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Abstract. For each permutation w in Sn and each irreducible representation (ρλ, Vλ) of
Sn, we determine when ρλ(w) admits a non-zero invariant vector in Vλ. We find that
non-zero invariant vectors exist in most cases, with very few exceptions.
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1 Introduction

This extended abstract is based on the results of [8]. The main results of this article
are motivated by various problems in representation theory which we survey in the first
four subsections of this introduction. The main results are stated in Section 1.5. Section 2
contains an outline of the proof of our main theorem. Details can be found in [8]. In
Section 3, we list some interesting questions for further study.

1.1 Locally Invariant Vectors

Let G be a finite group and let V be a complex representation of G. A G-invariant
vector in V is a vector v ∈ V such that g · v = v for all g ∈ G. The representation V
admits a G-invariant vector if and only if it contains the trivial representation of G as a
subrepresentation.

In this article, we will be concerned with locally G-invariant vectors. Fixing an element
g ∈ G, we ask if there exists a non-zero vector v ∈ V such that g · v = v. It is easy to see
that the existence of such a vector depends on g ∈ G only through its conjugacy class.

Let C(G) denote the set of conjugacy classes of G. Let Irr(G) denote the set of
irreducible complex representations of G up to isomorphism.

Question 1. Given a finite group G, for which pairs (C, V) ∈ C(G)× Irr(G) does there
exist a non-zero vector v ∈ V such that g · v = v for some element g ∈ C?
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1.2 Cyclic Permutation Representations

A cyclic representation of G is a representation that is induced from a multiplicative char-
acter of a cyclic subgroup of G. Artin [1] proved that every complex representation of
any finite group can be expressed as a virtual rational linear combination of cyclic rep-
resentations. This allowed him to show that some integer power of the Artin L-function
associated to any representation of G extends to a meromorphic function on the complex
plane.

Brauer [3] showed that every representation of G is a virtual integer linear combi-
nation of representations induced from linear characters of (not necessarily Abelian)
subgroups of G. Brauer showed that the subgroups of G can all be taken to be elementary
(product of a p-group with a cyclic group of order coprime to p for some prime p). This
variation on Artin’s theorem was used to improve Artin’s result on L-functions, conclud-
ing that Artin L-functions extend to meromorphic functions on the complex plane.

A permutation representation is a representation induced from the trivial representation
of a subgroup of G.

Definition 2 (Cyclic permutation representation). A cyclic permutation representation of
a finite group G is a representation that is induced from the trivial representation of a
cyclic subgroup of G.

In general (even for symmetric groups), it is not true that every representation of G
is a virtual rational linear combination of cyclic permutation representations.

Given g ∈ G, let Vg = IndSn
⟨g⟩ 1 denote the representation of G induced from the

trivial representation of the cyclic group ⟨g⟩ generated by g. The isomorphism class
of Vg depends only on the conjugacy class of g in G. By Frobenius reciprocity, given
V ∈ Irr(G), g admits a non-zero invariant vector in V if and only if V occurs in the
decomposition of Vg into irreducibles. Thus Question 1 can be reformulated in terms of
cyclic permutation representations as follows:

Question 3. Given a finite group G, for which pairs (C, V) ∈ C(G)× Irr(G) does V occur
in Vg?

Let ZG(g) denote the centralizer of g in G. The following definition is due to Heide
and Zalessky [4].

Definition 4 (Global conjugacy class). Let G be a finite group. The conjugacy class of an
element g ∈ G is said to be a global conjugacy class if every irreducible representation of
G occurs in the permutation representation IndG

ZG(g) 1.

The group algebra C[G] of G can be thought of as a representation of G via the action
of G on itself by conjugation, called the adjoint representation of G. Heide, Saxl, Tiep,
and Zalessky [5] showed that the adjoint representation of G contains every irreducible
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representation of G for every finite simple group G except G = SU(n, q2) when n is
odd and coprime to q + 1. Since C[G] is a direct sum of the representations IndG

ZG(g) 1
as g runs over the conjugacy classes of G, if G admits a global conjugacy class then the
adjoint representation of G contains every irreducible representation of G. Heide and
Zalessky [4, Conjecture 1.5] conjectured that the converse is true: if every irreducible
representation of a finite simple group G occurs in its adjoint representation then G
admits a global conjugacy class. They proved this conjecture for alternating groups An,
n > 4, and for all sporadic simple groups.

Sheila Sundaram [10, Theorem 5.1] characterized global conjugacy classes for all sym-
metric groups (see Theorem 7). She showed [10, Theorem 1.1] that a symmetric group
Sn admits a global conjugacy class if and only if n = 6 or n ≥ 8.

For every element g ∈ G, the cyclic group ⟨g⟩ generated by g is a subgroup of the
centralizer group ZG(g). It follows that IndG

ZG(g) 1 is a subrepresentation of IndG
⟨g⟩ 1.

Thus, if the conjugacy class of G is a global class, then every irreducible representation
V of G admits a non-zero vector v ∈ V such that g · v = v.

Definition 5. Let G be a finite group, and let C be a conjugacy class in G. We say that C
is a cyclically global class if Ind⟨g⟩ 1 contains every irreducible representation of G.

A complete answer to the equivalent Questions 1 or 3 will result in the characteriza-
tion of cyclically global conjugacy classes in G.

1.3 Immersion of Representations

Prasad and Raghunathan [9] proposed a partial order on automorphic representations
called immersion. Adapted to finite groups, it may be defined as follows.

Definition 6. Given representations (ρ, V) and (σ, W) of G, say that V is immersed in
W, denoted V ≼ W, if for every g ∈ G and every λ ∈ C, the multiplicity of λ as an
eigenvalue of ρ(g) does not exceed the multiplicity of λ as an eigenvalue of σ(g).

In particular, if V is a subrepresentation of W, then V ≼ W.
Let 1 denote the trivial representation of G. Then 1 ≼ V if and only if, for every

g ∈ G, there exists a non-zero vector v ∈ V such that g · v = v.

1.4 Results for Symmetric Groups

In this section, we follow standard notation from the theory of symmetric functions. See
e.g., Macdonald [7].

Let Sn denote the nth symmetric group. The conjugacy class of w ∈ Sn is completely
determined by the cycle type of w which is a partition µ ⊢ n. For each µ ⊢ n, let wµ

denote a permutation with cycle type µ.
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Following Schur, irreducible representations of Sn are elegantly characterized by as-
sociated symmetric functions. If the representation V of Sn has character χ : Sn → C, its
Frobenius characteristic is defined as the symmetric function

chn χ = ∑
µ⊢n

χ(wµ)

zµ
pµ,

where pµ denotes the power sum symmetric function associated to the partition µ and
zµ denotes the number of permutations in Sn that commute with wµ.

For every partition λ ⊢ n, there is a unique irreducible representation Vλ of Sn whose
character χλ satisfies

chn χλ = sλ,

where sλ is the Schur function associated to λ ⊢ n. The representations {Vλ | λ ⊢ n} are
the irreducible representations of Sn.

Sundaram’s characterization of global conjugacy classes for symmetric groups is the
following.

Theorem 7 (Sundaram [10, Theorem 5.1]). Let n ̸= 4, 8. A partition of n is the cycle type of
a global conjugacy class in Sn if and only if it has at least two parts, and all its parts are odd and
distinct.

When µ = (n), wµ is an n-cycle in Sn and ZSn(w(n)) = ⟨w(n)⟩. The decomposi-
tion of the cyclic permutation representation of Sn induced from ⟨w(n)⟩ into irreducible
representations has a nice combinatorial interpretation.

Theorem 8 (Kraśkiewicz and Weyman [6]). Let χr denote the character of ⟨w(n)⟩ which takes
w(n) to e2πir/n. For any λ ⊢ n, the multiplicity of Vλ in IndSn

⟨w(n)⟩
χr is given by the number aλ,r

of standard tableaux of shape λ whose major index is congruent to r modulo n.

However, it is not easy to say when aλ,r is positive. This question was resolved by
Swanson [12, Theorem 1.5]. When r = 0, his results prove a conjecture of Sundaram [11,
Remark 4.8].

Theorem 9. For λ ⊢ n, Vλ occurs in IndSn
⟨w(n)⟩

1 unless λ is one of

1. (n − 1, 1),

2. (2, 1n−2) with n odd,

3. (1n) with n even.
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1.5 Our Main Results

Let An denote the alternating group, a subgroup of index 2 in Sn.

Main Theorem. The only pairs of partitions (λ, µ) of a given integer n such that wµ does not
admit a nonzero invariant vector in Vλ are the following:

1. λ = (1n), µ is any partition of n for which wµ /∈ An,

2. λ = (n − 1, 1), µ = (n), n ≥ 2,

3. λ = (2, 1n−2), µ = (n), n ≥ 3 is odd,

4. λ = (22, 1n−4), µ = (n − 2, 2), n ≥ 5 is odd,

5. λ = (2, 2), µ = (3, 1),

6. λ = (23), µ = (3, 2, 1),

7. λ = (24), µ = (5, 3),

8. λ = (4, 4), µ = (5, 3),

9. λ = (25), µ = (5, 3, 2).

It follows that most irreducible representations of Sn admit w-invariant vectors for
every permutation w. In terms of the notion of immersion (Definition 6), we have

Theorem 10. Given a partition λ ⊢ n, V(n) ≼ Vλ if and only if λ is not one of

1. (1n),

2. (n − 1, 1) for n ≥ 2,

3. (2, 1n−2) when n ≥ 3 is odd,

4. (22, 1n−4), when n ≥ 5 is odd,

5. (2, 2), (23), (24), (42) and (25).

Because the sign representation does not admit any non-zero invariant vector for a
permutation that does not lie in An, conjugacy classes of Sn that are not contained in
An cannot be cyclically global. We find that most conjugacy classes of Sn which are
contained in An are cyclically global.

Theorem 11. Given a partition µ ⊢ n the conjugacy class in Sn consisting of permutations with
cycle type µ is cyclically global if and only if it is contained in An and µ is not one of
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1. (n) for n ≥ 2,

2. (n − 2, 2) for n ≥ 5 odd,

3. (3, 1), (5, 3).

While conjugacy classes that are not contained in An cannot be cyclically global, for
most of them, the only obstruction to being cyclically global is the sign representation.

Definition 12 (Persistent class). A permutation w ∈ Sn is said to be persistent if IndSn
⟨w⟩ 1

contains Vλ for every λ ⊢ n with the possible exception of λ = (1n). If w is persistent
then every permutation in its conjugacy class is persistent.

By Frobenius reciprocity, w is persistent if there exists a non-zero v ∈ Vλ such that
w · v = v for all λ ⊢ n such that λ ̸= (1n). It turns out that for most partitions µ, wµ is
persistent.

Theorem 13. Given µ ⊢ n, wµ is persistent unless µ is one of the following:

1. (n) when n ≥ 2,

2. (n − 2, 2), when n ≥ 5 is odd,

3. (3, 1), (3, 2, 1), (5, 3), (5, 3, 2).

2 Proof of the Main Theorem

The main theorem is proved using Swanson’s theorem (Theorem 9) and the Littlewood-
Richardson rule. We outline the main steps in the proof in this section.

2.1 Reformulation in terms of Symmetric Functions

Definition 14. Given symmetric functions f and g with integer coefficients, say that
f ≥ g if f − g is a non-negative integer combination of Schur functions.

Define
fµ = chn IndSn

⟨wµ⟩ 1.

Then Vλ occurs in IndSn
⟨wµ⟩ 1 if and only if

fµ ≥ sλ (2.1)
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If µ = (µ1, . . . , µk) let Sµ = Sµ1 × · · · × Sµk be the Young subgroup corresponding to the
cycles of wµ. Let Dµ be the subgroup of Sµ generated by the cycles of wµ. Thus Dµ is a
product of cyclic groups of orders µ1, µ2, . . . , µk. Using induction in stages,

fµ = ch IndSn
Sµ

Ind
Sµ

Dµ
Ind

Dµ

Cµ
1.

Therefore

fµ ≥ ch IndSn
Sµ

Ind
Sµ

Dµ
1 =

k

∏
i=1

f(µi)
. (2.2)

Swanson’s theorem (Theorem 9) tells us that f(n) ≥ sλ for most partitions λ of n. We will
use this fact, together with the inequality (2.2), to establish (2.1) in most cases using the
Littlewood-Richardson rule. Recall that the Littlewood-Richardson coefficients cλ

αβ are
defined by

sαsβ = ∑
λ

cλ
αβsλ.

The Littlewood-Richardson rule [7, Section I.9] asserts that cλ
αβ is the number of LR-

tableaux of shape λ/α and weight β. Recall that an LR-tableau is a semistandard skew-
tableau whose reverse row reading word is a lattice permutation.

2.2 The Basic Lemmas

Our proof of the main will make frequent use of the following lemmas.

Lemma 15. For every partition λ of p + q, and every partition α of p that is contained in λ,
there exists a partition β of q such that sαsβ ≥ sλ.

Proof. Let Tλα denote the skew-tableau obtained by putting i in the ith cell of each col-
umn of λ/α. Let β be the weight of Tλα. For example, if λ = (5, 4, 4, 1) and α = (3, 2, 1)
then

Tλα = 1 1
1 2

1 2 3
1

,

and β is (5, 2, 1). Since every i + 1 occurs below an i, Tλα is an LR-tableau. The
Littlewood-Richardson rule implies that sαsβ ≥ sλ.

Lemma 15 is nothing more than the well-known statement that the skew-Schur func-
tion sλ/α is non-zero whenever λ ⊃ α. However, the method of constructing β in the
proof is also used in our proof of the main theorem.

Lemma 16. Given integers p ≥ 2, q ≥ 1, and a partition λ ⊢ (p + q) different from (1(p+q)),
there exists a partition β ⊢ q such that f(q) ≥ sβ and β ⊂ λ.

Proof. We consider the following cases:
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Case 1: λ ⊃ (q − 1, 1)

Since p ≥ 2, the skew shape λ/(q − 1, 1) has at least two cells. If at least one of these
cells lies in the first row of λ, then choose β = (q). If at least one of these cells lies
in the first column of λ, then choose β = (q − 2, 1, 1) If neither of the above happens,
then λ/(q − 1, 1) has at least two cells in its second row. In this case q − 1 ≥ 3. Choose
β = (q − 2, 2). The possible placements of the cells of λ/(q − 1, 1) are shown in Figure 1.

Figure 1: Possible placements of two cells of λ/(q − 1, 1)

In all these cases, Theorem 9 implies that f(q) ≥ sβ.

Case 2: λ ⊃ (1q) and q is even

Since λ ̸= (1p+q), the skew-shape λ/(1q) must contain at least one cell in the first row.
Take β = (2, 1q−2). By Theorem 9, f(q) ≥ sβ, since q is even.

Case 3: λ ⊃ (2, 1q−2) and q is odd

If λ/(2, 1q−2) has a cell in its first row, take β = (3, 1q−3). If λ/(2, 1q−2) has a cell in
its first column, take β = (1q). By Theorem 9, f(q) ≥ sβ, since q is odd. Otherwise the
second column of λ/(2, 1q−2) must have at least two cells in its second column. In this
case q ≥ 4. Take β = (2, 2, 1q−4). The possible placements of the cells of λ/(2, 1q−2) are

Figure 2: Possible placements of cells of λ/(2, 1q−2).

shown in Figure 2.

All remaining λ:

Take β to be any partition of q that is contained in λ. Since λ does not contain any of the
exceptions of Theorem 9, f(q) ≥ sβ.
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2.3 The Main Steps of the Proof

For convenience, we will say that a partition µ is persistent if wµ is persistent in the sense
of Definition 12. The goal is to prove that, for n ≥ 11, every partition µ ⊢ n is persistent,
except for the partitions µ = (n), and µ = (n − 2, 2) when n is odd. The cases n ≤ 10
are easily solved by computer calculation, using, for example, the Sage Mathematical
Software [13]. The following lemma deals with most partitions that have two parts.

Lemma 17. If µ = (p, q) where p ≥ q ≥ 4, then µ is persistent.

For the details of the proof, we refer the reader to [8]. We only outline the main idea
here.

We wish to show that f(p,q) ≥ sλ for every λ ⊢ (p + q) different from (1p+q). By (2.2),
f(p,q) ≥ f(p) f(q). Hence, in order to show that f(p,q) ≥ sλ, it suffices to find α ⊢ p and
β ⊢ q such that

f(p) ≥ sα, f(q) ≥ sβ, and sαsβ ≥ sλ. (2.3)

Lemma 16 allows us to choose β ⊢ q such that β ⊂ λ and f(q) ≥ sβ. Using Lemma 15
with the roles of α and β reversed, we may choose α ⊢ p such that sαsβ ≥ sλ. If f(p) ≥ sα

we are done. Otherwise, α must be one of the partitions occurring in Swanson’s theorem
(Theorem 9). Most of these cases are dealt with by prescribing a replacement for α and
β so that (2.3) holds.

Lemma 17 can be leveraged to deal with most partitions with more than two parts
using the following lemma.

Lemma 18. A partition µ = (µ1, . . . , µk) ⊢ n with k ≥ 2 is persistent if the partition µ̃ obtained
by removing a part µi from µ is persistent and n − µi ≥ 4.

In order to prove the lemma, we wish to show that fµ ≥ sλ for every λ ⊢ n except
λ = (1n). Suppose µ = (µ1, . . . , µk). Noting that Cµ̃ × C(µi)

⊂ Cµ and Dµ̃ × D(µi)
= Dµ,

we have
Ind

Dµ

Cµ
1 ≥ Ind

Dµ̃

Cµ̃
1 ⊗ Ind

D(µi)

C(µi
)

1

Inducing to Sp1 × · · · × Spk , and then to Sp1+···+pk gives

fµ ≥ fµ̃ f(µi)
.

Hence it suffices to show that fµ̃ f(µi)
≥ sλ for all λ ⊢ n except λ = (1n). As before,

it suffince to find α ⊢ n − µi and β ⊢ µi such that α ̸= (1n), f(µi)
≥ β and sαsβ ≥ sλ.

Again, using Lemma 16, we may choose β such that β ⊂ λ and f(µi)
≥ sβ. Again,

using Lemma 15 with the roles of α and β reversed, we may choose α ⊢ n − µi such that
sαsβ ≥ sλ. In this case, there is a way to replace α and β with another pair which have
the required properties. The details of the proof are found in [8].

Lemmas 17 and 18 take care of most cases of partitions. To complete the proof, they
need to be carefully put together with a few more cases, for which we refer the reader
to [8].
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3 Futher Questions

We conclude this extended abstract by enumerating a few interesting open questions.

Question 19. Classify the global conjugacy classes of the alternating group An.

Heide and Zalesski [4] proved the existence of at least one such class for each n and
gave an algorithm to find it.

Question 20. Find “effective” versions of Artin and Brauer induction theorem (discussed
in Section 3) for symmetric groups.

For the Artin induction theorem, this would mean finding, for each positive integer n,
a set of pairs (µ, χ) where µ ⊢ n and χ : ⟨wµ⟩ → C is a multiplicative character such that
the representations IndSn

⟨wµ⟩ χ form a basis for the space of class functions on Sn. For the
Brauer induction theorem, this would mean finding, for each positive integer n and each
prime p, a set of pairs (A, χ) where A is an elementary subgroup of Sn and χ : A → C is
a multiplicative character such that the characters of the representations IndSn

A χ form a
basis for the space of class functions on Sn. Techniques developed by Boltje, Snaith and
Symonds [2] may be useful in this context.

Consider the representation Uχ
µ = IndSn

⟨wµ⟩ χ, where χ : ⟨wµ⟩ → C is a primitive
multiplicative character.

Question 21. Determine the set of triples (λ, µ, χ) such that Uχ
µ contains Vλ.

Since Swanson [12] solves this problem for µ = (n), this problem could also be
amenable to the methods of [8].

Question 22. Find subgroups H of Sn that are maximal among subgroups for which Vλ

occurs in IndSn
H 1 for every λ ⊢ n.

Theorem 11 shows that there are many cyclic subgroups with this property, and hence
there should be a large class of such maximal subgroups.
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