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Abstract. The present note explores a connection between two concepts arising from
different fields of mathematics. The first concept, called vine, is a graphical model
for dependent random variables. This concept first appeared in a work of Joe (1994),
and the formal definition was given later by Cooke (1997). Vines have nowadays be-
come an active research area whose applications can be found in probability theory
and uncertainty analysis. The second concept, called MAT-freeness, is a combinatorial
property in the theory of freeness of logarithmic derivation module of hyperplane ar-
rangements. This concept was first studied by Abe-Barakat-Cuntz-Hoge-Terao (2016),
and soon afterwards investigated further by Cuntz-Mücksch (2020).

In the particular case of graphic arrangements, the last two authors (2023) recently
proved that the MAT-freeness is completely characterized by the existence of certain
edge-labeled graphs, called MAT-labeled graphs. In this paper, we first introduce a
poset characterization of a vine. Then we show that, interestingly, there exists an
explicit equivalence between the categories of locally regular vines and MAT-labeled
graphs. In particular, we obtain an equivalence between the categories of regular vines
and MAT-labeled complete graphs.

Several applications will be mentioned to illustrate the interaction between the two
concepts. Notably, we give an affirmative answer to a question of Cuntz-Mücksch that
MAT-freeness can be characterized by a generalization of the root poset in the case of
graphic arrangements.
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1 Motivation

The starting point of our note is a question of Cuntz-Mücksch [8] (Question 1.3) in the
theory of free hyperplane arrangements.

Let V be a finite dimensional vector space. A hyperplane in V is a 1-codimensional
linear subspace of V. Let {x1, . . . , xℓ} be a basis for the dual space V∗. Any hyperplane
in V can be described by a linear equation of the form a1x1 + · · ·+ aℓxℓ = 0 where at
least one of the ai’s is non-zero.

A hyperplane arrangement A is a finite set of hyperplanes in V. The intersection
lattice of A is the set of all intersections of hyperplanes in A, which is often referred to
as the combinatorics of A. An arrangement is said to be free if its module of logarithmic
derivations is a free module. For basic definitions and properties of free arrangements,
we refer the interested reader to [17, 14]. Freeness is an algebraic property of hyperplane
arrangements which has been a major topic of research since the 1970s. A central ques-
tion in the theory is to study the freeness of an arrangement by combinatorial structures,
especially by the intersection lattice of the arrangement.

Among others, MAT-freeness is an important concept which was first used by Abe-
Barakat-Cuntz-Hoge-Terao [1] to settle the conjecture of Sommers-Tymoczko [15] on the
freeness of ideal subarrangements of Weyl arrangements. This concept is formally defined
later by Cuntz-Mücksch [8] and we will use their definition throughout. For a hyper-
plane H ∈ A, define the restriction AH of A to H by

AH := {K ∩ H | K ∈ A \ {H}}.

Definition 1.1 (MAT-partition and MAT-free arrangement [8]). Let A be a nonempty
arrangement. A partition (disjoint union of nonempty subsets) π = (π1, . . . , πn) of A is
called an MAT-partition if the following three conditions hold for every 1 ≤ k ≤ n.

1. The hyperplanes in πk are linearly independent.

2. There does not exist H′ ∈ Ak−1 such that
⋂

H∈πk
H ⊆ H′, where Ak−1 := π1 ⊔ · · · ⊔

πk−1 (disjoint union) and A0 := ∅ is the empty arrangement.

3. For each H ∈ πk, |Ak−1| − |(Ak−1 ∪ {H})H| = k − 1.

An arrangement is called MAT-free if it is empty or admits an MAT-partition.

As the name suggests, any MAT-free arrangement is a free arrangement. This follows
from the remarkable Multiple Addition Theorem by Abe-Barakat-Cuntz-Hoge-Terao [1,
Theorem 3.1] (justifying the abbreviation MAT). MAT-freeness is a helpful combinatorial
tool (as it depends only on the intersection lattice) to examine the freeness of arrange-
ments. One of its most famous applications we mentioned earlier is a proof that the
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ideal subarrangements of Weyl arrangements are free. The MAT-freeness has received
increasing attention in recent years, see [2, 3, 13, 7] for some other applications.

Let V = Rℓ with the standard inner product (·, ·). Let Φ be an irreducible (crystallo-
graphic) root system in V, with a fixed positive system Φ+ ⊆ Φ and the associated set
of simple roots ∆ := {α1, . . . , αℓ}. For α ∈ Φ, define Hα := {x ∈ V | (α, x) = 0}. For
Σ ⊆ Φ+, the Weyl subarrangement AΣ is defined by AΣ := {Hα | α ∈ Σ}. In particular,
AΦ+ is called the Weyl arrangement.

We can make Φ+ into a poset (partially ordered set) by defining a partial order ≤ on
Φ+ as follows: β1 ≤ β2 if β2 − β1 ∈ ∑ℓ

i=1 Z≥0αi. The poset (Φ+,≤) is called the root
poset of Φ. For an ideal I (Definition 2.7) of the root poset Φ+, the corresponding Weyl
subarrangement AI is called the ideal subarrangement.

Theorem 1.2 ([1, Theorem 1.1]). Any ideal subarrangement AI is MAT-free, hence free.

The ideal subarrangements form a significant subclass of MAT-free arrangements.
However, there are many MAT-free arrangements (or MAT-partitions of a given MAT-
free arrangement) that do not arise from ideal subarrangements (Example 3.7). One may
wonder if the hyperplanes in an arbitrary MAT-free arrangement satisfy some poset
structure similar to the root poset? This question was asked by Cuntz-Mücksch [8] and
is the main motivation of our work.

Question 1.3 ([8, Problem 47]). Given an MAT-free arrangement A, can we characterize all
possible MAT-partitions of A by a poset structure generalizing the classical root poset?

Cuntz-Mücksch’s question is difficult in general as the number of different MAT-
partitions of a given MAT-free arrangement might be very large. Also, the definition of
an MAT-partition itself does not reveal a natural choice of the desirable partial order. In
the present note, we pursue this question along graphic arrangements, a well-behaved class
of arrangements in which both freeness and MAT-freeness are completely characterized
by combinatorial properties of graphs.

Let G be a simple graph (i.e. no loops and no multiple edges) with vertex (or node)
set NG = {v1, . . . , vℓ} and edge set EG. The graphic arrangement AG is an arrangement
in an ℓ-dimensional vector space V defined by

AG := {xi − xj = 0 | {vi, vj} ∈ EG}.

A graph is chordal if it does not contain an induced cycle of length greater than three.
A chordal graph is strongly chordal if it does not contain a sun graph as an induced
subgraph. Here an n-sun Sn (n ≥ 3) is a graph with vertex set NSn = {u1, . . . , un} ∪
{v1, . . . , vn} and edge set

ESn = {{ui, uj} | 1 ≤ i < j ≤ n} ∪ {{vi, uj} | 1 ≤ i ≤ n, j ∈ {i, i + 1}},

where we let un+1 = u1.
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Theorem 1.4 ([16], [9, Theorem 3.3]). The graphic arrangement AG is free if and only if G is
chordal.

Theorem 1.5 ([18, Theorem 2.10]). The graphic arrangement AG is MAT-free if and only if G
is strongly chordal.

While the definition of an MAT-free arrangement may seem technical at first glance,
Theorem 1.5 enables us to view MAT-freeness as a rather natural property. Furthermore,
the correspondence between MAT-freeness and strong chordality establishes a nice ana-
log1 of the classical correspondence between freeness and chordality.

The good thing about graphs is that MAT-partition of a graphic arrangement can
be rephrased in terms of a special edge-labeling of graphs, the so-called MAT-labeling
(Definition 2.1). A graph together with such a labeling is called an MAT-labeled graph.
To approach Question 1.3 for graphic arrangements, the first question would be how
many non-isomorphic MAT-labelings can a (strongly chordal) graph have? A computa-
tion aided by computer for complete graphs on up to 8 vertices gives us the sequence
1, 1, 1, 2, 6, 40, 560, 17024. Surprisingly, we found out that this sequence coincides with
the number of equivalence classes of (graphical) regular vines (or R-vines) in dimension
up to 8 given in [12, §10.3]. This observation is indeed compelling as it leads us to the
notion of the node poset of a graphical vine (Definitions 2.9 and 2.10), which is a perfect
candidate for the poset structure we are looking for.

2 Definitions

2.1 MAT-labeled graphs

All graphs in this paper are undirected, finite and simple. Let G = (NG, EG) be a
graph with the set NG of vertices (or nodes) and the set EG of edges (unordered pairs of
vertices). In this paper, a vertex and a node in a graph are synonyms. The former will
be used more often for graphs, while the latter will be used for an element in a poset.

An edge-labeled graph is pair (G, λ) where G is a simple graph and λ : EG −→ Z>0 is
a map, called (edge-)labeling. The following definition of an MAT-labeling is equivalent
to the original one in [18, Definition 4.2].

Definition 2.1 (MAT-labeling). Let (G, λ) be an edge-labeled graph. For k ∈ Z>0, let
πk := λ−1(k) ⊆ EG denote the set of edges of label k. Define π≤k := π1 ⊔ · · · ⊔ πk and
π<1 := ∅. The labeling λ is an MAT-labeling if the following two conditions hold for
every k ∈ Z>0.

1Many important concepts in the classical theory such as simplicial vertex and perfect elimination ordering
of chordal graphs have their analogs in MAT-labeled graphs (see [18] for more details).
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1. Any edge e ∈ π≤k does not form a cycle with edges in πk.

2. Every edge e ∈ πk forms exactly k − 1 triangles with edges in π<k.

Given an edge e ∈ πk, a conditioning vertex of e is a vertex that together with the
endvertices of e forms two edges both of label < k. Condition (2) above can be rephrased
as every edge e of label k has exactly k − 1 conditioning vertices.

Definition 2.2 (MAT-labeled (complete) graph). An edge-labeled graph (G, λ) is an
MAT-labeled graph if λ is an MAT-labeling of G. In particular, an MAT-labeled graph
(G, λ) is an MAT-labeled complete graph if G is a complete graph.

MAT-partition of a graphic arrangement is nothing but MAT-labeling of the underly-
ing graph [18, Proposition 4.3]. Thus, MAT-free graphic arrangement and MAT-labeled
graph are essentially the same object.

Recall that a clique of a graph is a subset of vertices such that every two distinct
vertices in the clique are adjacent.

Lemma 2.3 (Principal clique). Let (G, λ) be an MAT-labeled graph. Let e = {i, j} ∈ πk
be an edge in G of label k and h1, . . . , hk−1 be the conditioning vertices of e. Then the set
Ke := {i, j, h1, . . . , hk−1} is a clique of G. We call Ke the principal clique generated by e.

Definition 2.4 (Label-preserving isomomorphism). Let (G, λ) and (G′, λ′) be two edge-
labeled graphs. A label-preserving homomorphism from (G, λ) to (G′, λ′), written
σ : (G, λ) −→ (G′, λ′) is a map σ : NG −→ NG′ such that for all u, v ∈ NG, {u, v} ∈ EG
implies {σ(u), σ(v)} ∈ EG′ and λ(u, v) = λ′(σ(u), σ(v)).

We call σ an isomorphism if σ is bijective and its inverse is a label-preserving ho-
momorphism. The edge-labeled graphs (G, λ) and (G′, λ′) are said to be isomorphic,
written (G, λ) ≃ (G′, λ′) if there exists an isomorphism σ : (G, λ) −→ (G′, λ′). If
(G, λ) ≃ (G, λ′), we say that two labelings λ and λ′ are the same (or isomorphic).

If (G, λ) ≃ (G′, λ′) and (G, λ) is an MAT-labeled graph, then (G′, λ′) is also an MAT-
labeled graph.

Definition 2.5 (Category of MAT-labeled (complete) graphs). The category MG of MAT-
labeled graphs is the category whose objects are the MAT-labeled graphs and whose
morphisms are the label-preserving homomorphisms. The category MCG of MAT-
labeled complete graphs is a full subcategory of MG whose objects are the MAT-labeled
complete graphs.

2.2 Vines: graphical and poset definitions

All posets P = (P ,≤P ) in this note are finite. Denote by max(P) (resp. min(P)) the set
of all maximal (resp. minimal) elements in a poset P .
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Definition 2.6 (Graded poset). A finite poset P is graded if there exists a rank function
rk = rkP : P −→ Z≥0 satisfying the following three properties:

1. For any x, y ∈ P , if x < y then rk(x) < rk(y).

2. If y covers x, then rk(x) = rk(y)− 1.

3. All minimal elements of P have the same rank. In this note, we assume2 rk(x) = 1
for all x ∈ min(P).

Equivalently, for every x ∈ P , all maximal chains among those with x as greatest element
have the same length.

The dimension3 dim(P) of P is defined as dim(P) := |min(P)|. The rank rk(P) of
a graded poset P with rank function rk is defined as

rk(P) := max{rk(x) | x ∈ P}.

Definition 2.7 (Ideal, principal ideal). Let P be a poset. An (order) ideal I of P is a
downward-closed subset, i.e. for every x ∈ P and y ∈ I , x ≤ y implies that x ∈ I . For
a ∈ P , the ideal

P≤a := {x ∈ P | x ≤ a}

is called the principal ideal of P generated by a.

Definition 2.8 (Poset homomorphism). Let P and P ′ be posets. A (poset) homomor-
phism φ : P −→ P ′ is an order-preserving map, i.e. x ≤ y implies φ(x) ≤ φ(y) for
all x, y ∈ P . We call φ a join-preserving homomorphism if for any x, y ∈ P such that
the join x ∨ y exists, then φ(x) ∨ φ(y) exists and φ(x ∨ y) = φ(x) ∨ φ(y). We call φ an
isomorphism if φ is bijective and its inverse is a homomorphism. The posets P and P ′

are said to be isomorphic, written P ≃ P ′ if there exists an isomorphism φ : P −→ P ′.
When P = (P , rk) and P ′ = (P ′, rk′) are graded posets, a homomorphism φ : P −→ P ′

is called rank-preserving if rk′(φ(x)) = rk(x) for all x ∈ P .

Now we recall the graphical definition of a vine following [4, Definition 4.1].

Definition 2.9 (Graphical definition of vine). Let 1 ≤ n ≤ ℓ be positive integers. A
(graphical) vine V on ℓ elements [ℓ] = {1, . . . , ℓ} (or more generally, on an ℓ-element set
called N1) is an ordered n-tuple V = (F1, F2, . . . , Fn) such that

2A motivation for this assumption is the equivalence between D-vine and root poset of type A (Remark
3.4). The latter is graded by heights of positive roots, and all the minimal elements (simple roots) have
rank (height) 1.

3The term "dimension" of a poset may have a different meaning in the other context. The present
definition is to make a compatibility for dimensions of a vine (Remark 2.11) and the ambient space of
graphic arrangements.
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1. F1 is a forest with nodes N1 = [ℓ] and a set of edges denoted E1,

2. for 2 ≤ i ≤ n, Fi is a forest with nodes Ni = Ei−1 and edge set Ei.

We call Fi the i-th associated forest of V . A graphical vine is uniquely determined by
its associated forests. Denote by N(V) = N1 ∪ · · · ∪ Nn the set of nodes (of the associated
forests) of V . We call the numbers n and ℓ the rank and dimension of V , respectively.

If node u is an element of node v, i.e. u ∈ v, we say that u is a child of v. If v is
reachable from u via the membership relation: u ∈ u1 ∈ · · · ∈ v, we say that u is a
descendant of v.

Definition 2.10 (Node poset). Let V be a graphical vine with node set N(V). The node
poset P = P(V) of V is the poset (N(V),≤) defined as follows: For any u, v ∈ N(V),

u ≤ v if u is a descendant of v.

Remark 2.11. We emphasize that a graphical vine is uniquely determined by its node
poset. The terminology "rank" of a vine has motivation from poset theory. If a vine V is
an ordered n-tuple, then P = P(V) is a graded poset with rank function rk(v) = i for
v ∈ Ni (1 ≤ i ≤ n). Thus this number n equals the rank of P . In addition, the dimension
of V equals the number of minimal elements in P , or the dimension of P .

Assumption & Notation 2.12. From now on, unless otherwise stated we assume that P
is a finite graded poset with a rank function rk : P −→ Z>0. Denote n := rk(P) and
ℓ := dim(P). For v ∈ P , denote by E(v) the set of elements covered by v. For i ≥ 0,
define Pi := {v ∈ P | rk(v) = i} and E(Pi) := {E(v) | v ∈ Pi}. If P is an ℓ-dimensional
poset, we assume P1 = min(P) = [ℓ].

As noted earlier in Remark 2.11, we may think of a graphical vine and its node poset
essentially as the same object. It is thus natural to look for a characterization of the
node poset of a vine. We give below such a characterization obtained immediately from
Definition 2.9.

Definition & Proposition 2.13 (Poset definition of vine). A finite graded poset P is the
node poset of a graphical vine if and only if P satisfies the following conditions:

1. Every non-minimal node covers exactly two other nodes, and any two distinct
nodes of the same rank are covered by at most one node.

2. For each 1 ≤ i ≤ n = rk(P), the graph Fi = (Ni, Ei) with node set Ni := Pi and
edge set Ei := E(Pi+1) is a forest.

Assumption & Notation 2.14. From now on, unless otherwise stated, by a vine P we
mean a finite graded poset satisfying the two conditions in 2.13. We will also retain the
notion i-th associated forest Fi = (Pi, E(Pi+1)) (1 ≤ i ≤ n) of P . If v is a node in a vine
P and E(v) = {a, b}, we will often abuse notation and write v = {a, b}. This notation is
compatible with the notation of node/edge in the graphical definition of a vine.
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The main reason why we choose the poset definition of a vine is because many terms
and properties of a (graphical) vine have natural meanings in the language of posets.
Under this consideration, the following poset definition of a regular vine is equivalent to
the well-known graphical definition of it in the literature, e.g. [4, Definition 4.1].

Definition 2.15 (R-vine). A vine P is a regular vine, or an R-vine for short, if P satisfies
the following conditions:

1. rk(P) = dim(P), i.e. n = ℓ.

2. Each associated forest Fi = (Pi, E(Pi+1)) is a tree (1 ≤ i ≤ n).

3. Proximity: For any distinct nodes a, b ∈ Pi for i ≥ 2, if a and b are covered by a
common node, then a and b cover a common node.

Next we introduce the notion of a locally regular vine.

Definition 2.16 (LR-vine). A vine P is a locally regular vine, or an LR-vine for short, if
every principal ideal of P is an R-vine.

Remark 2.17. Intuitively, an LR-vine is a vine that "locally" looks like an R-vine. In
particular, any R-vine is an LR-vine. Any ideal of a vine (resp. an LR-vine) is itself a
vine (resp. an LR-vine).

The following theorem indicates the equivalence between the ideals of an R-vine and
LR-vines.

Theorem 2.18. Let P be a vine. The following are equivalent:

1. P is an ideal of an R-vine.

2. P satisfies the proximity condition.

3. P is an LR-vine.

Definition 2.19 (Category of (L)R-vines). The category LRV of LR-vines is the category
whose objects are the LR-vines and whose morphisms are the homomorphisms preserv-
ing rank and join. The category RV of R-vines is a full subcategory of LRV whose objects
are the R-vines.

3 The main result

Having introduced the concepts, we are ready to state our main result.

Theorem 3.1. The categories MG and LRV are equivalent. In particular, the categories MCG and
RV are equivalent.
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To prove the equivalence between MG and LRV, we construct two functors Ψ : MG −→
LRV and Ω : LRV −→ MG. The former amounts to constructing an LR-vine from a given
MAT-labeled graph which is presented in Theorem 3.2 below. The proof is direct and
largely dependent upon the notion of MAT-perfect elimination ordering developed in an
earlier work of the last two authors [18]. The argument on the functor Ω is however
more complicated, and the details are omitted.

Theorem 3.2. Let (G, λ) be an MAT-labeled graph with NG = [ℓ]. Define a finite graded poset
P = (P ,≤P , rkP ) from (G, λ) as follows:

1. P consists of the sets {i} for 1 ≤ i ≤ ℓ and all the principal cliques in (G, λ) (Lemma 2.3).

2. For u, v ∈ P , u ≤P v if u is a subset of v.

3. rkP (v) = |v| for all v ∈ P .

Then the poset P is an LR-vine. In particular, if (G, λ) is an MAT-labeled complete graph, then
P is an R-vine.

We give two examples to illustrate the construction in Theorem 3.2.

Definition 3.3 (D-vine). An R-vine is called a D-Vine if each associated tree has the
smallest possible number of vertices of degree 1. Equivalently, each associated tree is a
path graph.

Remark 3.4. Let Φ be an irreducible root system in Rℓ with a fixed positive system Φ+ ⊆
Φ and the associated set of simple roots ∆ = {α1, . . . , αℓ}. Suppose that Φ is of type Aℓ

and the Dynkin diagram of Φ is the path graph α1 − α2 − · · · − αℓ. Then the positive
roots of Φ are given by

Φ+ =

{
∑

i≤k≤j
αk

∣∣∣∣∣ 1 ≤ i ≤ j ≤ m

}
.

It is not hard to show that the D-vine P with the first associated tree 1 − 2 − · · · − ℓ
is isomorphic to the root poset of type Aℓ.

Example 3.5. Figure 1 depicts a 4-dimensional D-vine (middle) that can be constructed
in three ways. First, it is the node poset of a graphical vine on [4] (left). Second, it is the
poset defined an MAT-labeled complete graph (right) via Theorem 3.2. Third, it is the
root poset of type A4 by Remark 3.4. The elements in the poset are written without set
symbol for simplicity. The conditioned set of a non-minimal node is given to the left of
the "|" sign, while the conditioning set appears on the right. For example, the top node
{1, 2, 3, 4} (or the largest clique generated by {v1, v4}) is written by 14|23.
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{{{3, 4}, {2, 3}}, {{1, 2}, {2, 3}}}

{{3, 4}, {2, 3}}{{1, 2}, {2, 3}}

{1, 2} {2, 3} {3, 4}

2 31 4

Graphical D-vine

14|23

24|313|2

342312

4321

D-vine

v1 v2

v4v3

1 2

1

3

1

2

MAT-labeled graph

Figure 1: An MAT-labeled complete graph on 4 vertices (right), the D-vine (middle)
(= type A root poset) defined by the graph via Theorem 3.2, and the corresponding
graphical vine (left).

Definition 3.6 (C-vine). An R-vine is called a C-Vine if each associated tree has the
largest possible number of vertices of degree 1. Equivalently, each associated tree is a
star graph.

D-vine and C-vine can be regarded as the "extreme" cases of R-vines.

Example 3.7. In dimension 4, there are exactly two non-isomorphic R-vine structures: D-
vine and C-vine. Likewise, there are exactly two non-isomorphic MAT-labeled complete
graphs on 4 vertices. Figure 2 depicts a graphical C-vine on [4] (left), the corresponding
node poset (middle), and the corresponding MAT-labeled complete graph (right) via
Theorem 3.2. The C-vine in dimension ≥ 4 is not an ideal of any D-vine hence the
corresponding MAT-partition is not obtained from an ideal of the type A root poset.

{{{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}}

{{1, 2}, {1, 4}}{{1, 2}, {1, 3}}

{1, 2}{1, 3} {1, 4}

1

2

3 4

Graphical C-vine

34|12

24|123|1

141312

4321

C-vine

v1 v2

v4v3

2 2

3

1

1

1

MAT-labeled graph

Figure 2: C-vine on 4 elements and the corresponding graphical version, MAT-labeled
complete graph from Example 3.7.
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4 Applications

From the view point of category theory, the equivalence establishes a strong similarity
between the categories and allows many properties and structures to be translated from
one to the other. We obtain two main applications from LR-vines to MAT-labeled graphs.
First, LR-vine is an answer for Question 1.3 in the case of graphic arrangements. We find
it interesting that although the class of MAT-free arrangements is strictly larger than that
of ideal subarrangements in general, any MAT-free graphic arrangement is characterized
by being an ideal of a poset structure (Theorem 2.18). Second, an explicit formula for the
number of non-isomorphic MAT-labelings of complete graphs is obtained. This equals
the number of equivalence classes of regular vines whose explicit formula is known [12,
§10.3].

A vine is a graphical tool for representing the joint distribution of random variables.
The first construction of a vine was given by Joe [10], and the formal definition was
given and refined further by Cooke, Bedford and Kurowicka [5, 4, 11]. Vines have
been studied extensively and proved to have various applications in probability theory
and related areas. We refer the reader to [12] for a comprehensive handbook of vines.
Our main result gives a new appearance and applications of vines in the arrangement
theory. In the present note, we do not pursue the probabilistic or applied aspects of
vines (neither does the proof of the main result) but emphasize and develop more on
the theoretical aspects. In the full version of this extended abstract, we give several new
combinatorial properties of vines, hoping that they will be useful for the future research
on vines. For instance, we give an alternative way to associate an m-vine to a strongly
chordal graph compared with the work of Zhu-Kurowicka [19], and an extension of the
notion of sampling order [6] from R-vine to LR-vine.
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