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Abstract. The quasi-partition algebras were introduced by Daugherty and the first
author in 2014, as centralizers of the symmetric group. Here we provide a more gen-
eral construction using idempotents which allows us to define the half quasi-partition
algebra. Our construction allows us to describe the planar analogues of these quasi-
partition algebras. In this case the planar subalgebras are centralizer algebras of the
quantum group Uq(sl2) and of dimensions equal to Motzkin and Riordan numbers.
We use a Bratteli-like diagram to describe how the representation theories of these
algebras are related.
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1 Introduction

The partition algebra was defined independently in the work of Martin and his coau-
thors [10, 11] and Jones [9] in the early 1990s as a natural generalization of centralizer
algebras such as the Brauer and Temperley-Lieb algebras. It is of interest for combina-
torial representation theory because it provides a dual approach to resolving some of
the open combinatorial problems related to the representation theory of the symmetric
group. The partition algebras are related to the Kronecker coefficients [3] and to the
restriction and plethysm coefficients [12].

For integers k and n with n ≥ 2k and Vn = Cn, then V⊗k
n is an Sn module with the

diagonal action of a permutation on the k tensors. The centralizer of this action is iso-
morphic to the partition algebra Pk(n). It is possible to understand the tensor products
of permutation modules as sequences of restriction and induction [4] of the trivial Sn-
module, S(n), since we have V⊗k

n
∼= (IndSn

Sn−1
ResSn

Sn−1
)kS(n) . Following [8], we denote the

half-partition algebras as Pk+ 1
2
(n). These algebras lie in between two partition algebras

and are isomorphic to centralizers of the symmetric group Sn−1 acting on ResSn
Sn−1

V⊗k
n .

This defines a structure of embeddings and inclusions as

P0(n) ↪→ P 1
2
(n) ⊆ P1(n) ↪→ P 3

2
(n) ⊆ P2(n) ↪→ · · ·

*nwallace@yorku.ca. Rosa Orellana was partially supported by NSF Grant DMS-2153998. Nancy Wal-
lace and Mike Zabrocki are partially supported by NSERC.

mailto:nwallace@yorku.ca


2 Rosa Orellana, Nancy Wallace, and Mike Zabrocki

that makes it possible to construct the irreducible representations using what is known
as the “basic construction” (see Section 4 of [8]).

The quasi-partition algebra was introduced by Daugherty and the first author [5] by
considering the centralizer of the symmetric groups when they act instead on (S(n−1,1))⊗k

where S(n−1,1) is the simple Sn-module indexed by (n − 1, 1). It is well known that
Vn ∼= S(n−1,1) ⊕ S(n). Let proj denote the projection that maps Vn to S(n−1,1). We have that

(S(n−1,1))⊗k ∼= (proj ◦ IndSn
Sn−1

ResSn
Sn−1

)kS(n) .

This decomposition into three operations gives rise to three families of quasi-partition
algebras. Notably there is a half quasi-partition algebra that is the centralizer of the
symmetric group Sn−1 when it acts on ResSn

Sn−1
(S(n−1,1))⊗k and another algebra that is the

centralizer when Sn acts diagonally on IndSn
Sn−1

ResSn
Sn−1

(S(n−1,1))⊗k ∼= (S(n−1,1))⊗k ⊗Vn.
This paper develops the quasi-partition algebras both as centralizer algebras (Theo-

rem 3.9) and as projections of the partition algebra multiplied on the left and right by an
idempotent (Equation (3.4)). The main results are the construction of a tower of quasi-
partition algebras (Subsection 3.3) and an explicit description of bases of the simple
modules of QPk(n) (Section 3.1). The tower of algebras is used to relate the dimensions
of the irreducibles of these families using the inclusions and projections (Theorem 3.10).

A motivation for introducing these algebras is to gain a better understanding of the
representation theory of the symmetric group. An important insight from the reference
[3] is that reduced Kronecker coefficients arise as multiplicities in the restriction and
induction of simple partition algebra modules. In analogy, it can be shown that the
coefficients occurring in the restriction/induction of simple quasi-partition algebras are
also the reduced Kronecker coefficients. This is because there is a see-saw pair which
relates these coefficients:

(
S(n−1,1)

)⊗k+ℓ

Sn

Sn × Sn

QPk(n)⊗QPℓ(n)

QPk+ℓ(n)

.

This relationship implies that the reduced Kronecker coefficients, which are multiplici-
ties of the restriction of an Sn × Sn module to Sn, are also the multiplicities of a simple
QPk(n)⊗QPℓ(n) module in the restriction of a simple QPk+ℓ(n) module.

We conclude by describing the planar quasi-partition and half quasi-partition alge-
bras. These algebras are isomorphic to centralizer algebras of the quantum group Uq(sl2)
and have dimensions which are given by the Motzkin and Riordan numbers.
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2 Preliminaries

The partition algebra was originally defined by Martin in [11]. All the results in this
section are due to Martin and his collaborators, see [10] and references therein. For a
nice survey on the partition algebra see [8].

For k ∈ Z>0, x ∈ C, we let Pk(x) denote the complex vector space with bases given
by all set partitions of [k]∪ [k] := {1, 2, . . . , k, 1, 2, . . . , k}. A part of a set partition is called
a block. For a given block B, the set B ∩ [k] denotes the subset of all barred elements of
B are referred to as the bottom of B and the set B ∩ [k] denotes the subset of all unbarred
elements of B and is referred to as the top of B. Notice that for a given set partition d
on 2k elements, then d ∩ [k] and d ∩ [k] are set partitions on k elements. We will let P̂k
denote the set of all set partitions of {1, 2, . . . , k, 1, 2, . . . , k}.

Blocks with a single element will be referred to as singletons. Blocks containing at
least one element from [k] and one element from [k] will be called propagating blocks; all
other blocks will be called non-propagating blocks.

For example,

d = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}},

is a set partition (for k = 8) with 5 blocks. The block B = {1, 2, 4, 2, 5} is propagating.
The block {3} is a singleton.

A set partition in P̂k can be represented by a partition diagram consisting of a frame
with k distinguished points on the top and bottom boundaries, which we call vertices.
We number the top vertices from left to right by 1, 2, . . . , k and the bottom vertices simi-
larly by 1, 2, . . . , k. We create a graph with connected components corresponding to the
blocks of the set partition such that there is a path of edges between two vertices if they
belong to the same block. A partition diagram is an equivalence class of graphs, where
the equivalence is given by having the same connected components. In displaying the
diagrams, we often omit the numbering on the vertices in the interest of keeping the
diagrams less cluttered.

We will use the word diagram to refer to any element of P̂k or equivalently its partition
diagram. Examples of set partitions represented as diagrams are given in Example 2.1.

We define an internal product, d1 · d2, of two diagrams d1 and d2 using the concate-
nation of d1 above d2, where we identify the bottom vertices of d1 with the top vertices
of d2. If there are m connected components consisting only of middle vertices, then

d1 · d2 = xmd3

where d3 is the diagram with the middle vertices components removed.

Example 2.1. Consider the set partitions d1 = {{1, 3, 4}, {2, 1}, {4, 5, 6, 5}, {2, 3}, {6}}
and d2 = {{1}, {2, 3}, {4, 1, 2, 4}, {5, 6}, {6}, {3, 5}} in P6(x). Which have the diagram
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representation given below. When we stack d1 on top of d2, there are two components
containing only middle vertices, hence the coefficient x2 in the product.

d1 = and d2 = then d1d2 = x2
.

Extending this by linearity defines a multiplication on Pk(x). With this product, Pk(x)
becomes an associative algebra with unit of dimension B(2k), the Bell number which
enumerates the number of set partitions of a set with 2k elements.

A diagram is planar if the blocks of the diagram can be drawn so they do not intersect
(to be clear, the blocks are not permitted to leave the bounding box). The span of the
planar diagrams of size k is a subalgebra of the partition algebra Pk(x) which we denote
PPk(x). This subalgebra is of dimension equal to the Catalan number C2k.

Both Pk+1(x) and PPk+1(x) have a subalgebra spanned by the diagrams with k +
1 and k + 1 are in the same block. These subalgebras will be denoted Pk+ 1

2
(x) and

PPk+ 1
2
(x) and have dimensions equal to B(2k + 1) and C2k+1 respectively. The planar

partition algebras PPk(x) and PPk+ 1
2
(x) are known to be isomorphic to the Temperley-

Lieb algebras TL2k(
√

x) and TL2k+1(
√

x) respectively.
Given diagrams d1 ∈ P̂k1 and d2 ∈ P̂k2 , we denote by d1 ⊗ d2 the diagram in P̂k1+k2

obtained by placing d2 to the right of d1. Alternatively, in terms of set partition notation

d1 ⊗ d2 = d1 ∪ {{b + k1 : b ∈ B} : B ∈ d2} .

This external product is extended linearly to a product of elements from Pk1(x) and
Pk2(x) with the result being an element in Pk1+k2(x).

Let 1 := {{1, 1}} and p := {{1}, {1}} denote special elements of P̂1. For a fixed k, we
denote the identity element of Pk(x) by 1⊗k and the elements pj := 1⊗j−1⊗ p⊗ 1⊗k−j ∈ P̂k
for 1 ≤ j ≤ k. For a complete presentation of the partition algebra see Theorem 1.11 in
[8].

Let Vn = Cn, the symmetric group acts on Vn via the permutation matrices

σ · vi = vσ(i), for σ ∈ Sn.

Thus, Sn acts diagonally on a basis of simple tensors of V⊗k
n ,

σ · (vi1 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ · · · ⊗ vσ(ik) .

There is an action of Pr(x) on an element of V⊗k
n which we do not explicitly use

and so we do not state it here. Using this action, we have that for n ≥ 2k, k ∈ Z≥0,
Pk(n) ∼= EndSn(V

⊗k
n ) and for n ≥ 2k + 1 and k ∈ Z≥0, Pk+ 1

2
(n) ∼= EndSn−1(ResSn

Sn−1
V⊗k

n ) .
For details and proofs see [4, 8, 9].

The planar partition algebras (through the isomorphism with the Temperley-Lieb
algebra) have a similar interpretation as centralizer of the quantized universal enveloping
algebra when acting on the 2k-fold tensor of the defining representation V(1)⊗2k [6].
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3 Quasi-partition algebras

For k ∈ Z>0, the quasi-partition algebra QPk(n) was introduced in [5] as the centralizer
algebra EndSn((S

(n−1,1))⊗k), where S(n−1,1) is the irreducible representation of the sym-
metric group, Sn. In this section, we give a more general definition and introduce the
half quasi-partition algebras, QPk+ 1

2
(x).

Let k ∈ Z≥0 and let J be any subset of [k] = {1, 2, . . . , k}, we set p∅ := 1⊗k and
pJ := ∏j∈J pj. We define π := 1− 1

xp and using tensor notation we define an idempotent
π⊗k in Pk(x) as follows

π⊗k :=
(

1⊗k − 1
x
p1

)(
1⊗k − 1

x
p2

)
· · ·

(
1⊗k − 1

x
pk

)
= ∑

J⊆[k]

1
(−x)|J|

pJ . (3.1)

The corresponding idempotent in Pk+ 1
2
(x) ⊆ Pk+1(x) will be denoted by π⊗k

k+1 :=

π⊗k ⊗ 1 to indicate that it is contained in the larger algebra. For k ∈ Z≥0 and any
diagram d ∈ P̂k, we define

d = π⊗kdπ⊗k.

And similarly, for d ∈ P̂k+ 1
2
, we define d = π⊗k

k+1dπ⊗k
k+1. For integers k ≥ 0, and d ∈

Pk+1(x), we define
d̃ = π⊗k

k+1dπ⊗k
k+1 .

Example 3.1. The idempotent in P3(x) is π⊗3 = 1⊗3 − 1
xp1 − 1

xp2 − 1
xp3 +

1
x2p1p2 +

1
x2p1p3 +

1
x2p2p3 − 1

x3p1p2p3. This element expressed using diagrams is

π⊗3 = − 1
x

− 1
x

− 1
x

+
1
x2 +

1
x2

+
1
x2 − 1

x3 .

The idempotent in P2+ 1
2
(x) is π⊗2

3 = 1⊗3 − 1
xp1 − 1

xp2 +
1
x2p1p2 and this expression in

terms of diagrams is

π⊗2
3 = − 1

x
− 1

x
+

1
x2 .

Lemma 3.2. For r ∈ 1
2Z≥0 if d ∈ P̂r is a diagram with one or more singletons, then d = 0.

Let d be a diagram without singletons, we note that d is equal to a sum of elements d
plus other terms with at least one singleton.
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Example 3.3. For d = {{1, 2, 1}, {3, 2, 3}} a diagram in P2+ 1
2
(x), we compute directly:

d = − 1
x

− 1
x

− 1
x

− 1
x

+
1
x2

+
1
x2 +

1
x2 +

2
x2 − 2

x3 .

For r ∈ 1
2Z≥0, we set D̂r = {d : d ∈ P̂r without singletons}, and define

QPr(x) = C(x)-Span{d | d ∈ D̂r}. (3.2)

If r is an integer, we call QPr(x) the quasi-partition algebra and if r is half an integer, the
half quasi-partition algebra.

Now consider the subalgebra of Pk+1(x),

Q̃Pk+1(x) = C(x)-Span{d̃ | d ∈ Pk+1(x)} .

We note that the basis of Q̃Pk+1(x) is:

{d̃ : d ∈ P̂k+1 has no singletons in [k] ∪ [k]} . (3.3)

The index set are the diagrams which have no singletons in the first k positions but that
may have singletons in the last position.

Hence, the first step is the natural inclusion of QPk+ 1
2
(x) in Q̃Pk+1(x). It should be

made clear that Q̃Pk+1(x) is larger than both QPk+ 1
2
(x) and QPk+1(x) since, for instance,

π⊗k
k+1pk+1 ∈ Q̃Pk+1(x) but it is not an element of either QPk+ 1

2
(x) or QPk+1(x).

Thus far we have introduced algebras in our tower so that for each k ∈ Z≥0,

QPk(x) = π⊗kPk(x)π⊗k ,

QPk+ 1
2
(x) = π⊗k

k+1Pk+ 1
2
(x)π⊗k

k+1 , (3.4)

Q̃Pk+1(x) = π⊗k
k+1Pk+1(x)π⊗k

k+1 .

The second step is to explain how they are related. There is a projection from
Q̃Pk+1(x) to QPk+1(x) which, for each d ∈ P̂k+1, d̃ ∈ Q̃Pk+1(x) is sent to d = (1⊗k+1 −
1
xpk+1)d̃(1⊗k+1 − 1

xpk+1) ∈ QPk+1(x).
Therefore we have the following chain of inclusions and projections:

QP0(x) ↪→ QP 1
2
(x)⊆ Q̃P1(x)↠ QP1(x) ↪→ QP1+ 1

2
(x)⊆ Q̃P2(x)↠ QP2(x) ↪→ · · · . (3.5)

The dimensions of these algebras are determined by counting the elements in Equa-
tions (3.2) and (3.3). The dimension of QPk(x), dim(QPk(x)), is equal to the number of
set partitions of [k] ∪ [k] without blocks of size one and is equal to (see [5])

dim(QPk(x)) =
2k

∑
j=1

(−1)j−1B(2k− j) + 1
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and are every other term in [15] sequence A000296, while dim(QPk+ 1
2
(x)) = B(2k) and

is every other term in [15] sequence A000110. The sequence of dimensions of Q̃Pk+1(x)
is given by [15] sequence A207978. Using the standard counting technique of inclusion-
exclusion we deduce that

dim(Q̃Pk+1(x)) =
2k

∑
s=0

(−1)s
(

2k
s

)
B(2k + 2− s) .

Example 3.4. The sequence of dimensions of the algebras for 0 ≤ k ≤ 6 is given in the
table below.

k 0 1 2 3 4 5 6
dim(QPk(x)) 1 1 4 41 715 17722 580317

dim(QPk+ 1
2
(x)) 1 2 15 203 4140 115975 4213597

dim(Q̃Pk+1(x)) 2 7 67 1080 25287 794545 31858034

3.1 Representations of quasi-partition algebras

For this section, let x = n ∈ Z≥0 with n ≥ 2k.
Recall that a block B is called propagating if it contains at least one element from

each [k] and [k]. Define V(k, m) to be the vector space spanned by the diagrams corre-
sponding to set partitions of [k] ∪ [k] with m + 1, . . . , k in singleton blocks, and all other
j are in propagating blocks where j is the only barred element in its block. We call
these (k, m)-diagrams. For a diagram d ∈ P̂k, let p(d) denote the number of propagating
blocks. A (k, m)-diagram is called (k, m)-standard if its propagating blocks B1, . . . , Bm
satisfy max(Bj−1 ∩ [k]) < max(Bj ∩ [k]) for all 1 ≤ j ≤ m.

For 0 ≤ m ≤ k and ν ⊢ m, a basis of the simple Pk(x) module ∆k(ν) is defined by

Bk(ν) = {d⊗ T | d is a (k, m)-standard and T is a standard tableau of shape ν}. (3.6)

A diagram d ∈ Pk(x) acts on a basis element d′ ⊗ T of ∆k(ν) by left multiplication,

d · d′ ⊗ T =

{
dd′ ⊗ T if p(dd′) = m
0 otherwise

, (3.7)

in the case that p(dd′) = m, we may factor dd′ = xad1τ where d1 is a (k, m)-standard
diagram and τ ∈ Sm. Hence, dd′ ⊗ T = xad1 ⊗ τ · T, where τ acts on T by permuting
the entries of the tableau and τ · T might not be standard, but can be written as a linear
combination of standard tableaux using the Garnir straightening algorithm for Specht
modules (see for instance [14]).

Following [7] the elements of Bk(ν) can be combined into a single object that is
represented by a set valued tableau.

https://oeis.org/A000296
https://oeis.org/A000110
https://oeis.org/A207978
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Definition 3.5. For k ∈ Z≥0, n ≥ 2k and 0 ≤ i ≤ k, let λ be a partition of n, a [k]-set
valued tableau T of shape λ satisfies the following conditions:

1. The sets filling the boxes of the Young diagram of λ form a set partition α of [k],
the sets in α are called blocks.

2. Every box in rows λ2, . . . , λℓ is filled with a block in α.

3. Boxes at the end of the first row of λ could contain blocks of α and, because of
the condition that n ≥ 2k, there are at least k empty boxes preceding the boxes
containing sets.

Let Tk(λ) denote the set of all [k]-set valued tableaux of shape λ.

Example 3.6. Correspondence between a basis element d⊗ T ∈ ∆9((2, 1)) and a [9]-set
valued tableau of shape (n− 3, 2, 1).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

1 3
2⊗ ρ7−→

13
2 459

· · · 67 8︸ ︷︷ ︸
n−3 boxes

We define Qk(ν) to be the set of nonzero π⊗kd⊗ T (that is, d has no singletons in the
top row), for d⊗ T ∈ Bk(ν). Define QPν

k to be the C(x)-Span of the elements in Qk(ν)
for every ν ⊢ m and 0 ≤ m ≤ k.

Theorem 3.7. Let k ∈ Z≥0, the set {QPν
k | ν ⊢ m where 0 ≤ m ≤ k} forms a complete set of

mutually non-isomorphic simple modules for QPk(x).

Example 3.8. For k = 2 there are four simple modules of QP2(n) and all are of dimension
one and we display them using the correspondence with set valued tableaux:

QP∅
2 = C-Span

{
. . . 12 − 1

n
. . . 1 2

}

QP
(1)
2 = C-Span

{
12

. . . − 1
n

1
. . . 2 −

1
n

2
. . . 1

}
QP

(2)
2 = C-Span

{
1 2

. . .

}
QP

(1,1)
2 = C-Span

{
2
1

. . .

}
.

In [13] we give a similar description of the simple modules of the half partition
algebras. From that construction, it is possible to give a similar description of the simple
modules of QPk+ 1

2
(x). However we will see in the next section that QPk+ 1

2
(n) ∼= Pk(n−

1).



Quasipartition algebras 9

3.2 Quasi-partition algebras as centralizers

Let Vn = C-Span{v1, v2, . . . , vn}, then it is well known that S
(n−1,1)
Sn

∼= C-Span{v1 −
vn, v2− vn, . . . , vn−1− vn} and S

(n)
Sn
∼= C-Span{v1 + v2 + · · ·+ vn} and that Vn ∼= S

(n−1,1)
Sn

⊕
S
(n)
Sn

as an Sn-module.
We refer the reader to [1, 2, 4] for the action of the elements Pk(n) when it acts on V⊗k

n .
This action realizes the partition algebra as a centralizer algebra Pk(n) ∼= EndSn(V

⊗k
n ).

In this section we state the corresponding realizations of the quasi-partition algebras as
centralizer algebras.

Theorem 3.9. For n, k ∈ Z>0, if n ≥ 2k, then

QPk(n) ∼= EndSn

((
S
(n−1,1)
Sn

)⊗k
)

, QPk+ 1
2
(n) ∼= EndSn−1

(
ResSn

Sn−1

(
S
(n−1,1)
Sn

)⊗k
)

,

and Q̃Pk+1(n) ∼= EndSn

((
S
(n−1,1)
Sn

)⊗k
⊗Vn

)
.

Since we have that

ResSn
Sn−1

S
(n−1,1)
Sn

∼= S
(n−2,1)
Sn−1

⊕ S
(n−1)
Sn−1

∼= Vn−1

it follows that QPk+ 1
2
(n) ∼= Pk(n− 1).

3.3 Dimensions of irreducible modules and a Bratteli diagram

The interpretation of the quasi-partition algebras as centralizer algebras allows us to
relate the dimensions of the irreducibles in the following recursive formulae.

Theorem 3.10. Let n ≥ 2k + 1, then for µ ⊢ n− 1 such that |µ| < k, then

dim
(
QP

µ

k+ 1
2
(n)

)
= ∑

λ←µ

dim(QPλ
k (n)) , dim(Q̃P

λ
k (n)) = ∑

µ→λ

dim
(
QP

µ

k+ 1
2
(n)

)
, (3.8)

dim(QPλ
k (n)) = dim(Q̃P

λ
k (n))− dim(QPλ

k−1(n)) . (3.9)

Each row of the diagram on the left in Figure 1 displays partitions λ where λ is in
the index set of the irreducible representations of the chain algebras from Theorem 3.10.
The irreducible representations of QPk(n) are displayed in red, QPk+ 1

2
(n) are displayed

in blue, Q̃Pk+1(n) are displayed in green.
Let λ → µ represent the relation that λ is obtained from µ by removing a cell. The

relations between the irreducibles in the rows of the diagram are summarized as follows:
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• (Equation (3.8)) Between the QPk(n) and QPk+ 1
2
(n) rows there is an edge from λ to

µ if µ = λ or µ → λ (alternatively, if µ → λ).

• (Equation (3.8)) Between the QPk+ 1
2
(n) and Q̃Pk+1(n) rows there is an edge from µ

to λ if λ = µ or λ← µ (alternatively, these two conditions may be stated as ‘if λ←
µ’).

• (Equation (3.9)) Between the Q̃Pk+1(n) and QPk(n) rows there is an edge from λ to
λ but the dimension of the irreducible λ is equal to the dimension of the irreducible
λ minus the dimension of the irreducible λ at k− 1.

Figure 1: On the left, a Bratteli like-diagram showing the relations of the tower of
algebras in Equation (3.5); and on the right the corresponding diagram for the planar
counterpart. The subscripts within the colored boxes indicate the dimensions of the
irreducibles.

The diagram is similar to a Bratteli diagram except that, because of the projection
operation from Q̃Pk+1(n) to QPk+1(n), the dimension is no longer the number of paths
in the diagram and is instead something slightly more complex.
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4 Planar quasi-partition algebras

We now proceed to develop a similar construction to the quasi-partition algebra by con-
sidering a subalgebra of the planar partition algebra. Due to space considerations and
that we have provided details on the quasi-partition algebras already, our presentation
of these algebras here will be briefer, but analogues of the results for the quasi-partition
algebras in this setting can be shown using similar methods.

We define three subalgebras of PPr(x) for r ∈ 1
2Z≥0 by

PQPk(x) = π⊗kPPk(x)π⊗k ,

PQPk+ 1
2
(x) = π⊗k

k+1PPk+ 1
2
(x)π⊗k

k+1 , (4.1)

P̃QPk+1(x) = π⊗k
k+1PPk+1(x)π⊗k

k+1 .

Example 4.1. The sequence of dimensions of PQPk(x), PQPk+ 1
2
(x) and P̃QPk+1(x) for

0 ≤ k ≤ 13 is

k 0 1 2 3 4 5 6
dim(PQPk(x)) 1 1 3 15 91 603 4213

dim(PQPk+ 1
2
(x)) 1 2 9 51 323 2188 15511

dim(P̃QPk+1(x)) 2 6 30 178 1158 7986 57346

The first row of this table is given by [15] sequence A099251 and is every other term of
the Riordan numbers (A005043). The second row of this table is given by [15] sequence
A026945 which is every other term of the Motzkin numbers (A001006). The third row
of this table is every other term in the [15] sequence A005554 which are a sum of two
successive Motzkin numbers.

The planar partition algebra PPk(x) is isomorphic to the Temperley-Lieb algebra
TL2k(

√
x). For q ∈ C, let Uq(sl2) denote the quantum group of the Lie algebra sl2

and recall that its simple modules are classically denoted by V(i), where i is a nonneg-
ative integer. For example, V(0) is the trivial representation, V(1) ∼= C2 and V(2) is the
adjoint representation. It is well known that TLk

∼= EndUq(sl2)(V(1)⊗k) see [6] for more
details. Using well known tensor rules, we have that V := V(1)⊗2 ∼= V(0)⊕V(2).

Theorem 4.2. Let r be a nonzero integer and 0 ̸= q ∈ C is not a root of unity, and set
V = V(0)⊕V(2), then we have the following

PQPr((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r),

PQPr+ 1
2
((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r ⊗V(1)),

and
P̃QPr+1((q + q−1)2) ∼= EndUq(sl2)(V(2)⊗r ⊗V).

https://oeis.org/A099251
https://oeis.org/A005043
https://oeis.org/A026945
https://oeis.org/A001006
https://oeis.org/A005554
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