
Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #73, 12 pp. Series and Algebraic Combinatorics (Bochum)

Crystals for variations of decomposition tableaux
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Abstract. Our previous work introduced a category of extended queer crystals, whose
connected normal objects have unique highest weight elements and characters that are
Schur Q-polynomials. Our initial models for such crystals were based on semistandard
shifted tableaux. Here, we introduce a simpler construction using certain “primed”
decomposition tableaux, which slightly generalize the decomposition tableaux used
in work of Grantcharov et al. This leads to a new, much shorter proof of the highest
weight properties of the normal subcategory of extended queer crystals. We also de-
scribe a natural crystal structure on set-valued decomposition tableaux. Our results
give the first crystal constructions for shifted set-valued tableaux, and lead to partial
progress on a conjectural formula of Cho and Ikeda for K-theoretic Schur P-functions.

Keywords: Crystals, K-theoretic Schur P-functions, queer Lie superalgebras, decom-
position tableaux, set-valued tableaux

1 Introduction

Crystals are an abstraction for the crystal bases of quantum group representations, and
can be viewed as acyclic directed graphs with labeled edges and weighted vertices, sat-
isfying certain axioms. Crystals for gln and other classical Lie algebras were first studied
by Kashiwara [9, 10] and Lusztig [12, 13] in the 1990s. More recent work by Grantcharov
et al. [3, 4] introduced crystals for the queer Lie superalgebra qn.

Our previous work [14] defined a slightly modified category of q+n -crystals, which
share many nice features with gln-crystals and qn-crystals. For example, q+n -crystals
have a natural tensor product and a standard crystal corresponding to the vector rep-
resentation of the quantum group Uq(qn). This lets one define a subcategory of normal
crystals, consisting of crystals whose connected components can each be embedded in
some tensor power of the standard crystal.

In [14], our primary models for normal q+n -crystals were derived from semistandard
shifted tableaux, using crystal operators with very technical formulas. One of the main
results of this note is to introduce a much simpler model for normal q+n -crystal based
on a “primed” generalization of decomposition tableaux. The latter tableaux served as the
original model for normal (non-extended) qn-crystals in [3].
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After formally defining primed decomposition tableaux, we equip them with a natu-
ral family of q+n -crystal operators, identify their highest weight elements, and construct
a primed generalization of a useful “insertion scheme” from [3]. As an application, we
give a short, alternate proof that normal q+n -crystals are determined up to isomorphism
by their characters (which range over all Schur Q-positive symmetric polynomials in n
variables), and also by by their multisets of highest weights (which range over all strict
partitions with at most n parts).

Our other main results concern a new crystal structure on a “set-valued” generaliza-
tion of decomposition tableaux. Several authors (for example, [5, 18, 20]) have recently
studied gln-crystal structures on unshifted set-valued tableaux. The characters of these
crystals give K-theoretic symmetric functions of independent interest. It has been an
open problem to extend such constructions to shifted tableaux.

Addressing this open problem, we show that a certain natural family of set-valued de-
composition tableaux has a normal gln-crystal structure. This structure is formally similar
to the one in [18] for unshifted set-valued tableaux, though somewhat more technical.
Cho and Ikeda [6] has conjectured that the weight generating function for set-valued de-
composition tableaux recovers the K-theoretic Schur P-function GPλ. As partial progress
on this conjecture, our results imply that this generating function is at least symmetric
and equal to GPλ plus a (possibly infinite) Z-linear combination of GPµ’s with |µ| > |λ|.

2 Abstract crystals

Let N = {0, 1, 2, . . . } and P = {1, 2, 3, . . . }. Fix n ∈ N and let [n] = {1, 2, . . . , n}. Let B
be a set with maps wt : B →Nn and ei, fi : B → B ⊔ {0} for i ∈ [n− 1], where 0 /∈ B. We
assume that if b, c ∈ B then fi(b) = c if and only if ei(c) = b. This means that the maps
ei and fi encode a directed graph with vertex set B, to be called the crystal graph, with an

edge b i−→ c if fi(b) = c. The string lengths εi, φi : B → {0, 1, 2, . . . } ⊔ {∞} are

εi(b) := sup
{

k ≥ 0 | ek
i (b) ̸= 0

}
and φi(b) := sup

{
k ≥ 0 : f k

i (b) ̸= 0
}

. (2.1)

We assume that εi(b) and φi(b) are always finite. If the set B is finite then its char-
acter is the polynomial ch(B) := ∑b∈B∏i∈[n] xwt(b)i

i ∈ N[x1, x2, . . . , xn]. Finally, let
e1, e2, . . . , en ∈ Zn be the standard basis.

Definition 2.1. The set B is a gln-crystal if for all i ∈ [n − 1] and b ∈ B we have (a)
wt(ei(b)) = wt(b) + ei − ei+1 if ei(b) ̸= 0, and (b) φi(b)− εi(b) = wt(b)i −wt(b)i+1.

We refer to wt as the weight map and to each ei as a raising operator. Each connected
component of the crystal graph of B may be viewed as a gln-crystal by restricting the
weight map and crystal operators; these objects are called full subcrystals. A crystal iso-
morphism is a weight-preserving bijection that induces an isomorphism of crystal graphs.
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Example 2.2. The standard gln-crystal Bn =
{

i : i ∈ [n]
}

has crystal graph

1 2 3 · · · n1 2 3 n− 1 with wt( i ) := ei.

The set of formal tensors B ⊗ C := {b⊗ c : b ∈ B, c ∈ C} has a unique gln-crystal
structure with wt(b⊗ c) := wt(b) + wt(c) and with

ei(b⊗ c) :=

{
b⊗ ei(c) if εi(b) ≤ φi(c)
ei(b)⊗ c if εi(b) > φi(c)

(2.2)

for i ∈ [n− 1], where it is understood that b⊗ 0 = 0⊗ c = 0 [1, §2.3]. This follows the
“anti-Kashiwara convention,” which reverses the tensor product order in [3, 4].

3 Queer crystals

The general linear Lie algebra gln has two super-analogues, one of which is the queer Lie
superalgebra qn. Grantcharov et al. developed a theory of crystals for qn in [3, 4], which
we review here. Assume n ≥ 2. Let B be a gln-crystal with maps e1, f1 : B → B ⊔ {0}
satisfying f1(b) = c if and only if b = e1(c) when b, c ∈ B. Define ε1, φ1 : B → N ⊔ {∞}
as in (2.1) but with i = 1. Below, we say that one map ϕ : B → B ⊔ {0} preserves another
map η : B → X if η(ϕ(b)) = η(b) whenever ϕ(b) ̸= 0.

Definition 3.1. The gln-crystal B is a qn-crystal if for all b ∈ B:

(a) wt(e1(b)) = wt(b) + e1 − e2 whenever e1(b) ̸= 0,

(b) φ1(b) + ε1(b) is 0 if wt(b)1 = wt(b)2 = 0 and 1 otherwise, and

(c) e1 and f1 commute with ei, fi while preserving εi, φi for all 3 ≤ i ≤ n− 1.

Assume B is a qn-crystal. The corresponding qn-crystal graph has vertex set B and

edges b i−→ c whenever fi(b) = c for any i ∈ {1, 1, 2, . . . , n− 1}.

Example 3.2. The standard qn-crystal Bn =
{

i : i ∈ [n]
}

has crystal graph

1 2 3 · · · n
1

1 2 3 n− 1
with wt( i ) := ei.

Suppose B and C are qn-crystals. The set B ⊗ C already has a gln-crystal structure.
There is a unique way of viewing this object as a qn-crystal [3, Thm. 1.8] with

e1(b⊗ c) :=

{
b⊗ e1(c) if wt(b)1 = wt(b)2 = 0
e1(b)⊗ c otherwise.

(3.1)
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4 Extended crystals

We continue to assume n ≥ 2. The following theory of extended qn-crystals (abbreviated
as q+n -crystals from now on) was introduced in our previous work [14]. Suppose B is a
qn-crystal with additional maps e0, f0 : B → B ⊔ {0} satisfying f0(b) = c if and only if
b = e0(c) when b, c ∈ B. Define ε0, φ0 : B →N⊔ {∞} by the formula (2.1) with i = 0.

Definition 4.1. The qn-crystal B is a q+n -crystal if for all b ∈ B:

(a) wt(e0(b)) = wt(b) if e0(b) ̸= 0,

(b) φ0(b) + ε0(b) is 0 if wt(b)1 = 0 and 1 otherwise, and

(c) e0 and f0 commute with ei, fi while preserving εi, φi for all 2 ≤ i ≤ n− 1.

Assume B is a q+n -crystal. The corresponding q+n -crystal graph has vertex set B and

edges b i−→ c whenever fi(b) = c for any i ∈ {1, 0, 1, 2, . . . , n− 1}.

Example 4.2. The standard q+n -crystal B+
n has crystal graph

1′ 2′ 3′ · · · n′

1 2 3 · · · n

1

1

2 3 n− 1

1

1

2 3 n− 1

0 with wt( i ) = wt( i′ ) := ei.

If B and C are q+n -crystals then the gln-crystal B ⊗ C has a q+n -crystal structure with

e0(b⊗ c) :=

{
e0(b)⊗ c if wt(b)1 ̸= 0
b⊗ e0(c) if wt(b)1 = 0

(4.1)

and

e1(b⊗ c) :=


b⊗ e1(c) if wt(b)1 = wt(b)2 = 0
f0e1(b)⊗ e0(c) if wt(b)1 = 0, f0e1(b) ̸= 0, and e0(c) ̸= 0
e0e1(b)⊗ f0(c) if wt(b)1 = 0, e0e1(b) ̸= 0, and f0(c) ̸= 0
e1(b)⊗ c otherwise

(4.2)

where it is again understood that b⊗ 0 = 0⊗ c = 0 [14, Thm. 3.14].

Remark 4.3. For i ∈ Z define i′ := i− 1
2 ∈ Z′ := Z− 1

2 . We refer to elements of Z ⊔Z′

as primed numbers. A primed word is a finite sequence of primed numbers. We identify
each primed word w = w1w2 · · ·wm with wi ∈ {1′ < 1 < · · · < n′ < n} with the formal
tensor w1⊗w2⊗ · · · ⊗wm ∈ (B+

n )
⊗m. This allows us to evaluate wt(w), ei(w), and fi(w)

for i ∈ [n− 1] using the definition of the q+n -crystal (B+
n )
⊗m. For example, the weight of

w becomes the vector whose ith component is the number of letters equal to i or i′.
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There are well-known, explicit signature rules to compute the crystals operators on
tensor powers of the standard gln-, qn-, and q+n -crystals (and hence on primed words).
We omit this background material in this extended abstract; see [2, 14] for the full details.

5 Decomposition tableaux

Assume λ = (λ1 > λ2 > · · · > 0) is a strict integer partition. Let ℓ(λ) be the number of
nonzero parts of λ. The shifted diagram of λ is the SDλ := {(i, i+ j− 1) : i ∈ [ℓ(λ)] and j ∈
[λi]}. We often refer to the pairs (i, j) ∈ SDλ as boxes. A box (i, j) ∈ SDλ is on the diagonal
if i = j. A shifted tableau of shape λ is an assignment of numbers to the boxes in SDλ.

A hook word is a sequence of positive integers w = w1w2 · · ·wn such that w1 ≥ w2 ≥
· · · ≥ wm < wm+1 < wm+2 < · · · < wn for some m ∈ [n]. The weakly decreasing part of
such a hook word w is the (always nonempty) subword w1w2 · · ·wm, while the increasing
part of w is the (possibly empty) subword wm+1wm+2 · · ·wn.

Following [3], we define a (semistandard) decomposition tableau of shape λ to be a
shifted tableau T of shape λ such that if ρi denotes row i of T, then (1) each ρi is a hook
word and (2) ρi is a hook subword of maximal length in ρi+1ρi for each i ∈ [ℓ(λ)− 1].
Note that this definition is different from Serrano’s definition in [19], which uses the
opposite weak/strict inequality convention for hook words. Let DecTabn(λ) be the set of
decomposition tableaux of shape λ with all entries in [n].

Example 5.1. We draw tableaux in French notation, so that row indices increase from

bottom to top and column indices increase from left to right. Then 1
2 1 1 ∈ DecTab2(λ)

for λ = (3, 2), but T = 2 1
2 2 3 is a not a decomposition tableau even though its rows are

hook words, as ρ2ρ1 = 21223 contains the hook subword 2223, which is longer than 223.

Remark 5.2. The maximal hook subword condition in the definition of a decomposition
tableau is equivalent to a set of inequalities that must hold for certain triples of entries.
Concretely, a shifted tableau is a decomposition tableau if and only none of the following
patterns with a ≤ b ≤ c and x < y < z occur in consecutive rows [3, Prop. 2.3]:

· · · b
a · · ·

,
· · · c · · · b
· · · a · · ·

,
· · · x

y · · · z
, or

· · · · · · x
· · · y · · · z

.

Here, the leftmost boxes are on the main diagonal and the ellipses “· · · ” indicate se-
quences of zero or more columns.

Define the middle element of a hook word w to be the last letter in the weakly decreas-
ing subword w ↓. Suppose T is a decomposition tableau of strict partition shape λ. We
call any tableau formed by adding primes to the middle elements in a subset of rows
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in T a primed decomposition tableau of shape λ. Let DecTab+n (λ) denote the set of such
tableaux with all entries in {1′ < 1 < · · · < n′ < n}.

Example 5.3. 1
2 1 2 , 1′

2 1 2 , 1
2 1′ 2 , and 1′

2 1′ 2 are all in DecTab+2 (λ) for λ = (3, 1).

The row reading word of a shifted tableau T is the word row(T) formed by reading the
rows from left to right, but starting with last row. The reverse reading word of T is the

reversal of row(T); we denote this by revrow(T). For example, revrow
(

1
2 1 1′

)
= 1′121.

A crystal embedding is a weight-preserving injective map ϕ : B → C between crys-
tals that commutes with all crystal operators, in the sense that ϕ(ei(b)) = ei(ϕ(b)) and
ϕ( fi(b)) = fi(ϕ(b)) for all b ∈ B when we set ϕ(0) = 0. Our first new result is the
following theorem, which extends [3, Thm. 2.5(a)] from qn-crystals to q+n -crystals.

Theorem 5.4. There is a unique q+n -crystal structure on DecTab+n (λ) that makes revrow :
DecTab+n (λ) → (B+

n )
⊗|λ| into a q+n -crystal embedding. This structure restricts to a qn-

crystal on DecTabn(λ), for which revrow : DecTabn(λ)→ B
⊗|λ|
n is a qn-crystal embedding.

Finally, the characters of these crystals are the symmetric polynomials

ch(DecTabn(λ)) = Pλ(x1, x2, . . . , xn) and ch(DecTab+n (λ)) = Qλ(x1, x2, . . . , xn)

where Pλ and Qλ are the Schur P- and Q-functions of λ.

An important property of many crystals is the existence of unique highest weight
elements. For gln-crystals, such elements are exactly the sources in the crystal graph. The
precise definitions of highest weight elements for qn and q+n -crystals from [3, 14] are
more technical, and given as follows.

Assume B is a gln-crystal. An i-string in B is a connected component in the subgraph

of the crystal graph retaining only the i−→ arrows. Let σi : B → B be the involution that
reverses each i-string, so that the first and last elements are swapped, the second and
second-to-last elements are swapped, and so on.

Definition 5.5. An element b in a qn-crystal B is qn-highest weight if ei(b) = ei(b) = 0 for
i ∈ [n− 1], where ei := (σi−1σi) · · · (σ2σ3)(σ1σ2)e1(σ2σ1)(σ3σ2) · · · (σiσi−1) for 2 ≤ i < n.

Definition 5.6. An element b in a q+n -crystal B is q+n -highest weight if it is qn-highest
weight with σi−1 · · · σ2σ1e0σ1σ2 · · · σi−1(b) = 0 for all i ∈ [n].

Let λ be a strict partition with ℓ(λ) = k. The first border strip of a shifted shape SDλ

is the minimal subset S containing (1, λ1) such that if (i, j) ∈ S and i ̸= j, then either
(i + 1, j) ∈ S, or (i, j− 1) ∈ S when (i + 1, j) /∈ SDλ.

Let SD
(1)
λ be the first border strip of SDλ. The set difference SDλ − SD

(1)
λ is either

empty when k = 1 or equal to SDµ for a strict partition µ with ℓ(µ) = k − 1. For
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i ∈ [k− 1] let SD(i+1)
λ be the first border strip of SDλ − (SD

(1)
λ ⊔ · · · ⊔ SD

(i)
λ ). Finally, let

Thighest
λ be the shifted tableau of shape λ with all i entries in SD

(i)
λ .

Example 5.7. If λ = (6, 4, 2, 1) then the boxes with • below make up the first border strip

•
•
• •
• •

and we have Thighest
λ =

1
2 1

3 2 1 1
4 3 2 2 1 1

.

The qn-part of the following is [3, Thm. 2.5(b)], while the q+n -extension is new:

Theorem 5.8. The shifted tableau Thighest
λ is the unique qn-highest weight element of

DecTabn(λ) and also the unique q+n -highest weight element of DecTab+n (λ).

6 Decomposition insertion

This section introduces a “primed” extension of Grantcharov et al.’s insertion scheme
from [3, §3]. Suppose T is a primed decomposition tableau and x ∈ Z⊔Z′. We will form

another primed decomposition tableau x dec−−→ T by the following insertion procedure.
On step i of this algorithm, a number ai is inserted into row i of T, starting with a1 := x.

To compute the insertion on step i, set a = ⌈ai⌉ and remove any prime from middle
element mi of row i (if the row is nonempty). The (unprimed) number a is added to
the end of the (now unprimed) row if this creates a hook word; otherwise, a replaces
the leftmost entry b from the increasing part of the row with b ≥ a, then b replaces the
leftmost entry c from the weakly decreasing part of the row with c < b.

Now we must decide the value ai+1 and whether to add back a prime to the middle
element of the row. There are two cases:

(A) Suppose the row was initially empty, or the location of the middle element has
moved (necessarily to the right). If ai ∈ Z′ then we add a prime to the new middle
element. If no entries were bumped from the row, then the algorithm halts at this
step and we say the insertion is even if mi ∈ Z and odd if mi ∈ Z′. Otherwise, we
set ai+1 = c when mi ∈ Z and ai+1 = c′ when mi ∈ Z′. For example:

4 2 2 1◦ 3 ← 1• = ai ; ai+1 = 2◦ ← 4 3 2 1 1• .

Here ◦ and • indicate arbitrary, unspecified choice of primes.

(B) Suppose instead that the location of the row’s middle element has not changed.
If mi ∈ Z′ then we add back a prime to the middle element. If no entries were
bumped from the row, then the algorithm halts at this step and we say the insertion
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is even if ai ∈ Z and odd if ai ∈ Z′. Otherwise, we set ai+1 = c when ai ∈ Z and
ai+1 = c′ when ai ∈ Z′. For example:

4 2 2 1◦ 3 ← 3• = ai ; ai+1 = 2• ← 4 3 2 1◦ 3 .

Definition 6.1. Given any primed word w = wm · · ·w2w1, form

Pdec(w) := wm
dec−−→ (· · · dec−−→ (w2

dec−−→ (w1
dec−−→ ∅)) · · · )

by inserting the letters of w into the empty tableau ∅. Let Qdec(w) be the tableau with

the same shape as Pdec(w) that has i (respectively, i′) in the box added by wi
dec−−→ if this

insertion is even (respectively, odd).

Example 6.2. For w = 4′4332′3′32′1′, Pdec(w) =
1′

2 2′ 3
4 3 3 3 4

and Qdec(w) =
7

4 5′ 9′
1 2′ 3 6 8

.

A shifted tableau with n boxes is standard if its rows and columns are increasing and
it has exactly one entry equal to i′ or i for each i ∈ [n].

Theorem 6.3. The map w 7→ (Pdec(w), Qdec(w)) is a bijection from the set of all words
with letters in {1′ < 1 < 2′ < 2 < . . . } to the set of pairs (P, Q) of shifted tableaux
with the same shape such that P is a primed decomposition tableau and Q is a standard
shifted tableau with no primed diagonal entries.

Let wr be the reverse of w. On unprimed words, the map w 7→ (Pdec(wr), Qdec(wr)) is
[3, Def. 4.1] and gives a bijection to pairs (P, Q) where P is an (unprimed) decomposition
tableau and Q is a standard shifted tableau of the same shape with no primed entries.

A map ϕ : B → C between (gln, qn, or q+n ) crystals is a quasi-isomorphism if for each
full subcrystal B′ ⊆ B there is a full subcrystal C ′ ⊆ C such that ϕ|B′ is an isomorphism
B′ → C ′. The qn part of the following more substantial result is [3, Thm. 4.5].

Theorem 6.4. The map Pdec defines qn and q+n crystal quasi-isomorphisms

B⊗m
n → ⊔

strict λ⊢m
ℓ(λ)≤n

DecTabn(λ) and (B+
n )
⊗m → ⊔

strict λ⊢m
ℓ(λ)≤n

DecTab+n (λ).

Moreover, and the full qn-subcrystals of B⊗m
n and the full q+n -subcrystals of (B+

n )
⊗m are

the subsets on which Qdec is constant.

7 Applications to normal crystals

A (gln-, qn-, or q+n -) crystal is normal if each of its full subcrystals is isomorphic to a
full subcrystal of a tensor power of the relevant standard crystal. Normal crystals are
automatically preserved by disjoint unions and tensor products.
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One motivation for the new results in this article was to provide a simpler and more
intuitive proof of the following theorem, which was our main result in [14]. One ap-
plication of this theorem is a new Littlewood-Richardson rule for multiplying Schur
Q-functions [14, Cor. 1.7].

Theorem 7.1. The following properties hold for normal q+n -crystals:

(a) Suppose B is a connected normal q+n -crystal. Then B has a unique q+n -highest
weight element, whose weight λ is a strict partition with at most n parts, and it
holds that B ∼= DecTab+n (λ) and ch(B) = Qλ(x1, x2, . . . , xn).

(b) For each strict partition λ with at most n parts, there is a connected normal q+n -
crystal with highest weight λ.

(c) Finite normal q+n -crystals are isomorphic if and only if they have the same charac-
ters, which range over all Schur Q-positive symmetric polynomials in x1, x2, . . . , xn.

Proof. If B is a connected normal q+n -crystal then B ∼= DecTab+n (λ) for some strict parti-
tion λ with ℓ(λ) ≤ n by Theorem 6.4. Theorem 5.8 implies that B has a unique q+n -highest
weight element of weight λ. This proves part (a). Part (b) follows from Theorems 5.4
and 5.8. Part (c) holds since Schur Q-polynomials are linearly independent.

The crux of this proof is Theorem 6.4 regarding decomposition insertion. Proving
Theorem 6.4 is not a trivial exercise, but this is significantly easier than for the analogous
result used in [14], which involves a more technical insertion algorithm defined in [15].

By essentially the same proof, one can derive a qn-version of this theorem (involving
Schur P-polynomials in place of Schur Q-polynomials); this proof strategy is similar to
what appears in [3]. There is also a classical version of Theorem 7.1 for normal gln-
crystals (see [1, Thms. 3.2 and 8.6] or [14, Thm. 1.1]) which implies that the character of
every finite normal gln-crystal is Schur positive.

8 Set-valued tableaux

Let M = {1′ < 1 < 2′ < 2 < . . . } and define Set(M) to be the set of finite, nonempty
subsets of M. For S, T ∈ Set(M) write S ≺ T if max(S) < min(T) and S ⪯ T is
max(S) ≤ min(T). Finally, for S ∈ Set(M) let xS = ∏i∈S xunprime(i).

Fix a strict partition λ. A set-valued shifted tableau of shape λ is a filling T of the shifted
diagram SDλ by elements of Set(M). For such tableau T define xT = ∏(i,j)∈T xTij where
Tij is the entry of T in box (i, j). A set-valued shifted tableau T is semistandard if it has all
of the following properties: (1) no unprimed number appears twice in the same row, (2)
no primed number appears twice in the same columns, and (3) rows and columns are
weakly increasing in the sense that Tij ⪯ Ti,j+1 and Tij ⪯ Ti+1,j for all relevant positions.
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Let SetShTab+(λ) be the set of all semistandard set-valued shifted tableaux of shape
λ, and let SetShTab+n (λ) be the subset with all entries at most n. Let SetShTab(λ) ⊆
SetShTab+(λ) and SetShTabn(λ) ⊆ SetShTab+n (λ) be the subsets of tableaux with no
primed numbers in any diagonal boxes. The K-theoretic Schur P- and Q-functions of λ, as
introduced by Ikeda and Naruse [7], are the power series

GPλ = ∑
T∈SetShTab(λ)

xT ∈NJx1, x2, . . .K and GQλ = ∑
T∈SetShTab+(λ)

xT ∈NJx1, x2, . . .K.

Often the definitions of these power series involve a bookkeeping parameter β. Here, for
simplicity, we have set β = 1.

Remark 8.1. It turns out that GPλ and GQλ are both Schur positive symmetric functions,
though of unbounded degree [17, Thms. 3.27 and 3.40]. Specializations of GPλ and GQλ

give equivariant K-theory representatives for Schubert varities in the maximal isotropic
Grassmannians of orthogonal and symplectic types [7, Cor. 8.1]. These symmetric func-
tions have a number of remarkable positivity properties; see [8, 11, 16].

A distribution of a tableau with set-valued entries is a tableau of the same shape
formed by replacing every set-valued entry by one of its elements. A semistandard
set-valued shifted tableau is just a set-valued tableau whose distributions are all semi-
standard shifted tableaux. Analogously, define a (semistandard) set-valued decomposition
tableau of strict partition shape λ to be a set-valued shifted tableau whose distributions
are each (semistandard) decomposition tableaux of shape λ. Let SetDecTab(λ) be the set
of all such tableaux and let SetDecTabn(λ) be the subset with all entries at most n.

Conjecture 8.2 (Cho–Ikeda [6]). It holds that GPλ = ∑T∈SetDecTab(λ) xT.

Remark 8.3. It would be natural to define SetDecTab+(λ) as the set of set-valued shifted
tableaux with entries from Set(M) whose distributions are each primed decomposition
tableaux of shape λ. But in general GQλ ̸= ∑T∈SetDecTab+(λ) xT and it remains an open
problem to find even a conjectural decomposition tableau formula for GQ-functions.

Crystals for gln have been identified on unshifted (semistandard) set-valued tableaux
(see, e.g., [5, 18, 20]), and it is a natural open problem to find similar structures on shifted
tableaux. We have identified one such crystal structure on set-valued decomposition
tableaux, which implies a weaker form of Conjecture 8.2.

Fix a strict partition λ and T ∈ SetDecTab(λ). The reverse reading word of T is the
word revrow(T) formed by iterating over the boxes of T in the reverse reading word
order (starting with the last box of the first row and proceeding row by row, reading
each row right to left), and listing the entries of each box in decreasing order. Define

wt(T) = wt(revrow(T)). For example, if T =
1 3

4 123234
then revrow(T) = 432321431

and wt(T) = (2, 2, 3, 2).
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Fix i ∈ [n− 1]. Mark each i in revrow(T) by a right parenthesis “)" and each i + 1 by
a left parenthesis “(". A letter in revrow(T) is i-unpaired if it is equal to i or i + 1 but does
not belong to a matching pair of parentheses.

Definition 8.4. Given i ∈ P and a set-valued decomposition tableau T, construct ei(T)
in the following way. Define ei(T) = 0 if there are no i-unpaired letters equal to i + 1.
Otherwise, suppose the first i-unpaired i + 1 in revrow(T) occurs in box (x, y) of T.

(a) Form ei(T) from T by changing the i + 1 in box (x, y) to i if this yields a set-valued

decomposition tableau. For example, e2 :
1 2

3 13 123
7→

1 2

3 12 123
.

(b) Otherwise, some box (a, b) preceding (x, y) in the reverse row reading word order
has {i, i + 1} ⊆ Tab. If (a, b) is the last such box, then form ei(T) by removing i + 1
from Tab and adding i to Txy. One can show that the box (a, b) must either have
a = x and b > y, or a = x− 1 and b < y, as in the examples

e3 :
1 2

4 1 34
7→

1 2

34 1 3
and e2 :

1 3

4 123234
7→

1 23

4 12 234
.

Theorem 8.5. For each strict partition λ with at most n parts, SetDecTabn(λ) has a gln-
crystal structure for the raising operators e1, e2, . . . , en−1 given in Definition 8.4.

Corollary 8.6. The power series ∑T∈SetDecTab(λ) xT is symmetric.

We can slightly extend this partial progress on Ikeda’s conjecture. A power series
f ∈ ZJx1, x2, . . .K satisfies the K-theoretic Q-cancelation property if for all 1 ≤ i < j the
power series f (x1, . . . , xi−1, t, xi+1, . . . , xj−1, −t

1+t , xj+1, . . . ) does not depend on t, that is,
belongs to ZJx1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . .K. The symmetric functions satisfying the
K-theoretic Q-cancelation property are exactly the ones that may be (uniquely) expressed
as formal (i.e., possibly infinite) Z-linear combinations of GP-functions [7, Prop. 3.4].

Proposition 8.7. The symmetric power series ∑T∈SetDecTab(λ) xT has the K-theoretic Q-
cancelation property and lowest degree term Pλ, so is equal to GPλ plus a (possibly
infinite) Z-linear combination of GPµ’s with |µ| > |λ|.
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