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Abstract. Kamiya, Takemura, and Terao initiated the theory of the characteristic
quasi-polynomial of an integral arrangement, which is a function counting the ele-
ments in the complement of the arrangement modulo positive integers. The charac-
teristic quasi-polynomials of crystallographic root systems exhibit many interesting
properties. Recently, the authors extended the concept of the characteristic quasi-
polynomials for arrangements over a Dedekind domain, where every residue ring
with respect to nonzero ideal is finite. In this article, we investigate the characteristic
quasi-polynomials for exceptional well-generated complex reflection groups, using the
root systems over the rings of definition introduced by Lehrer and Taylor. We demon-
strate that a specific relation between the Coxeter numbers and the LCM-periods of
the characteristic quasi-polynomials is generalized in this context.

Résumé. Kamiya, Takemura et Terao ont initié la théorie du quasi-polynôme carac-
téristique d’un agencement intégral, qui est une fonction comptant les éléments dans
le complément de l’agencement modulo les entiers positifs. Les quasi-polynômes car-
actéristiques des systèmes de racines cristallographiques présentent de nombreuses
propriétés intéressantes. Récemment, les auteurs ont étendu le concept des quasi-
polynômes caractéristiques aux agencements sur un domaine de Dedekind, où chaque
anneau résiduel par rapport à un idéal non nul est fini. Dans cet article, nous exam-
inons les quasi-polynômes caractéristiques pour les groupes de réflexion complexes
exceptionnellement bien générés, en utilisant les systèmes de racines sur les anneaux
définition introduits par Lehrer et Taylor. Nous démontrons qu’une relation spécifique
entre les nombres de Coxeter et les LCM-périodes des quasi-polynômes caractéris-
tiques est généralisée dans ce contexte.
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1 Introduction

1.1 Characteristic quasi-polynomials

For a positive integer ℓ, let A = {c1, . . . , cn} ⊆ Zℓ be a finite subset consisting of nonzero
integral column vectors. Define the hyperplane arrangement A(R) in the vector space
Rℓ by A(R) := {H1, . . . , Hn}, where

Hj :=
{

x := (x1, . . . , xℓ) ∈ Rℓ
∣∣∣ xcj = 0

}
(j ∈ [n] := {1, . . . , n}).

Let L(A(R)) :=
{

HJ
∣∣ J ⊆ [n]

}
be the set of intersections HJ :=

⋃
j∈J Hj. The set

L(A(R)) equipped with the order defined by X ≤ Y ⇔ X ⊇ Y is called the intersection
lattice. The characteristic polynomial χA(R) is defined by

χA(R)(t) := ∑
Z∈L(A(R))

µ(Z)tdim Z,

where µ denotes the Möbius function on L(A(R)), which is defined recursively by

µ(Rℓ) := 1 and µ(Z) := − ∑
Y<Z

µ(Y) for Z ̸= Rℓ.

The complement of an arrangement is the complement of the union of the members
of the arrangement in the ambient space. Each connected component of the complement
of A(R) is called a chamber. Zaslavsky [20] proved that the numbers of chambers and
bounded chambers coincide with |χA(R)(−1)| and |χA(R)(1)|. Orlik and Solomon [13]
proved that χA(R)(t) is equivalent to the Poincaré polynomial of the complement of the
complexification of A(R).

Next, for any positive integer q, we define the q-reduced arrangement A(Z/qZ) in
(Z/qZ)ℓ by A(Z/qZ) := {H1,q, . . . , Hn,q}, where

Hj,q :=
{
[x]q ∈ (Z/qZ)ℓ

∣∣∣ xcj ≡ 0 (mod q)
}

(j ∈ [n])

and [x]q denotes the equivalence class of x.
Athanasiadis [1, Theorem 2.2] provided a method to compute the characteristic poly-

nomial of an integral arrangement by counting the points of the complement of A(Z/pZ)
for large enough prime numbers p. Athanasiadis [2, Theorem 2.1] also proved that the
characteristic polynomial can be computed by counting the points of the complement of
A(Z/qZ) for large enough integers q relatively prime a constant which depends only
on A.

Kamiya, Takemura, and Terao developed Athanasiadis’ method by considering the
complement of A(Z/qZ) for all positive integers q as follows. For a nonempty subset
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J = {j1, . . . , jk} ⊆ [n], suppose that the matrix CJ := (cj1 · · · cjk) has the Smith normal
form 

dJ,1 0 · · · 0 · · · · · · 0

0 dJ,2
...

...
... . . . 0
0 · · · 0 dJ,r(J)
... 0
... . . . ...
0 · · · · · · 0


,

where dJ,i is a positive integer such that dJ,i divides dJ,i+1. Define ρA ∈ Z>0 by

ρA := lcm
{

dJ,r(J)

∣∣∣ ∅ ̸= J ⊆ [n]
}

.

Theorem 1.1 (Kamiya–Takemura–Terao [6]). Let M(A(Z/qZ)) := (Z/qZ)ℓ \⋃
J⊆[n] HJ,q

denote the complement of A(Z/qZ). Then the function |M(A(Z/qZ))| is a monic inte-
gral quasi-polynomial in q ∈ Z>0 with a period ρA. Namely, there exist monic polynomials
f k
A(t) ∈ Z[t] (1 ≤ k ≤ ρA) such that f k

A(q) = |M(A(Z/qZ))| if q ≡ k (mod ρA). Further-
more, the quasi-polynomial has the GCD-property, that is, f k

A(t) = f k′
A(t) when gcd(k, ρA) =

gcd(k′, ρA).

Definition 1.2. We call the quasi-polynomial

χ
quasi
A (q) := |M(A(Z/qZ))|

the characteristic quasi-polynomial of A. The period ρA is called the LCM-period. The
polynomial f k

A(t) is said to be the k-constituent of χ
quasi
A (q).

Interestingly enough, each constituent of the characteristic quasi-polynomial has a
combinatorial interpretation (See [12, 17] for details). In particular, the following holds.

Theorem 1.3 (Kamiya–Takemura–Terao [6, Theorem 2.5]). The 1-constituent of the char-
acteristic quasi-polynomial of A is the characteristic polynomial of the hyperplane arrangement
A(R). Namely, f 1

A(t) = χA(R)(t).

For a decade, it was an open problem whether the LCM-period is minimum or not.
Recently Higashitani, Tran, and Yoshinaga gave an affirmative answer for central ar-
rangements.

Theorem 1.4 (Higashitani–Tran–Yoshinaga [4, Theorem 1.2]). The LCM-period ρA is the
minimum period of the characteristic quasi-polynomial χ

quasi
A (q).

Remark 1.5. The characteristic quasi-polynomial and its LCM-period can be considered
for non-central arrangements [8]. Higashitani, Tran, and Yoshinaga [4] also studied non-
central arrangements such that the LCM-periods are not minimum.
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1.2 Crystallographic root systems

Let Φ be an irreducible crystallographic root system and Φ+ a positive system of Φ.
Every positive root is expressed as a linear combination of the simple roots with integral
coefficients. Gathering the coefficient column vectors, we obtain the set AΦ consisting of
integral column vectors. Kamiya, Takemura, and Terao [5, 7] computed the characteristic
quasi-polynomial χ

quasi
Φ (q) of AΦ and its LCM-period explicitly by using the classifica-

tion of root systems. Note that Suter [16] gave essentially the same calculation in terms of
the number of lattice points in the fundamental alcoves (the Ehrhart quasi-polynomials).

Kamiya, Takemura, and Terao [7, Theorem 3.1] gave an explicit formula of the gen-
erating function ΓΦ := ∑∞

q=1 χ
quasi
Φ (q)tq for an irreducible crystallographic root system Φ

in terms of the coefficient of the highest root and the Coxeter number. We obtain the
following corollaries.

Corollary 1.6 (Kamiya–Takemura–Terao [7, Corollary 3.2]). Let n1, . . . , nℓ be the coefficient
of the highest root of Φ with respect to the simple roots. Then lcm(n1, . . . , nℓ) coincides with the
LCM-period of χ

quasi
Φ (q).

Corollary 1.7 (Kamiya–Takemura–Terao [7, Corollary 3.4]). Let h be the Coxeter number of
Φ. Then χ

quasi
Φ (q) > 0 if and only if q ≥ h.

The characteristic quasi-polynomial of an irreducible crystallographic root system
also has duality with respect to the Coxeter number. The duality can be shown from the
explicit expressions given by Kamiya, Takemura, and Terao [5], or Suter [16]. Yoshinaga
[19] gave a classification-free proof.

Theorem 1.8 (Yoshinaga [19, Corollary 3.8]). Let Φ be an irreducible crystallographic root
system of rank ℓ and h its Coxeter number. Then χ

quasi
Φ (q) = (−1)ℓχquasi

Φ (h − q).

Note that the duality holds as quasi-polynomials but not the level of the constituents.
Yoshinaga [18] studied the condition for the constituents to hold the duality in detail.

Combining Theorem 1.8, Theorem 1.3, and the following theorem, we can deduce
that the characteristic polynomial χΦ(t) of the arrangement AΦ satisfies the duality
(Corollary 1.10).

Theorem 1.9 (Kamiya–Takemura–Terao [7], Suter [16]). The radical of the LCM period of
χ

quasi
Φ (q) divides the Coxeter number h.

Corollary 1.10. Let Φ be an irreducible crystallographic root system of rank ℓ and h its Coxeter
number. Then χΦ(q) = (−1)ℓχΦ(h − q).
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1.3 Characteristic quasi-polynomials over residually finite Dedekind
domains

Let O be a Dedekind domain such that the residue ring O/a is finite for every nonzero
ideal a. Such a ring O is called a residually finite Dedekind domain or a Dedekind
domain with the finite norm property. The ring Z is an example of a residually finite
Dedekind domain. More generally, the ring of integers of an algebraic number field is a
residually finite Dedekind domain. The authors generalized the notion of characteristic
quasi-polynomials for O as follows.

Let A = {c1, . . . , cn} ⊆ Oℓ and a ∈ I(O), where I(O) denotes the set of nonzero
ideals of O. Define the a-reduced arrangement A(O/a) by A(O/a) :=

{
Hj,a

∣∣ j ∈ [n]
}

,
where

Hj,a :=
{
[x]a ∈ (O/a)ℓ

∣∣∣ xcj ≡ 0 (mod a)
}

.

Let M(A(O/a)) denote the complement of A(O/a). Namely

M(A(O/a)) := (O/a)ℓ \
n⋃

j=1

Hj,a.

Definition 1.11. The function χ
quasi
A : I(O) → Z determined by χ

quasi
A (a) := |M(A(O/a))|

is called the characteristic quasi-polynomial of A.

The function χ
quasi
A is described by using finitely many polynomials periodically as

ordinary quasi-polynomials.

Theorem 1.12 ([9, Theorem 3.1]). There exists an ideal ρ ∈ I(O) such that the following
statement holds: For any divisor κ | ρ there exists a monic polynomial f κ

A(t) ∈ Z[t] such that

a+ ρ = κ =⇒ χ
quasi
A (a) = f κ

A(N(a)),

where N(a) := |O/a|, the absolute norm of a.

The ideal ρ above is called a period. We can construct a period ρA (called the LCM-
period) for χ

quasi
A (a) using the structure theorem for finitely generated modules over

Dedekind domains and the authors proved that the LCM-period ρA is minimum (See [9,
Theorem 5.1] for details). If O is a Euclidean domain, then we can compute the LCM-
period algorithmically by computing the Smith normal forms and elementary divisors.

2 Characteristic quasi-polynomials for exceptional well-
generated complex reflection groups

Let V be a finite-dimensional complex vector space. A map r ∈ GL(V) is called a
reflection if ker(r − idV) has codimension 1. A finite subgroup G ⊆ GL(V) is called a
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complex reflection group is G is generated by reflections. We say that G is irreducible if
there are no nontrivial G-invariant subspaces. In this case, the dimension of the ambient
space is called the rank of G. An irreducible complex reflection group G of rank ℓ is
well-generated if G is generated by ℓ reflections. Irreducible complex reflection groups
are classified by Shephard and Todd [14]. There are an infinite family G(m, p, ℓ) and
34 exceptional cases labeled by G4, . . . , G37. Among the exceptional groups, we have 26
well-generated ones, which are listed in Table 1.

Definition 2.1. Let G be an irreducible reflection group. Define the field of definition
K(G) by

K(G) := Q(tr(σ) | σ ∈ G).

Define the ring of definition O(G) as the ring of integers of K(G).

It is shown that G can be representable a vector space U over K(G). Note that since
K(G)/Q is a finite extension, the ring of definition O(G) is a residually finite Dedekind
domain.

Let (−,−) denote the Hermitian inner product of V = C ⊗K(G) U. Let µ(O(G))
denote the group of roots of unity in O(G). For every a ∈ U \ {0} and λ ∈ µ(O(G)), we
define a reflection ra,λ by

ra,λ(v) := v − (1 − λ)
(v, a)
(a, a)

a.

Lehrer and Taylor [10] defined a generalization of root systems for algebraic integers
and showed that every finite complex reflection group admits a "root system". Namely
there exists a pair (Σ, f ) satisfying the following.

• Σ is a finite subset of U \ {0} and Σ spans U.

• f : Σ → µ(O(G)).

• G is generated by the reflections
{

ra, f (a)

∣∣∣ a ∈ Σ
}

.

• For all a ∈ Σ and all λ ∈ K(G) we have λa ∈ Σ ⇔ λ ∈ µ(O(G)).

• For all a ∈ Σ and λ ∈ µ(O(G)) we have f (λa) = f (a) ̸= 1.

• For all a, b ∈ Σ we have (1 − f (b))(a, b)/(b, b) ∈ O(G).

• For all a, b ∈ Σ we have ra, f (a)(b) ∈ Σ and f (ra, f (a)(b)) = f (b).



The characteristic quasi-polynomials for exceptional well-generated complex reflection groups 7

We call (Σ, f ) a O(G)-root system for G. If O(G) = Z, then the above definition coin-
cides with the definition of crystallographic root system. Namely a Z-root system is a
crystallographic system.

When G is well-generated, there exist roots a1, . . . , aℓ ∈ Σ such that every root in Σ
is reperesented by a linear combination of a1, . . . , aℓ over O(G). Hence we can obtain a
finite coefficient column vectors A(Σ, f ) ⊆ O(G)ℓ from the root system (Σ, f ) over O(G).
Note that the characteristic quasi-polynomial determined by (Σ, f ) does not depend on
the choice of roots a1, . . . , aℓ.

Lehrer and Taylor listed the Cartan matrices of O(G)-root systems for exceptional
irreducible complex reflection groups. We can recover the root system from the corre-
sponding Cartan matrix.

Example 2.2. Consider the group G4. The rank of G4 is two and its ring of definition is
Z[ω], where ω = −1+

√
−3

2 . The matrix

C4 =

(
1 − ω 1
−ω 1 − ω

)
is a Cartan matrix for G4. Let {a1, a2} a basis for C2 and r1, r2 the correspondence
reflections. The Cartan matrix C4 tells us rj(ai) = ai − cijaj, where cij denotes the (i, j)
entry of C4. Thus we have

r1(a1) = a1 − (1 − ω)a1 = ωa1, r2(a1) = a1 − 1 · a2 = a1 − a2,
r1(a2) = a2 − (−ω)a1 = ωa1 + a2, r2(a2) = a2 − (1 − ω)a2 = ωa2.

Hence we obtain the matrix representations of r1, r2 with respect to the basis {a1, a2} as
follows.

r1 =

(
ω ω

0 1

)
, r2 =

(
1 0
−1 ω

)
.

Therefore G4 = ⟨r1, r2⟩ ⊆ GL2(C) and Σ can be recovered as Σ = { r(ai) | r ∈ G4, i = 1, 2 }
with a1 =

(
1
0
)

and a2 =
(

0
1

)
. As a result, Σ consists of the following 24 vectors.

λ

(
1
0

)
, λ

(
0
1

)
, λ

(
1
−1

)
, λ

(
ω

1

)
, λ ∈ µ(Z[ω]) = {±1,±ω,±ω2}.

Setting f (a1) = f (a2) = ω, we obtain the Z[ω]-root system (Σ, f ) and

A(Σ, f ) =

{(
1
0

)
,
(

0
1

)
,
(

1
−1

)
,
(

ω

1

)}
⊆ Z[ω]2.

Since Z[ω] is a Euclidean domain, we can compute the LCM-period by finding the
elementary divisors. The LCM-period is the unit ideal ⟨1⟩ and hence the characteristic
quasi-polynomial has only one constituent (the characteristic polynomial)

f ⟨1⟩(t) = t2 − 4t + 3 = (t − 1)(t − 3).



8 Masamichi Kuroda and Shuhei Tsujie

Example 2.3. Consider G33 and the Cartan matrix

C33 =


2 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 −ω 0
0 −1 −ω2 2 −ω2

0 0 0 −ω 2

 .

The ring of definition is Z[ω] and the LCM-period is ⟨2
√
−3⟩. The characteristic quasi-

polynomial consists of the following constituents:

f ⟨1⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 17169t − 12285.
= (t − 1)(t − 7)(t − 9)(t − 13)(t − 15).

f ⟨2⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 17574t − 18360.

= (t − 4)(t − 15)(t3 − 26t2 + 196t − 306).

f ⟨
√
−3⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 18129t − 20925.

= (t − 3)(t − 9)(t3 − 33t2 + 327t − 775).

f ⟨2
√
−3⟩(t) = t5 − 45t4 + 750t3 − 5590t2 + 18534t − 27000.

The authors calculated the LCM-period for the root systems determined by the Car-
tan matrices in Table 2. Note that C20 is modified from the one in [10] so that it recovers
the root system correctly. According to [11] and [15], the rings of definition for excep-
tional irreducible complex reflection groups are Euclidean domains except for O(G21).
Although the authors are not sure whether O(G21) is Euclidean or not, since O(G21)
is a principal ideal domain (See [3]), there exist the Smith normal forms. Fortunately
the authors could find the Smith normal forms and hence the LCM-period for G21. We
summarize the results in Table 1. From this computational result, we have the following
theorem, which is a generalization of Theorem 1.9.

Theorem 2.4. Every exceptional well-generated irreducible complex reflection group G admits
an O(G)-root system such that the radical of the LCM-period divides the Coxeter number.

Remark 2.5. We anticipated phenomenon analogous to Corollary 1.6, Corollary 1.7, The-
orem 1.8, and Theorem 1.9. However, only Theorem 1.9 has been observed.
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Table 1: LCM-periods and Coxeter numbers
G O(G) LCM-period h Coexponents
G4 Z[ω] ⟨1⟩ 6 1, 3
G5 Z[ω] ⟨2

√
−3⟩ 12 1, 7

G6 Z[i, ω] ⟨1 + i⟩ 12 1, 9
G8 Z[i] ⟨1 + i⟩ 12 1, 5
G9 Z[ζ8] ⟨6⟩ 24 1, 17
G10 Z[i, ω] ⟨(1 + i)

√
−3⟩ 24 1, 13

G14 Z[ω,
√
−2] ⟨6⟩ 24 1, 19

G16 Z[ζ5] ⟨1 − ζ5⟩ 30 1, 11
G17 Z[i, ζ5] ⟨6

√
5⟩ 60 1, 41

G18 Z[ω, ζ5] ⟨2
√
−3(1 − ζ3

15)⟩ 60 1, 31
G20 Z[ω, τ] ⟨2

√
−3⟩ 30 1, 19

G21 Z[i, ω, τ] ⟨6
√

5⟩ 60 1, 49
G23 = H3 Z[τ] ⟨2⟩ 10 1, 5, 9
G24 Z[λ] ⟨4⟩ 14 1, 9, 11
G25 Z[ω] ⟨

√
−3⟩ 12 1, 4, 7

G26 Z[ω] ⟨6⟩ 18 1, 7, 13
G27 Z[ω, τ] ⟨4

√
−3⟩ 30 1, 19, 25

G28 = F4 Z ⟨12⟩ 12 1, 5, 7, 11
G29 Z[i] ⟨10(1 + i)⟩ 20 1, 9, 13, 17
G30 = H4 Z[τ] ⟨6

√
5⟩ 30 1, 11, 19, 29

G32 Z[ω] ⟨2
√
−3⟩ 30 1, 7, 13, 19

G33 Z[ω] ⟨2
√
−3⟩ 18 1, 7, 9, 13, 15

G34 Z[ω] ⟨84⟩ 42 1, 13, 19, 25, 31, 37
G35 = E6 Z ⟨6⟩ 12 1, 4, 5, 7, 8, 11
G36 = E7 Z ⟨12⟩ 18 1, 5, 7, 9, 11, 13, 17
G37 = E8 Z ⟨60⟩ 30 1, 7, 11, 13, 17, 19, 23, 29

i =
√
−1, ω =

−1 +
√
−3

2
, τ =

1 +
√

5
2

, λ =
−1 +

√
−7

2
, ζk = e2πi/k.
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Table 2: Cartan matrices (C20 is modified)

C4 =

(
1 − ω 1
−ω 1 − ω

)
, C5 =

(
1 − ω 1
−2ω 1 − ω

)
, C6 =

(
2 1

1 − ω + iω2 1 − ω

)
,

C8 =

(
1 − i 1
−i 1 − i

)
, C9 =

(
2 1

(1 +
√

2)ζ8 1 + i

)
, C10 =

(
1 − ω 1
−i − ω 1 − i

)
,

C14 =

(
1 − ω 1

1 − ω + iω2
√

2 2

)
, C16 =

(
1 − ζ5 1
−ζ5 1 − ζ5

)
, C17 =

(
2 1

1 − ζ5 − iζ3
5 1 − ζ5

)
,

C18 =

(
1 − ω 1

−ω − ζ5 1 − ζ5

)
, C20 =

(
1 − ω τ − 1

ω(1 − τ) 1 − ω

)
, C21 =

(
2 1

1 − ω − iω2τ 1 − ω

)
,

C23 =

2 −τ 0
τ 2 −1
0 −1 2

 , C24 =

 2 −1 −λ

−1 2 −1
1 + λ −1 2

 , C25 =

1 − ω2 ω2 0
−ω2 1 − ω −ω2

0 ω2 1 − ω

 ,

C26 =

1 − ω −ω2 0
ω2 1 − ω −1
0 −1 + ω 2

 , C27 =

 2 −τ −ω

−τ 2 −ω2

−ω2 −ω 2

 ,

C28 =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 , C29 =


2 −1 i + 1 0
−1 2 −i 0

−i + 1 i 2 −1
0 0 −1 2

 ,

C30 =


2 −τ 0 0
−τ 2 −1 0
0 −1 2 −1
0 0 −1 2

 , C32 =


1 − ω ω2 0 0
−ω2 1 − ω −ω2 0

0 ω2 1 − ω ω2

0 0 −ω2 1 − ω

 ,

C33 =


2 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 −ω 0
0 −1 −ω2 2 −ω2

0 0 0 −ω 2

 , C34 =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 −ω 0
0 0 −1 −ω2 2 −ω2

0 0 0 0 −ω 2

 .
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