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Framing lattices and flow polytopes
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Abstract. We introduce the framing lattice of a framed graph, a new lattice whose
Hasse diagram is the dual graph of a framed triangulation of a flow polytope. We
show that every framing lattice is an HH lattice, hence polygonal, semidistributive,
and congruence uniform. We also study lattice congruences determined by simple
operations called M-moves. Framing lattices provide a unifying framework for the
study of many remarkable lattice structures, and several well known results about
them are straight forward corollaries of our results.
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1 Introduction

Flow polytopes of acyclic oriented graphs are fundamental objects in the study of com-
binatorial optimization. In recent years, there has been an explosion of interest in these
objects due to their connections with other areas such as representation theory [1], di-
agonal harmonics [7], and Grothendieck polynomials [8]. From the combinatorial and
geometric perspective, a special focus on flow polytopes concentrates on their volumes
and triangulations. A novel method for triangulating flow polytopes using a framing of
the graph was developed in [4].

Since then, various families of combinatorial objects have revealed tight connections
with triangulations of flow polytopes. Examples of this include the Boolean lattice,
the Tamari lattice, and the weak order on permutations, each of which is a partially
ordered set whose Hasse diagram appears as the dual graphs of a framed triangulation
of a flow polytope. On the other hand, flow polytopes serve as a powerful tool to
approach open problems about the combinatorial objects involved. For instance, certain
framed triangulations of flow polytopes were used in [5] to solve an open conjecture
about geometric realizations of s-permutahedra. These recent developments motivate
the following question:

Is the dual graph of any framed triangulation the Hasse diagram of a lattice?
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In this paper, we give a positive answer to this question. For any directed graph G and
any framing F of G, we define a lattice structure called the framing lattice LG,F, whose
Hasse diagram is the dual graph of the corresponding framed triangulation. The family
of framing lattices captures many important lattices appearing in the literature, including
those shown in Figure 1. Four explicit examples are shown in Figure 2, including a new
family of lattices that we call cross-Tamari lattices.

Framing lattices

Boolean lattices
Multipermutation

lattices

The s-weak order

The weak order on Sn

Grid-Tamari
lattices

Grassmann-Tamari
lattices

(ε, I, J)−Cambrian
lattices

Type A
Cambrian

lattices

Alt ν-Tamari lattices

ν-Tamari
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ν-Dyck
lattices

Dyck lattices

Figure 1: Some lattices captured by the theory of framing lattices.

We prove several structural results about framing lattices. We show that every fram-
ing lattice is an HH lattice, hence polygonal, semidistributive, and congruence uniform,
and study lattice congruences determined by simple operations on framed graphs called
M-moves. We remark that these properties are usually non-trivial results proven in sev-
eral research works for the special classes outlined in Figure 1; and they all follow from
our global uniform results.

2 Framed triangulations of flow polytopes

Let G be a directed acyclic graph on vertex set V(G) = [n] and edge multiset E(G) such
that all edges are directed from smaller vertices to larger vertices and G has a unique
source s = 1 and sink t = n. We call such a graph G a flow graph. A path from the
source to the sink is said to be a route. For a vertex v in a flow graph G with vertex
set [n], let In(v) and Out(v) respectively denote the (possibly empty) incoming and
outgoing edges at v. A unit flow on G is then a tuple (xe)e∈E(G) ∈ R

|E(G)|
≥0 satisfying
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Figure 2: Four framed graphs and the Hasse diagrams of their framing lattices. The
first is the Boolean lattice B3. The second is the lattice of multipermutations of 12223.
The third is the ε-cambrian lattice with ε = − − +−. The fourth is a cross-Tamari
lattice of the cross-shaped grid shown below the right-most graph.

∑e∈Out(j) xe − ∑e∈In(j) xe = uj, where u1 = 1, un = −1, and uj = 0 for 1 < j < n.
The flow polytope of G is the set FG of unit flows on G and its dimension is given by
|E(G)| − |V(G)| + 1. The vertices of FG can be characterized as the unit flows on G
which have value one on the edges of a route and value zero on the remaining edges.
Thus FG can be described as the convex hull of the indicator vectors of the routes of G.

Example 2.1 (The oruga graph and the cube). Let Gn = Oruga(n) be the oruga graph on
the vertex set [n + 1] containing two edges e2i−1 and e2i between i and i + 1 for i ∈ [n].

e1

e2

e3

e4

G2 = Oruga(2) FG2

1010 1001

0110 0101

Figure 3: An example of the oruga graph, its flow polytope, and a framed triangula-
tion.

The flow polytope FGn is combinatorially a cube of dimension n, whose vertices are of
the form ei1 + · · ·+ ein , where ei ∈ R2n denote the standard basis vectors and ik = 2k − 1
or ik = 2k, for each value k ∈ [n]. These are the indicator vectors of the routes of Gn.

We now recall the framed triangulations of flow polytopes introduced in [4]. A
framing at the vertex v is a pair of linear orders (≤In(v),≤Out(v)) on the incoming and
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outgoing edges at v. A framed graph, denoted (G, F), is a flow graph with a framing F
at every vertex. An example of a framing of the Oruga(2) graph is shown in Figure 4,
where the labels indicate the order of the incoming and outgoing edges at every vertex.

For a path P containing a vertex v, let Pv (resp. vP) denote the maximal subpath
of P ending (resp. beginning) at v. Furthermore, let I (v) (resp. O(v)) denote the set of
paths in G ending (resp. beginning) at v. Our notation I stands for “incoming” and O
for “outgoing”. We define the relations ≤I (v) and ≤O(v) on I (v) and O(v) as follows.

Given paths Pv, Qv ∈ I (v), let w ≤ v be the first vertex after which Pv and Qv
coincide. If w is the first vertex of Pv or Qv, we say that Pv =I (v) Qv. Otherwise let eP
be the edge of P entering w and let eQ be the edge of Q entering w. Then Pv <I (v) Qv
if and only if eP <In(w) eQ. The relation O(v) is defined similarly.

Note that if Pv is a subpath of Qv, then Pv =I (v) Qv. But, if they do not start at the
same vertex, then they are different paths. Therefore, the relation ≤I (v) is not even a
partial order. However, if we restrict ≤I (v) (resp. ≤O(v)) to the set of paths starting at
the source s (resp. v) and ending at v (resp. the sink t), then it is a linear order.

We say that a vertex v of a path P is an inner vertex if v is not the first or last vertex
of the path. If v is an inner vertex of paths P and Q, we say that P and Q are incoherent
at v if Pv <I (v) Qv and vQ <O(v) vP, or if Qv <I (v) Pv and vP <O(v) vQ, and we say
that they are coherent at v otherwise. Paths P and Q are then said to be coherent if they
are coherent at each common inner vertex and they are incoherent otherwise. A set of
pairwise coherent routes is called a clique. We denote by C the collection of maximal
cliques. Examples of these concepts are illustrated in Figure 4.

1

2

1

2

1

2

1

2

Coherent Incoherent
A maximal clique

Figure 4: Examples of coherent and incoherent routes, and a maximal clique for the
given framing of the Oruga(2) graph.

The motivation for the definition of a framed graph is that the maximal cliques de-
termined by the framing induce a triangulation of the flow polytope. We denote by ∆C
the convex hull of the indicator vectors of the routes in a maximal clique C.

Proposition 2.2 (Danilov et al. [4]). Let (G, F) be a framed graph. The set {∆C | C ∈ C} is
the set of the top-dimensional simplices in a regular unimodular triangulation of FG.

A triangulation of FG whose facets are the maximal cliques of (G, F) for some fram-
ing F is called a framed triangulation of FG. The framed triangulation of the framing
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in Figure 4 is shown in Figure 3. The following lemma gives properties about adjacent
facets of the triangulation.

Lemma 2.3. Let C ̸= C′ be maximal cliques satisfying C ∖ {R} = C′ ∖ {R′}. Then,

(i) The routes R and R′ incoherent at some vertex v. Furthermore, they are incoherent at every
vertex in the maximal path Pv in R ∩ R′ that contains v, and coherent everywhere else.

(ii) The routes RvR′ and R′vR are contained in C ∩ C′.

From now on, unless otherwise specified, we draw the framed graphs (G, F) in such
a way that the order of the framing of the incoming and outgoing edges at every vertex is
increasing from top to bottom. This has two advantages: we do not need to include the
labels of a framing for the incoming and outgoing edges to the figure, and the coherence
relation becomes very intuitive because two paths are coherent at a vertex v if they “do
not cross” at v, as illustrated in Figure 5.

v

R

R′

R

R′

coherent at v

v

R

R′

R′

R

incoherent at v = crossing at v

R is cw from R′ at v

Figure 5: The coherence and cw relation between two routes at v.

This convention motivates the following definition. We say that a route R is clock-
wise (cw) from R′ at v if Rv <I (v) R′v and vR′ <O(v) vR. We use the notation R <cw

v R′

when R is cw from R′ at v. In particular, R and R′ are incoherent at v if and only if
R <cw

v R′ or R′ <cw
v R. Note also that <cw

v is a transitive relation, i.e. if R <cw
v R′ and

R′ <cw
v R′′, then R <cw

v R′′.

Example 2.4 (A framed triangulation of the oruga graph). Let Gn = Oruga(n) be the
oruga graph from Example 2.1, and let F be the framing that orders the incoming and
outgoing edges of Gn from top to bottom. The maximal cliques of (G, F) are in bijective
correspondence with permutations of [n] as follows.

Given a permutation [i1, . . . , in] of [n], construct a maximal clique consisting of n + 1
routes R0, . . . , Rn, where Rk is the route containing the top edges e2ij−1 for 1 ≤ j ≤ k, and
the bottom edges e2ij for k < j ≤ n. That is, Rk is the route with top edges at positions
i1, . . . , ik and bottom edges at the positions ik+1, . . . , in.

The resulting set of routes is a maximal clique, and all the maximal cliques are of this
form. Moreover, two facets are adjacent if and only if the corresponding permutations
can be obtained from each other by swapping two consecutive numbers. Thus, the dual
graph of this framed triangulation of FGn is the Hasse diagram of the classical weak
order of permutations of [n].
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3 Framing lattices

The weak order from the previous example is known to be a lattice. The purpose of this
section is to introduce a lattice structure whose Hasse diagram is the dual graph of a
framed triangulation of a flow polytope for any framed graph.

Let C ̸= C′ be maximal cliques satisfying C ∖ {R} = C′ ∖ {R′}. By Lemma 2.3, the
routes R and R′ are incoherent at some point v. If R <cw

v R′, then we say that R′ is
obtained from R by a ccw rotation at v. In this case, we say that C′ is obtained from C
by a ccw rotation. The framing poset LG,F = (C,≤ccw

rot ) is the poset on maximal cliques
where C ≤ccw

rot C′ if C′ can be obtained from C by a sequence of ccw rotations. We simply
write C ≤ C′ when the partial order is clear from context.

A polygon in a lattice is an interval [x, y] that is the union of two finite maximal
chains from x to y that are disjoint except at x and y. A lattice is said to be polygonal
if the following two conditions hold: (1) If y1 and y2 are distinct and cover an element
x, then [x, y1 ∨ y2] is a polygon; and (2) if y1 and y2 are distinct and are covered by an
element x, then [y1 ∧ y2, x] is a polygon.

Theorem 3.1. If (G, F) be a framed graph then LG,F is a poset. Moreover, it is a polygonal
lattice whose polygons consist of squares, pentagons, or hexagons.

Given a lattice L , let E(L ) denote the set of covering relations of L . We say that
L is an HH-lattice if it is finite, semidistributive, polygonal, and there exist a labeling
function ℓ : E(L ) → L where L is a set of labels, and a ranking function r : L → N

satisfying the following condition on every polygon [x, y] of L . Let x1 and x2 denote
the two elements covering x, and let y1 and y2 denote the two elements covered by y,
such that x1 and y1 (resp. x2 and y2) belong to the same maximal chain. The labeling ℓ
and rank function r must satisfy: (1) ℓ(x, x1) = ℓ(y2, y) and ℓ(x, x2) = ℓ(y1, y); and (2) if
t1, . . . , tk is a maximal chain in a polygon, then

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(t k+1
2
) if k is odd; and

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(t k
2
), r(t k

2+1) if k is even.

It is known that every HH-lattice is congruence uniform [2], i.e. it can be obtained
from the one element lattice by a sequence of doublings of intervals, a simple operation
introduced by Alan Day in the seventies, see [2] and the references therein.

Theorem 3.2. The framing poset LG,F is an HH lattice. In particular, it is semidistributive and
congruence uniform.

The following lemma due to Björner, Edelman, and Ziegler and the tools developed
below are central to prove the above results. We skip most of the details due to space
constraints.
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Lemma 3.3. (BEZ Lemma [6, Lemma 9-2.2]) Let P be a finite poset with 0̂. If the join x ∨ y
exists for every x, y ∈ P such that x and y cover a common element z, then P is a lattice.

To apply the BEZ lemma, we need a characterization of comparability in LG,F. We
say that C is cw from C′ if for all R ∈ C, R′ ∈ C′, and v ∈ R ∩ R′ we have that R and R′

are coherent at v or R <cw
v R′.

Proposition 3.4. Let C and C′ be maximal cliques. Then C ≤ C′ if and only if C is cw from C′.

Given two maximal cliques covering a common maximal clique, we construct their
join algorithmically. Given a set S of pairwise coherent routes, we construct a maximal
clique Cmax(S) containing S and the ccw-most routes that are coherent with the routes
in S. Informally, Cmax(S) is obtained by adding the ccw-most routes at each vertex
until a maximal clique is formed. The formal construction is described in Algorithm 1,
where ≤rev

I (v) denotes the reverse order of the linear order ≤I (v). Similarly, we construct
a maximal clique Cmin(S) containing S whose routes are as clockwise as possible.

Algorithm 1 The construction of Cmax(S)
1: Cmax(S) := S
2: for v ∈ V(G) (in increasing order) do
3: for Pv ∈ I (v) (in the order ≤rev

I (v)) do ▷ Pv possibly empty
4: for vQ ∈ O(v) (in the order ≤O(v)) do ▷ vQ possibly empty
5: if PvQ is coherent with all routes of Cmax(S) then
6: Cmax(S) := Cmax(S) ∪ {PvQ}
7: break ▷ This terminates the innermost loop
8: end if
9: end for

10: end for
11: end for

Lemma 3.5. The clique Cmax(S) is the unique maximal clique with the following property. If a
route R /∈ S is coherent with all routes in S, then for any R′ ∈ Cmax(S) and v ∈ R ∩ R′ either
R and R′ are coherent at v or R′ <cw

v R. The dual statement holds for Cmin(S).

When S = ∅, we abbreviate Cmin = Cmin(∅) and Cmax = Cmax(∅). The maximal
cliques Cmin and Cmax are respectively the 0̂ and 1̂ of LG,F. The proof of Theorem 3.1
follows from the next lemma together with the BEZ lemma.

Lemma 3.6. Let C1 and C2 be distinct maximal cliques covering a maximal clique Q in LG,F
and let S = C1 ∩ C2. Then, the following statements hold.

(i) The set of maximal cliques containing S is an interval IS = [Cmin(S), Cmax(S)], with
Q = Cmin(S), C1 ̸= Cmax(S), and C2 ̸= Cmax(S).
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(ii) The interval IS is a square, pentagon, or a hexagon.

(iii) C1 ∨ C2 exists and is Cmax(S).

Remark 3.7. The join of two arbitrary maximal cliques C and C′ in LG,F is not Cmax(S) for
S = C ∩C′. However, it is possible to compute it with a modified version of Algorithm 1.

Our proof of Theorem 3.2 relies on a characterization of semidistributive lattices and
HH lattices based on the polygons of the lattice. The congruence uniform property
follows from being an HH lattice.

The following result concerns lattice quotients of the framing lattice. It is based on
an operation discovered by Yip called an M-move, and was proved independently by
González D’León and Yip1. Given a framed graph (G, F) and an oriented edge (v, w)
such that v ̸= s and w ̸= t, an M-move applied to (v, w) is the framed graph (Gv,w, Fv,w)
obtained by replacing the edge (v, w) by the two edges (s, w) and (v, t), while keeping
the order of the incoming edges at w and the outgoing edges at v.

Theorem 3.8. The framing lattice LGv,w,Fv,w is a lattice quotient of LG,F.

We finish this section with the following enumerative conjecture, which is motivated
by Section 4.4 and a result in [3], and is supported by computational evidence.

Conjecture 3.9. Let F1 and F2 be two framings of G. Then, the framing lattices LG,F1

and LG,F2 have the same number of linear intervals of length k for every k ≥ 0.

4 Examples

4.1 The Boolean lattice

The Boolean lattice Bn is the lattice on the subsets of [n] ordered by inclusion. We now
describe how to obtain Bn as a framing lattice. Let GBn be the flow graph with vertex
set {s, t} ∪ [n] and edge set constructed as follows. For each vertex i ∈ [n] we add a pair
of edges (s, i) and (s, i)′ and a pair of edges (i, t) and (i, t)′. All framing lattices of GBn

will be isomorphic, so the choice of framing does not matter. However, for convenience
we choose F to be a framing with (s, i) <I (i) (s, i)′ and (s, i) <O(i) (s, i)′ at each i ∈ [n].
See the left-most graph and lattice in Figure 2 for an example of GB3 and B3.

A maximal clique of (GBn , F) contains the routes {(s, i), (i, t)} and {(s, i)′, (i, t)′}, and
either the route Ri := {(s, i), (i, t)′} or the route R′

i := {(s, i)′, (i, t)} for each i ∈ [n]. For a
set S ⊆ [n], define the maximal clique CS to be the unique maximal clique with routes R′

i
with i ∈ S, and Ri with i /∈ S. The map S 7→ CS is an order preserving bijection between
Bn and LGBn ,F. Therefore, the framing lattice LGBn ,F is the Boolean lattice Bn.

1Personal communication.
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4.2 The lattice of multipermutations

Given n positive integers m1, . . . , mn, the set of multipermutations [a1, . . . , am1+···+mn ] of
1m1 · · · nmn forms a lattice whose cover relations are given by interchanging two consec-
utive values ak < ak+1. The special case mi = 1 for all i recovers the classical weak order
on permutations.

We define the multioruga graph Gm1,...,mn as the graph on the vertex set [n + 1] con-
taining mi + 1 edges ei,0, . . . , ei,mi which are drawn from bottom to top between i and i+ 1
for i ∈ [n]. The framing F is induced by this drawing (edges ordered from top to bottom).

The associated flow polytope is a product of simplices FGm1,...,mn
= ∆m1 × · · · × ∆mn

where ∆mi = conv{ei,0, . . . , ei,mi}. Maximal cliques of the framed triangulation are in
bijection with multipermutation as follows.

Given a multipermutation [a1, . . . , am1+···+mn ] of 1m1 · · · nmn and an integer k satisfying
0 ≤ k ≤ m1 + · · ·+ mn, we let Rk be the route consisting of the edges e1,j1(k), . . . , en,jn(k),
where ji(k) := |{k′ ≤ k : ak′ = i}|. In other words, ji(k) counts the number of ap-
pearances of i up to position k in the multipermutation. The collection of routes R0,. . . ,
Rm1+···+mn is a maximal clique, and all maximal cliques are of this form. A counterclock-
wise rotation of a route Rk in a maximal clique corresponds to interchanging two con-
secutive values ak < ak+1 in the multipermutation. Thus, the framing lattice LGm1,...,mn ,F
is the lattice of multipermutations of 1m1 · · · nmn . An example is shown in Figure 2.

4.3 The Cambrian lattice

Reading’s type A ε-Cambrian lattices [10] are lattices on triangulations of a polygon.
The parameter ε is a map ε : [n] → {±} that assigns a positive or negative sign to
each element of [n]. We define the polygon Pε(n) as a convex (n + 2)-gon with vertices
0, 1, . . . , n+ 1 ordered from left to right, such that 0 and n+ 1 are on a horizontal line and
i is above this line if ε(i) = +, or below if ε(i) = −. The ε-Cambrian lattice is the poset
on triangulations of Pε(n) whose cover relations are increasing slope diagonal flips.

0

1−

2+

3−

4

s 0 1 2 3 t

−
+

−

Figure 6: The polygon Pε(3) and the Cambrian caracol graph Gε for ε = −+−.

Let the Cambrian caracol graph Gε be the graph with vertex set {s, 0, 1, . . . , n, t} and
the following three kinds of edges:
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• horizontal edges (s, 0), (0, 1), (1, 2), . . . , (n − 1, n), (n, t),

• positive edges (s, a)+, (a − 1, t)+ when ε(a) = + (above the horizontal line), and

• negative edges (s, a)−, (a − 1, t)− when ε(a) = − (below the horizontal line).

The graph Gε is independent of ε. The framing Fε is the one induced by the drawing,
which depends on ε. The routes of Gε are in bijection with the diagonals of the poly-
gon Pε(n). More precisely, diagonal ij corresponds to the route entering at i exiting
at j − 1. Under this bijection, two routes are coherent if and only if the corresponding di-
agonals do not cross; see Figure 6. Moreover, the framing lattice LGε,Fε

is the ε-Cambrian
lattice. An example is shown in Figure 2.

4.4 The cross-Tamari lattice

The cross-Tamari lattice is a new poset structure introduced in this paper which gener-
alizes the alt ν-Tamari lattices of Ceballos and Chenevière [3].

Let D be a set lattice points in Z2. We say that D is horizontally connected if for any
pair of points (x, y) and (x′, y) in D we have (z, y) ∈ D for all x < z < x′. Let rowD(z)
denote the set of points in D with y-coordinate z. We say that D is horizontally nested
if the x-coordinates of the points in rowD(v) are a subset of the x-coordinates of the
points in rowD(w) whenever | rowD(v)| ≤ | rowD(w)|. Similarly, we define vertically
connected and vertically nested. A set of lattice points D ⊆ Z2 is a cross-shaped grid if
it is both horizontally and vertically connected, and horizontally and vertically nested.

If D has a columns and b rows, it is convenient to assign positions to the points in D
according to a relabeling of the columns with the numbers 1, . . . , a and the rows with
1, . . . , b, in some order. We identify a point p ∈ D with its position p = (v, w) where
v is the label of column and w is the label of the row of the point. We denote by ℓ(v)
(resp. ℓ(w)) the number of elements of D in column v (resp. row w). A proper labeling
of the rows and columns of D is a labeling satisfying the following conditions:

• the column labels form a unimodular sequence2 and ℓ(v) < ℓ(v′) implies v < v′

• the row labels form a unimodular sequence and ℓ(w) < ℓ(w′) implies w < w′

Intuitively, this means that we label the rows and columns from shortest to longest
from the outside towards the center. Such a labeling is not unique if D has rows or
columns of the same length, but any proper labeling will be good for our purposes. An
example of a cross-shaped grid and a proper labeling of its rows and columns is shown
in Figure 7. In this example, the bottom-left corner (colored blue) has position (4, 2).

2increases and then decreases
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b

b

−→ s 6 5 1 4 2 3 3 2 4 1 5 t

Figure 7: A cross-shaped grid D with a proper labeling L of its rows and columns (left).
The (D, L)-caracol graph GD,L with the routes corresponding to the marked points in
D highlighted (right).

Let D be a cross-shaped grid. Two distinct points p, p′ ∈ D are incompatible if one
of them is strictly north-east of the other and every lattice point in the smallest rectangle
containing p and p′ belongs to D. Two points are compatible if they are not incompatible.
A maximal filling of a cross-shaped grid is a maximal set of pairwise compatible points.
If two maximal fillings M ̸= M′ differ by one single element M ∖ {p} = M′ ∖ {p′}
where p′ is located strictly north-east of p, then we say the M′ is obtainable from M by
an increasing flip. The cross-Tamari order Tam(D) is the poset of maximal fillings of D
where M ⪯D M′ if M′ can be obtained from M by a sequence of increasing flips.

The case where D is the set of lattice points weakly above a staircase shape recovers
the classical Tamari lattice. If D is the set of lattice points weakly above a given lattice
path ν then we recover of ν-Tamari lattice of Préville-Ratelle and Viennot [9]. Cross-
Tamari lattices also include the alt ν-Tamari lattices [3] and the ε-Cambrian lattices [10].

Next, we will show that the cross-Tamari order can be obtained as a framing lattice.
In particular, this implies that it is a lattice, a non-trivial fact.

Let D be a cross-shaped grid and L be a proper labeling of its columns and rows with
the numbers [a] and [b]. We define the (D, L)-caracol graph GD,L as the graph on the
vertex set {s, t} ⊔ [a] ⊔ [b], whose edges are given as follows.

First we define a linear order ≺ on the vertices, whose minimal element is s, maximal
element is t, and the following three relations hold: i2 ≺ i1 when i1 < i2, j1 ≺ j2
when j1 < j2, and x ≺ y when (x, y) ∈ D. The fact that ≺ is a linear order follows
from the conditions on D and L. We place the vertices {s, t} ⊔ [a] ⊔ [b] in a horizontal
line following the linear order ≺ and draw an edge between each pair of consecutive
elements. This looks like s − a − · · · − b − t. We add additional edges (s, i) and (j, t) as
follows. For i ∈ [a − 1], we draw an edge (s, i) below the horizontal line if column label
i is on the right of column label a, and above if it is on the left. For j ∈ [b − 1], we draw
an edge (j, t) below the horizontal line if row label j is below of row label b, and above
if it is above. The resulting graph is GD,L, and the framing FD,L is the framing induced
by our drawing; see Figure 7 for an example.
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The points in D are in bijection with the routes of GD,L. More precisely, the point (i, j)
corresponds to the route entering at i and exiting at j. Under this bijection, two points
in D are incompatible if and only if the corresponding routes are incoherent. Moreover,
the framing lattice LGD,L,FD,L is the cross-Tamari lattice Tam(D). An example is shown
in Figure 2.

4.5 Other examples

The previous examples are only a small selection of well studied lattices that appear as
examples of framing lattices. Other examples include the Grassmann-Tamari lattices of
Santos, Stump, and Welker, the grid Tamari lattices of McConville, the (ε, I, J)-Cambrian
lattices of Pilaud, the permutree lattices of Pilaud and Pons, the s-weak order of Ceballos
and Pons, and tau-Tilting posets for certain gentle algebras. The description of these
lattices as framing lattices essentially follows from bijections presented in other works,
and will be discussed in more detail in a longer version of this manuscript.
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