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Abstract. In our previous works we introduced a q-deformation of the generating func-
tions for enriched P-partitions. We call the evaluation of this generating functions on
labelled chains, the q-fundamental quasisymmetric functions. These functions inter-
polate between Gessel’s fundamental (q = 0) and Stembridge’s peak (q = 1) functions,
the natural quasisymmetric expansions of Schur and Schur’s Q-symmetric functions.
In this paper, we show that our q-fundamental functions provide a quasisymmetric
expansion of Hall-Littlewood S-symmetric functions with parameter t = −q.

Résumé. Dans nos travaux précédents, nous avons introduit une q-déformation des
fonctions génératrices pour les P-partitions enrichies. Nous nommons l’évaluation de
ces fonctions génératrices sur les chaînes étiquetées, les fonctions quasisymétriques
q-fondamentales. Ces fonctions interpolent entre les fonctions fondamentales de Ges-
sel (q = 0) et les fonctions de pics de Stembridge (q = 1) qui sont les expansions
quasisymétriques naturelles des fonctions symétriques de Schur et Q Schur. Dans cet
article, nous montrons que nos fonctions q-fondamentales fournissent une expansion
quasisymétrique des fonctions symétriques Hall-Littlewood S avec paramètre t = −q.
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1 Introduction

We define the q-fundamental quasisymmetric functions as the q-deformed generating
functions for enriched P-partitions on labelled chains [5, 6]. These functions naturally
interpolate between I. Gessel’s fundamental ([1], q = 0) and J. Stembridge’s peak ([12],
q = 1) quasisymmetric functions and exhibit most of the nice properties of these two
classical families. In particular, when q is not a complex root of unity they span the
ring of quasisymmetric functions (QSym). When q is a root of unity, a subfamily of our
q-fundamentals is the basis of the algebra of extended peaks [6], a proper subalgebra
of QSym that coincides with Stembridge’s algebra of peaks when q = 1. Fundamental
and peak functions indexed by standard Young tableaux of shape λ are respectively the
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quasisymmetric expansions of Schur and Schur’s Q-symmetric functions indexed by λ.
Finding the analogous families of symmetric functions for general q appears as a natural
question. We find out that q-fundamental functions provide a similar quasisymmetric
expansion of the family (Sλ(X; t))λ, the Hall-Littlewood S-symmetric functions with
parameter t = −q. After recalling the required definitions, we state and prove our main
result. Finally, we look at some important consequences regarding the quasisymmetric
extension of the classical homorphism between Λ, the algebra of symmetric functions
and the subalgebra of Λ spanned by Hall-Littlewood functions as well as some Cauchy
like formulas for the Sλ(X; t)’s.

1.1 Integer partitions, Young tableaux and permutation statistics

Let P be the set of positive integers and P± be the set of positive and negative integers
ordered by −1 < 1 < −2 < 2 < −3 < 3 < . . . . We embed P into P± and let −P ⊆ P± be
the set of all −n for n ∈ P. For n ∈ P write [n] = {1, . . . , n} and Sn the symmetric group
on [n]. A partition λ of an integer n, denoted λ ⊢ n is a sequence λ = (λ1, λ2, . . . , λp) of
ℓ(λ) = p parts sorted in decreasing order such that |λ| = ∑i λi = n. We denote the one
part partition (n) simply n. A partition λ is represented as a Young diagram of n = |λ|
boxes arranged in ℓ(λ) left justified rows so that the i-th row from the top contains λi
boxes. Given a second partition µ with ℓ(µ) ≤ ℓ(λ) such that µi ≤ λi, (i ≤ ℓ(µ)) delete
the µi leftmost boxes of the i-th row to get the diagram of shape λ/µ. A Young diagram
whose boxes are filled with positive integers such that the entries are increasing along
the rows and strictly increasing down the columns is called a semistandard Young tableau.
If the entries are consecutive and strictly increasing along the rows, we call it a standard
Young tableau and we denote SYT(λ/µ) (resp. SSYT(λ/µ)) the set of standard (resp.
semistandard) Young tableaux of shape λ/µ. A marked semistandard Young tableau is a
Young diagram filled with integers in P± such that the entries are increasing along rows
and columns and such that each row contains at most once each negative integer and
that each column contains at most once each positive integer. Denote SSYT±(λ/µ) the
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Figure 1: A semistandard, marked semistandard and standard tableau of shape
(6, 4, 2, 1, 1)/(2, 1). The descent set of T3 is {2, 6, 7, 9} while its peak set is {2, 6, 9}.
T2 has neg(T2) = 5 negative entries.
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set of marked semistandard Young tableaux of shape λ/µ. Define the descent set of a
standard Young tableau T as Des(T) = {1 ≤ i ≤ n − 1 | i is in a strictly higher row than
i + 1} and it peak set as Peak(T) = {2 ≤ i ≤ n − 1 | i ∈ Des(T) and i − 1 /∈ Des(T)}.
Finally, denote the number of negative entries of a marked tableau T as neg(T).

Example 1. Figure 1 depicts a semistandard, a marked semistandard and a standard Young
tableau with their shape and descent and peak set.

Similarly, the descent set and peak set of a permutation π in Sn are the subsets of
[n − 1] defined as Des(π) = {1 ≤ i ≤ n − 1 | π(i) > π(i + 1)} and Peak(π) = {2 ≤ i ≤
n − 1|π(i − 1) < π(i) > π(i + 1)}. Finally the Robinson-Schensted (RS) correspondence ([9,
10]) is a bijection between permutations π in Sn and ordered pairs of standard Young
tableaux (P, Q) of the same shape λ ⊢ n. This bijection is descent preserving in the sense
that Des(π) = Des(Q), and Des(π-1) = Des(P).

1.2 Hall-Littlewood symmetric functions

Consider the set of indeterminates X = {x1, x2, x3, . . .}. Let Λ denote the ring of sym-
metric functions over C. We use notations consistent with [7]. Namely, for λ ⊢ n, denote
mλ(X), hλ(X), eλ(X), pλ(X) and sλ(X) the monomial, complete homogeneous, elementary,
power sum and Schur symmetric functions over X indexed by λ. Fix a parameter t ∈ C

and define qn(X; t) ∈ Λ as q0(X; t) = 1 and for any positive integer n as:

qn(X; t) = (1 − t)∑
i

xn
i ∏

j ̸=i

xi − txj

xi − xj
. (1.1)

The generating function for the qn is given by

∑
n≥0

qn(X; t)un = ∏
i

1 − xitu
1 − xiu

. (1.2)

The family (qn(X; t))n generates a subalgebra of Λ that we denote Λt. In particular, Λt
is a proper subalgebra of Λ when t is a root of unity.

Definition 1 (Hall-Littlewood S-symmetric functions). Let λ/µ be a skew shape, define the
Hall-Littlewood S-symmetric functions indexed by λ/µ as

Sλ/µ(X; t) = det
(

qλi−µj−i+j(X; t)
)

i,j
(1.3)

As a direct consequence of Definition 1, setting t = 0 yields Sλ/µ(X; 0) = sλ/µ(X). When
t = −1, Sλ/µ(X;−1) is a variant of Schur’s Q-function indexed by λ/µ. We end this
section with the definition of a classical ring homomorphism.
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Definition 2 (Ring homomorphism). Define a ring homomorphism θt: Λ −→ Λt by setting
for any non-negative integer n,

θt(hn)(X) = qn(X; t).

In particular, one has θt(en)(X) = qn(X; t), θt(pn)(X) = (1 − tn)pn(X) and, as a consequence
of Definition 1,

θt(sλ/µ)(X) = Sλ/µ(X; t).

1.3 Enriched P-partitions and q-deformed generating functions

We recall the main definitions regarding weighted posets, enriched P-partitions and their
q-deformed generating functions. See [1, 4, 5, 11, 12] for more details.

Definition 3 (Labelled weighted poset, [4]). A labelled weighted poset is a triple P =
([n],<P, ϵ) where ([n],<P) is a labelled poset, i.e., an arbitrary partial order <P on the set [n]
and ϵ : [n] −→ P is a map (called the weight function). If ϵ(i) = 1 for all i ∈ [n], we may
simply omit it.

Each node of a labelled weighted poset is marked with its label and weight (Figure 2).

2, ϵ(2) = 5

3, ϵ(3) = 2 1, ϵ(1) = 1 4, ϵ(4) = 2

5, ϵ(5) = 2

Figure 2: A 5-vertex labelled weighted poset. Arrows show the covering relations.

Definition 4 (Enriched P-partition, [12]). Given a labelled weighted poset P = ([n],<P, ϵ),
an enriched P-partition is a map f : [n] −→ P± that satisfies the two following conditions:

(i) If i <P j and i < j, then f (i) < f (j) or f (i) = f (j) ∈ P.

(ii) If i <P j and i > j, then f (i) < f (j) or f (i) = f (j) ∈ −P.

We let LP±(P) denote the set of enriched P-partitions.

Definition 5 (q-Deformed generating function, [5]). Consider the ring C [[X]] of formal
power series on X and let q ∈ C be an additional parameter. Given a labelled weighted poset
([n],<P, ϵ), define its generating function Γ(q)([n],<P, ϵ) ∈ C [[X]] as

Γ(q)([n],<P, ϵ) = ∑
f∈L

P± ([n],<P,ϵ)
∏

1≤i≤n
q[ f (i)<0]xϵ(i)

| f (i)|,

where [ f (i) < 0] = 1 if f (i) < 0 and 0 otherwise.
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Finally, let X± = {x−1, x1, x−2, x2, . . .}. In the sequel we denote ϖ the homomorphism
ϖ : C[[X±]] −→ C[[X]] defined by setting ϖ(xi) = q[i<0]x|i| for xi ∈ X±.

1.4 q-fundamental quasisymmetric functions

We recall results from [5] and [6].

Definition 6 (q-Fundamental quasisymmetric functions). Given a permutation π = π1 . . . πn
of Sn, we let Pπ = ([n],<π, 1n) be the labelled weighted poset on the set [n], where the order
relation <π is such that πi <π πj if and only if i < j and where all the weights are equal to 1
(see Figure 3). Define the q-fundamental quasisymmetric function

L(q)
π = Γ(q)([n],<π, 1n).

π1 π2 · · · · · · · · · πn

Figure 3: The labelled weighted poset Pπ.

The q-fundamental quasisymmetric functions belong to the subalgebra of C [[X]] called
the ring of quasisymmetric functions (QSym), i.e. for any strictly increasing sequence of
indices i1 < i2 < · · · < ip the coefficient of xk1

1 xk2
2 · · · xkp

p is equal to the coefficient of

xk1
i1

xk2
i2
· · · xkp

ip
. The specialisations of L(q)

π to Lπ = L(0)
π and Kπ = L(1)

π are respectively the
Gessel’s fundamental [1] and Stembridge’s peak [12] quasisymmetric functions indexed
by permutation π. We have the following explicit expression.

L(q)
π = ∑

i1≤i2≤···≤in;
j∈Peak(π)⇒ij−1<ij+1

q|{j∈Des(π)|ij=ij+1}|(q + 1)|{i1,i2,...,in}|xi1 xi2 . . . xin . (1.4)

Furthermore q-fundamental quasisymmetric functions admit a closed-form product and
coproduct.

Proposition 1. Let q ∈ C, let π and σ be two permutations in Sn and Sm. The product of L(q)
π

and L(q)
σ is given by

L(q)
π L(q)

σ = ∑
τ∈π σ

L(q)
τ , (1.5)

where σ = n + σ1 n + σ2 . . . n + σm. Moreover, the coproduct ∆ : QSym → QSym⊗QSym
of the Hopf algebra QSym (see [3, §5.1]) acts on the q-fundamental quasisymmetric functions as
follows:

∆(L(q)
π ) =

n

∑
i=0

L(q)
std(π1π2...πi)

⊗ L(q)
std(πi+1πi+2...πn)

.
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Here, if γ is a sequence of non-repeating integers, std(γ) is the permutation whose values are in
the same relative order as the entries of γ.

According to Equation (1.4), L(q)
π depends only on the descent set of π. We reindex

our q-fundamentals by an integer n and a subset of [n − 1]. We recall two significant
results.

Proposition 2 ([5]). (L(q)
n,I )n≥0,I⊆[n−1] is a basis of QSym if and only if q ∈ C is not a root of

unity.

Proposition 3 ([6]). Let p ∈ P and ρp ∈ C such that −ρp is a primitive p + 1-th root of unity.
For a subset I of [n − 1], write I ⊆p [n − 1] if I ∪ {0} does not contain more than p consecutive

elements. Then (L(ρp)
n,I )n≥0,I⊆p[n−1] is a basis of a proper subalgebra P p of QSym.

For general q ∈ C denote P (q) the subalgebra of QSym spanned by the (L(q)
n,I )n,I . If q

is not a root of unity then P (q) = QSym. If q = ρp for some p ∈ P then P (q) = P p.

2 Relating Hall-Littlewood and q-fundamentals functions

The ring of symmetric functions Λ is a subalgebra of QSym and any symmetric function
may be expanded in quasisymmetric bases. The relation between Schur functions (i.e
Hall-Littlewood S-functions with parameter t = 0) and fundamental quasisymmetric
functions is of particular interest. Let λ/µ be a skew shape, Gessel shows in [1]

Sλ/µ(X; 0) = sλ/µ(X) = ∑
T∈SYT(λ/µ)

L(0)
Des(T)(X). (2.1)

On the other hand, Stembridge shows in [12] that

Sλ/µ(X;−1) = ∑
T∈SYT(λ/µ)

L(1)
Des(T)(X). (2.2)

As a result, understanding how these relations generalise for general q seems to be a
very legitimate question. We state our result and some significant consequences.

2.1 Computing the q-deformed generating functions on skew diagrams

Let n ∈ P and λ and µ be two partitions such that λ/µ is a skew shape and |λ| − |µ| = n.
Label the skew Young diagram of shape λ/µ with the successive integers of [n] from left
to right and bottom to top. Define the partial order <λ/µ on [n] as i <λ/µ j if and only
if i lies northwest of j and denote the labelled poset Pλ/µ = ([n],<λ/µ). As a direct
consequence the set of enriched Pλ/µ-partitions are precisely the marked semistandard
Young tableaux of shape λ/µ, i.e. LP±(Pλ/µ) = SSYT±(λ/µ).
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Figure 4: The labelled weighted poset P(6,4,2,1,1)/(2,1).

Theorem 1. Let n ∈ P and λ/µ be a skew shape such that |λ| − |µ| = n. The q-deformed
generating function of Pλ/µ is exactly the Hall-Littlewood S-symmetric function with parameter
t = −q.

Sλ/µ(X;−q) = Γ(q)([n],<λ/µ). (2.3)

The proof is postponed to Section 3. As a consequence to Theorem 1, we give an
explicit quasisymmetric expansion of the Hall-Littlewood S-symmetric functions that is
a natural generalisation of Equations (2.1) and (2.2).

Theorem 2. Let λ/µ be a skew shape. The Hall-Littlewood S-symmetric function with parameter
t = −q is related to q-fundamental quasisymmetric functions through

Sλ/µ(X;−q) = ∑
T∈SYT(λ/µ)

L(q)
Des(T)(X). (2.4)

Proof. Let n = |λ| − |µ|. Given a marked semistandard Young tableau T ∈ SSYT±(λ/µ),
define its standardisation as the standard tableau T0 ∈ SYT(λ/µ) obtained by relabelling
the boxes of T with the integers in [n] such that:

• The entries of T and T0 are in the same relative order

• Identical negative entries of T are relabelled from top to bottom

• Identical positive entries of T are relabelled from left to right.

Denote Tst = T0. For instance, in Figure 1, Tst
1 = Tst

2 = T3. Further denote X|T| =

∏i∈P± xti
|i| where ti is the number of entries equal to i in T. Finally, use Theorem 1 to get

Sλ/µ(X;−q) = Γ(q)(Pλ/µ) = ∑
T∈SSYT±(λ/µ)

qneg(T)X|T|

= ∑
T0∈SYT(λ/µ)

 ∑
T∈SSYT±(λ/µ), Tst=T0

qneg(T)X|T|
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End the proof by noticing that the part between parentheses is exactly L(q)
Des(T)(X).

Recall the ring homomorphism θt of Definition 2. The following result is a conse-
quence of Theorem 2.

Theorem 3. There is a ring homomorphism Θq: QSym −→ P (q) such that for any positive

integer n and any subset I ⊆ [n − 1], Θq

(
L(0)

n,I

)
= L(q)

n,I . Then the restriction of Θq to Λ is
exactly θ−q and the ring map diagram of Figure 5 is commutative.

QSym P (q)

Λ Λ−q

Θq

θ−q

Figure 5: Map diagram relating QSym, P (q), Λ and Λ−q. Vertical maps are inclusion.

Proof. The existence and proper definition of Θq is a consequence of Equation (1.5). To
end the proof, it suffices to show that for any n non-negative integer, Θq(hn)(X) =
qn(X;−q). Indeed, one has

Θq(hn)(X) = Θq(sn)(X) = Θq(L(0)
n,∅)(X)

= L(q)
n,∅(X) = Sn(X;−q)

= qn(X;−q)

This is the desired result.

Remark 1. Applying the morphism Θq to both the left-hand and right-hand sides of Equation
(2.1) gives an alternative proof that θt

(
sλ/µ

)
(X) = Sλ/µ(X; t). Indeed

Θq
(
sλ/µ

)
(X) = ∑

T∈SYT(λ/µ)

Θq

(
L(0)

Des(T)

)
(X) = ∑

T∈SYT(λ/µ)

L(q)
Des(T)(X) = Sλ/µ(X;−q)

2.2 Cauchy like formula for Hall-Littlewood symmetric functions

We use Theorem 2 to provide an alternative proof of a classical Cauchy like formula for
Hall-Littlewood S-symmetric functions. Denote Y = {y1, y2, . . . , } an additional alphabet
of commutating indeterminate independent of and commuting with X and denote the
product alphabet XY = {xiyj}i,j. We first show the following proposition.
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Proposition 4. Let π ∈ Sn be a permutation. Extend the definition of Γ(q) to the alphabet XY
by considering Pπ-partitions ( f , g) : i 7→ ( f (i), g(i)) with value in P × P± that we equip with
the lexicographic order. Assume also that for (i, j) ∈ P × P±, (i, j) is negative if and only if j is
negative. We have

Γ(q)(Pπ)(XY) = ∑
( f ,g)∈L

P×P± ([n],<π)
∏

1≤i≤n
q[g(i)<0]x f (i)y|g(i)|

The q-fundamental indexed by π on the product of indeterminate XY satisfies

L(q)
π (XY) = Γ(q)(Pπ)(XY) = ∑

σ◦τ=π

L(0)
σ (X)L(q)

τ (Y). (2.5)

Proof. The proof is similar to the one in [8, thm 6.11] and not detailed here.

In [7, III. 4. Eq. (4.7)], Macdonald provides a Cauchy like formula for Hall-Littlewood
symmetric functions.

qn(XY; t) = ∑
λ⊢n

sλ(X)Sλ(Y; t). (2.6)

Proposition 5. Equation (2.6) is a direct consequence of Proposition 4 and Theorem 2.

Proof. Fix q ∈ C and use Proposition 4 to write

qn(XY;−q) = L(q)
idn

(XY) = ∑
σ∈Sn

L(0)
σ−1(X)L(q)

σ
(Y),

where idn ∈ Sn is the identity permutation. The RS correspondence allows to reindex
the sum over standard Young tableaux.

qn(XY;−q) = ∑
λ⊢n

∑
T,U∈SYT(λ)

L(0)
Des(T)(X)L(q)

Des(U)
(Y)

= ∑
λ⊢n

 ∑
T∈SYT(λ)

L(0)
Des(T)(X)

 ∑
U∈SYT(λ)

L(q)
Des(U)

(Y)


Applying Theorem 2 yields Equation (2.6).

3 Proof of Theorem 1

Let ≺ be a total order on P±. Define the binary relation R as follows. For any two
elements i, j ∈ P±, set

(i R j) ⇐⇒ (i ≼ j but not i = j ∈ −P) .

We define a formal power series on the alphabet X± = {x−1, x1, x−2, x2, . . . }.
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Definition 7. For each non-negative integer n, define the formal power series

Hn(X±) = ∑
(i1,i2,...,in)∈(P±)

n
;

i1 R i2 R ··· R in

xi1 xi2 · · · xin .

Moreover, set Hn = 0 for all n < 0.

Define an alternative version of the generating function for enriched P-partitions
Γ±([n],<P) ∈ C [[X±]] as

Γ±([n],<P) = ∑
f∈L

P± ([n],<P)
∏

1≤i≤n
x f (i).

Recall the homomorphism ϖ : C [[X±]] −→ [[X]], such that ϖ(xi) = q[i<0]x|i| for xi ∈ X±.
Clearly

ϖ(Γ±([n],<P)) = Γ(q)([n],<P).

Proposition 6. Let λ and µ be two partitions such that λ/µ is a skew shape. We have

Γ±([n],<λ/µ) = det
(

Hλi−µj−i+j

)
i,j∈[k]

(3.1)

Proof. We want to apply [2, §7]. To this end, we introduce a new relation. Let R be the
complement of the binary relation R. (Thus, R is the binary relation on P± defined by(
i R j

)
⇐⇒ (not i R j).) It is easy to see that both relations R and R are transitive.

Hence, the relation R is semitransitive (meaning that if a, b, c, d ∈ P± satisfy a R b R c,
then a R d or d R c). Therefore, [2, Theorem 11] yields that the power series sR

λ/µ (defined
in [2, §7]) counts R-tableaux of shape λ/µ. But the R-tableaux of shape λ/µ are precisely
the enriched Pλ/µ-partitions.

In order to prove Theorem 1 from Equation (3.1), we need to show that for any non-
negative integer n, ϖ(Hn(X±)) = qn(X;−q). We proceed in three steps. First we have
the following proposition.

Proposition 7. Let n ∈ N. Then,

Hn =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

xu

)(
∏
v∈V

xv

)

(where the product over v ∈ V takes each element with its multiplicity). In particular, Hn does
not depend on the order ≺.

Secondly, we express qn(X;−q) in terms of elementary and complete homogeneous
symmetric functions.
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Lemma 1. Let n be a non-negative integer and q ∈ C.

qn(X;−q) =
n

∑
k=0

qkekhn−k. (3.2)

Proof. We have

∑
n

qn(X;−q)un = ∏
i≥1

1 + qxiu
1 − xiu

=

(
∏
i≥1

(1 + qxiu)

)
︸ ︷︷ ︸

=∑n qnentn

(
∏
i≥1

1
1 − xiu

)
︸ ︷︷ ︸

=∑n hnun

=

(
∑
n

qnenun

)(
∑
n

hnun

)
= ∑

n

(
n

∑
k=0

qkekhn−k

)
un.

Extracting coefficients in un on both sides yields the desired result.

Finally, use Proposition 7 and Lemma 1 to relate Hn and qn.

Proposition 8. Let n ∈ Z. Then,

ϖ
(

Hn(X±)
)
= qn(X;−q)

Proof. From Proposition 7, we know that

Hn =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

xu

)(
∏
v∈V

xv

)
.

Applying the map ϖ to both sides of this equality, we obtain

ϖ (Hn) =
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

∏
u∈U

ϖ (xu)︸ ︷︷ ︸
=qx−u

(since u∈−P)


∏

v∈V
ϖ (xv)︸ ︷︷ ︸
=xv

(since v∈P)


(since ϖ is a continuous k-algebra homomorphism)

=
n

∑
k=0

∑
U is a size-k
subset of −P

∑
V is a size-(n−k)
multisubset of P

(
∏
u∈U

(qx−u)

)
︸ ︷︷ ︸
=qk(∏u∈U x−u)

(since |U|=k)

(
∏
v∈V

xv

)

=
n

∑
k=0

qk

 ∑
U is a size-k
subset of −P

∏
u∈U

x−u


︸ ︷︷ ︸
=∑U is a size-k

subset of P

∏u∈U xu

=ek

 ∑
V is a size-(n−k)
multisubset of P

∏
v∈V

xv


︸ ︷︷ ︸

=hn−k
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As a result ϖ (Hn) = ∑n
k=0 qkekhn−k = qn(X;−q) by Equation (3.2).
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