conjectured that the order of Row on
NN(W) was h if −1 ∈ W and 2h otherwise [14], and Bessis and Reiner refined Panyu-
shev’s conjecture by observing that Row had the same orbit structure on NN(W) as
Krew on NC(W, c) [4]. This was proven by Armstrong, Stump, and Thomas [2].

But Incongruity (2) remains—while the definitions of NC(W, c) and Krewc depend
on the choice of a Coxeter element, the set NN(W) and its action Row do not depend
on any such choice. We address this lack of dependence on the Coxeter element c by
modifying the definition of Row [20, 21]. It is well-known that rowmotion can be written
as a sequence of local moves as follows [5, 17]. A toggle togα(p) of a nonnesting partition
p at a positive root α either adds α to p (when α ̸∈ p) or removes α from p (when α ∈ p),
provided that the result is again a nonnesting partition. For nonnesting partitions, Row
can be computed by toggling each root of the root poset in order of height (or by row).
It is natural to modify the order of these toggles.

For c a standard Coxeter element and c a particular choice of reduced word for c, the
c-sorting word for the long element w◦ is the leftmost reduced word in simple reflections
for w◦ in c∞. Write w◦(c) = [r1, r2, . . . , rN], with each ri ∈ S and define the inversion
sequence inv(w◦(c)) = [t1, t2, . . . , tN], where ta := (r1r2 · · · ra−1)ra(r1r2 · · · ra−1)

−1. Then
inv(w◦(c)) totally orders the reflections of W.

We can now address Incongruity (2) by defining a modification of rowmotion to
accomodate a Coxeter element c:

Krowc : NN(W) → NN(W) (1.2)

p 7→
(

togtN
◦ · · · ◦ togt2

◦ togt1

)
(p).

We call this map the c-Kroweras complement.

1.3 Main Theorem

Our main theorem uses the c-Kreweras and c-Kroweras complements to relate non-
crossing and nonnesting partitions. Recall that the support of a noncrossing partition
π ∈ NC(W, c) is the set Supp(π) of simple reflections required to write a reduced word
in simple reflections for π; similarly, the support of a nonnesting partition p ∈ NN(W) is
the set Supp(p) of simple roots that lie in p (as an order ideal of Φ+).

Theorem 1. Let Sn be the symmetric group, and fix a standard Coxeter element c ∈ Sn. Then
there is a unique bijection Charmc : NC(Sn, c) → NN(Sn) satisfying Charmc ◦ Krewc =
Krowc ◦ Charmc and Supp = Supp ◦ Charmc.

In particular, for any standard Coxeter element c ∈ Sn, the order of Krowc on NN(W)
is 2h. The statement of the main theorem in Armstrong-Stump-Thomas [2] can be ob-
tained from the statement of our Theorem 1 by replacing Krowc by Row, and replacing
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the symmetric group by any finite Weyl group; the main difference from the result in [2]
is that we resolve Incongruity (2), constructing truly different bijections between non-
crossing and nonnesting partitions for each Coxeter element.

2 Coxeter elements and charmed roots

Recall that a (standard) Coxeter element c is a product of the simple reflections in any
order. To ease notation, we reserve the symbols ri to refer to a fixed ordering c :=
[r1, r2, . . . , rn−1] of S and define c := r1r2 · · · rn−1. We also reserve the symbol sk = r1 for
the first simple reflection in the chosen reduced word, and write c′ = r2 · · · rn−1r1.

It is easy to show that the cycle notation of any Coxeter element in the symmet-
ric group has a particularly simple form: c ∈ Sn consists of a single cycle with an
initial increasing subsequence starting at 1 and ending at n, followed by a decreas-
ing sequence of the remaining unused entries. Let c be a Coxeter element with cycle
notation (w1, w2, . . . , wm, wm+1 . . . , wn), where 1 = w1 < w2 < · · · < wm = n and
n = wm > wm+1 > · · · > wn > w1 = 1. Write

Lc := {w2, . . . , wm−1} and Rc := {wm+1, . . . , wn}.

Definition 1. For 1 < i < j < n, we say that a root (i, j) is c-charmed if i ∈ Lc and j ∈ Rc or
if i ∈ Rc and j ∈ Lc and c-ordinary otherwise. We write ♥c for the set of c-charmed roots.

In figures, we depict c-charmed roots with a ♥ and ordinary roots by a circle. The
root poset of type A8 is illustrated in Figure 1.

(12) (23) (34) (45) (56) (67) (78) (89)

(13) (24) (35) (46) (57) (68) (79)

(14) (25) (36) (47) (58) (69)

(15) (26) (37) (48) (59)

(16) (27) (38) (49)

(17) (28) (39)

(18) (29)

(19)

♥
♥
♥

♥

♥
♥
♥

♥
♥

♥
♥ ♥

Figure 1: The Hasse diagram of the positive root poset Φ+ of type A8. For c =

s2s1s3s6s5s4s8s7, the c-charmed roots from Definition 1 are marked using hearts.
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Example 1. Consider the Coxeter element c = s2s1s3s6s5s4s8s7 in S9. The element c has cycle
notation (1, 3, 4, 7, 9, 8, 6, 5, 2), so that

Lc = {3, 4, 7} and Rc = {8, 6, 5, 2}.

We visualize the cycle notation of c by drawing it as points labeled w1, w2, . . . , wn
counter-clockwise around a circle. We visualize a root (i, j) by connecting the vertices
labeled i and j by a line segment. For any a, b, c, d ∈ [n], we say that (a, b) crosses (c, d)
if and only if (a, b) and (c, d) are crossing in their interior (note that (a, b) does not cross
itself). For 1 < i < j < n, it is easy to check that a root (i, j) is c-charmed if and only if
(i, j) crosses (i − 1, j + 1). Figure 2 illustrates this visualization.

1

3
47

9

8
6 5

2

1

3
47

9

8
6 5

2

Figure 2: The visualization of the cycle notation (1, 3, 4, 7, 9, 8, 6, 5, 2) of c =

s2s1s3s6s5s4s8s7. Left: the initial c-charmed simple root (6, 7) (in red) intersecting the
root (5, 8) = (6 − 1, 7 + 1) (dashed). Right: the c-charmed root (4, 6) (in red) intersect-
ing the root (3, 7) = (4 − 1, 6 + 1) (dashed).

3 Charmed bijections

In this section, we define a general family of charmed bijections between balanced pairs
of subsets and nonnesting partitions. Our charmed bijections depend on a choice of
decoration of the roots in Φ+ = Φ+(An−1), and use certain intimate families of lattice
paths as intermediate objects. Specializing to the c-charmed roots coming from a Coxeter
element c, we obtain our c-charmed bijections between NC(Sn, c) and NN(Sn).

3.1 Balanced pairs and noncrossing partitions

Definition 2. Say that a pair of sets (O, I) with O, I ⊆ [n] is balanced if |O| = |I| and
|O ∩ [k]| ≥ |I ∩ [k]| for all 1 ≤ k ≤ n. Write Bal(n) for all balanced pairs of subsets of [n].

We first show that balanced pairs are naturally in bijection with c-noncrossing parti-
tions. Let π ∈ NC(Sn, c). We define O(π) to be the set of integers i for which there exists
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an j > i in the same block as i, and we define the set I(π) to be the set of integers j such
that there exists an i < j in the same block as j. It is immediate from the definition that
(O, I) ∈ Bal(n).

Proposition 1. The map1 π 7→ (O(π), I(π)) is a bijection between NC(Sn, c) and Bal(n).

Proof. We construct its inverse. For a given pair (O, I) ∈ Bal(n), we can construct a
π ∈ NC(Sn, c) with O(π) = O and I(π) = I as follows. The closed singletons of π

are the integers that are neither in O nor I. We place each integer in O \ I in its own
block and call these blocks open. Then we add iteratively the integers in I to the open
blocks, starting with the smallest integer, such that the intermediate partition is always
noncrossing. This is achieved by adding an integer x to the first open block we visit
when walking from x towards n via 1 in the cycle notation of c. If an integer in I \ O is
added to a block we call this block closed and thereafter do not add any integers to it. By
construction we have O(π) = O and I(π) = I.

The bijection of Proposition 1 is illustrated in Figure 3.

O \ I = {1, 3}
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I = {6, 7, 8}
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I = {6, 7, 8}
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I = {6, 7, 8}
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Figure 3: The construction of a noncrossing partition in NC(S9, c) for c =

s2s1s3s6s5s4s8s7 = (1 3 4 7 9 8 6 5 2) starting with the outgoing set O = {1, 3, 6} and
incoming set I = {6, 7, 8}. We depict open blocks in dashed teal, and closed blocks in
solid red; we circle open and closed singletons using the same color code.

3.2 Intimate families

We draw the root poset for Sn by placing the root (i, j) in the plane with coordinates
((i + j − 1)/2, (j − i)/2) and—since the label (i, j) is implied by the position—we may
omit the labels on the roots. For 1 ≤ i ≤ n, we draw n additional points labeled by i at
coordinates (i − 1/2, 0) and call these extra points integral vertices. For ♥ ⊆ Φ+, we call
a root (i, j) charmed if (i, j) ∈ ♥ and ordinary otherwise. We depict charmed roots using

1To be precise, both O and I depend on c, however since c will always be clear from the context we
omit it in the notation.
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♥ ♥ ♥ ♥ ♥ ♥

Figure 4: Left: the five allowed local configurations for charmed families. Right: the
two local configurations are forbidden for charmed families.

hearts ♥ and ordinary roots using circles—an example of c-charmed roots is illustrated
in Figure 1.

A path is a lattice path with step set {(1/2, 1/2), (1/2,−1/2)} that starts and ends
at an integral vertex and stays strictly above the x-axis. We call (1/2, 1/2)-steps up, and
(1/2,−1/2)-steps down; a peak (resp. valley) of a path is a root contained in an up step
to its left (resp. right) and a down step to its right (resp. left). Two paths are kissing
if they do not cross or share edges—they may meet at a vertex, where they are said to
kiss. (Note, though, that kisses are not required for two paths to be kissing.) A family of
paths is kissing if they are pairwise kissing. A path feints at a root (i, j) if (i, j) is a valley,
but the path does not kiss any path at (i, j). These definitions are illustrated on the right
of Figure 4: the top configuration is a feint at a charmed root, while the bottom one is a
kiss at an ordinary root.

For ♥ ⊆ Φ+, a family L of kissing paths is called ♥-charmed if:

• paths only kiss at charmed roots and

• paths only feint at ordinary roots.

In other words, a family of paths is charmed if it avoids the two local configurations
shown on the right of Figure 4.

Definition 3. A family L of ♥-charmed kissing paths is called ♥-intimate if:

• every ordinary root either lies above all paths in L or is contained in some path in L and

• no path contains a root above a charmed peak of a path in L, unless that charmed peak is
the location of a kiss.
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3.3 Balanced pairs and intimate families

We now relate balanced pairs and intimate families of paths. For a family L of paths, we
call an integral vertex on the x-axis outgoing if it is incident to an up step and incoming
if it is incident to a down step (an integral vertex can be both outgoing and incoming).
Denote by Out(L) (resp. In(L)) the set of labels of outgoing (resp. incoming) vertices of
L. It is clear that (Out(L), In(L)) is balanced.

Lemma 1. Let ♥ ⊆ Φ+ and let (O, I) ∈ Bal(n). Then there is a unique ♥-inimate family
L(O,I) with Out(L(O,I)) = O and In(L(O,I)) = I.

Proof. We first construct a well-formed word of parentheses from the subsets O and I.
For i from 1 to n, write:

• a (i parenthesis if i ∈ O \ I,

• a )i parenthesis if i ∈ I \ O, and

• )i(i parentheses if i ∈ O ∩ I.

We now construct an ♥-intimate family L recursively, starting with the empty family of
paths. At each step, we pick neighbouring parentheses of the form (i)j, delete them, and
add the path P that starts at i and ends at j that takes a down step whenever possible
without violating the condition that the family is charmed, and an up step otherwise.
Then L ∪ {P} is intimate:

• If there were an ordinary root below L ∪ {P} that wasn’t part of a path, then that
root would lie between p and L, since L was intimate. But then P took an up step
instead of a possible down step, contradicting the definition of P.

• If a previously constructed path P′ in L started at an integral vertex after i, ended
before j, and had a charmed peak which is not the location of a kiss, then our new
path P will kiss P′ at that charmed peak.

The order of choosing two neighbouring parentheses is irrelevant. The family produced
is unique, since if at any point a path uses a step different from those prescribed by
the algorithm above, then the resulting family of paths will be non-intimate. This non-
intimacy will persist, regardless of how the family is extended.

An example of the algorithm used in the proof of Lemma 1 is given in Figure 5.
Let L be an ♥-intimate family of paths. We define the order ideal J(L) of L to be the

set of all roots (i, j) which lie on or below a path in L. It is clear that J(L) is an order
ideal and hence is in NN(Sn).

Lemma 2. Let ♥ ⊆ Φ+ and J ∈ NN(Sn). Then there exists a unique ♥-intimate family LJ
with J(LJ) = J.
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Figure 5: The construction of an intimate family of paths with outgoing set {1, 3, 6}
and incoming set {6, 7, 8}. The corresponding word of parentheses is (1(3)6(6)7)8.

Proof. We construct an ♥-intimate family L recursively, starting with the empty family
of paths. At each step, we add a maximal path p to L such that all roots contained in
p lie in J. We then replace J by the order ideal generated by all ordinary roots in J not
contained in a path of L, all charmed feints of paths of L, and roots in J not lying below
a path of L. The recursion stops when J is empty. It is clear that the resulting family L
is the unique ♥-intimate family of paths with order ideal J.

An example of the algorithm used in the proof of Lemma 2 is given in Figure 6.

3.4 Charmed bijections between balanced pairs and nonnesting parti-
tions

As a direct consequence of Lemmas 1 and 2, we obtain the following family of bijections
between balanced pairs and nonnesting partitions.

Proposition 2. Fix a collection of charmed roots ♥ ⊆ Φ+. Then the map J♥ : Bal(n) →
NN(Sn) defined by J♥(O, I) = J(L(O,I)) is a bijection.

Charmed roots along the upper boundary of Φ+ do not affect the bijection of Propo-
sition 2. On the other hand, each of the 2(

n−2
2 ) charming choices for the the roots (i, j)

with 1 < i < j < n gives rise to a distinct bijection between NN(Sn) and Bal(n).
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Figure 6: The construction of the intimate family of paths with order ideal J, where
J contains the roots in the grey-shaded region of the top left picture. At each step,
the order ideal under consideration consists of the roots contained in the teal-shaded
region.

4 Charmed bijections between noncrossing and nonnest-
ing partitions

Let c ∈ Sn be a Coxeter element. Using Proposition 1 and Proposition 2, we now con-
struct a bijection between c-noncrossing partitions and nonnesting partitions that depends
on the choice of Coxeter element c, resolving Incongruity (2).

Definition 4. The c-charmed bijection between c-noncrossing partitions and nonnesting par-
titions is given by

Charmc : NC(Sn, c) → NN(Sn)

π 7→ J♥c(O(π), I(π)),

where the set ♥c of c-charmed roots is defined in Definition 1 and the map J♥c is defined in
Proposition 2.

Theorem 2. For all Coxeter elements c, the bijection Charmc is the unique support-preserving
bijection between NC(Sn, c) and NN(Sn) satisfying Krowc ◦ Charmc = Charmc ◦ Krewc.

For reasons of space, we only sketch the idea of the proof and refer the reader to the
full version of this extended abstract for the details [7]. We say that a simple reflection
s is initial in c if ℓS(sc) ≤ ℓS(c). If s = sk = (k, k + 1) is initial in c, then c′ = scs is
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also a Coxeter element of Sn, and we will denote this by writing c k−→ c′. Theorem 2
(and hence Theorem 1) are proven using Cambrian induction—that is, we show that the
theorem holds for a particular Coxeter element c1 (the base case), and then we show that

if c k−→ c′ and the theorem holds for c, then the theorem also holds for c′ (the inductive
step). Since all Coxeter elements in Sn are conjugate by a sequence of conjugations by
initial simple reflections [15, Lemma 1.7], the theorem holds for all Coxeter elements.

As a consequence of our proof, we obtain a simple description for reading the blocks
of the noncrossing partition from the corresponding intimate family.

Corollary 1. Let L be an ♥c-intimate family and π ∈ NC(Sn, c) the corresponding noncrossing
partition with (Out(L), In(L)) = (O(π), I(π)). The blocks of π consist of the integers which
are connected by paths in L after reinterpreting each kiss between a pair of paths in L at a
charmed root as a crossing.
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