
Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #48, 12 pp. Series and Algebraic Combinatorics (Bochum)

A signed e-expansion of the chromatic symmetric
function and some new e-positive graphs
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Abstract. We prove a new signed elementary symmetric function expansion of the
chromatic symmetric function of any unit interval graph. We then use sign-reversing
involutions to prove new combinatorial formulas for many families of graphs, includ-
ing the K-chains studied by Gebhard and Sagan, formed by joining cliques at single
vertices, and for graphs obtained from them by removing any number of edges from
any of the cut vertices. We also introduce a version for the quasisymmetric refinement
of Shareshian and Wachs.
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The Stanley–Stembridge conjecture [26, 27] is one of the most actively researched
open problems in algebraic combinatorics today. It asserts that if G is the incompa-
rability graph of a (3 + 1)-free poset, then G is e-positive, meaning that the chromatic
symmetric function XG(x) defined by Stanley [26] is a nonnegative linear combination
of elementary symmetric functions. Several authors have proven that certain graphs
are e-positive [3, 6, 9, 11, 14, 16, 21, 29, 30, 31], studied other positivity properties of
XG(x), [4, 12, 13, 15, 17, 19, 22], defined generalizations of the chromatic symmetric
function, [10, 18, 25], and explored implications of the Stanley–Stembridge conjecture to
immanants of Jacobi–Trudi matrices [27], cohomology of Hessenberg varieties [1, 5, 7,
20, 24], and characters of Hecke algebras [8].

In this extended abstract, we give a signed elementary function expansion of XG(x)
for any unit interval graph G, in terms of objects called forest triples. We then show how
sign-reversing involutions on forest triples can be used to prove combinatorial formulas
for many classes of unit interval graphs, including the K-chains proven to be e-positive
by Gebhard and Sagan [18] and melting K-chains obtained from them by removing any
number of edges from any of the cut vertices. Melting K-chains were not previously
known to be e-positive. We also present a generalization of our forest triple formula for
the chromatic quasisymmetric function of Shareshian and Wachs [25].
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Figure 1: The claw graph G, five proper colourings of G, the corresponding monomi-
als, the chromatic symmetric function XG(x), the bowtie graph H, and the chromatic
symmetric function XH(x)
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XG(x) = · · ·+ x3
3x7 + x3x3

7 + · · ·+ x2
2x4x7 + x2x2

4x7 + x2x4x2
7 + · · · (1.3)

= e211 − 2e22 + 5e31 + 4e4 (1.4)

H =

XH(x) = 4e32 + 12e41 + 20e5 (1.5)

1 Background

Let G = (V, E) be a graph. A colouring of G is a function κ : V → P = {1, 2, 3, . . .} and
we say that κ is proper if κ(i) ̸= κ(j) whenever (i, j) ∈ E. The chromatic symmetric function
of G is the formal power series in infinitely many variables x = (x1, x2, x3, . . .) given by
[26, Definition 2.1]

XG(x) = ∑
κ:V→P proper

xκ, where xκ = ∏
v∈V

xκ(v). (1.1)

We are interested in expanding the symmetric function XG(x) in the basis {eλ} of ele-
mentary symmetric functions indexed by integer partitions λ = λ1 · · · λℓ, defined by

eλ = eλ1 · · · eλℓ
, where en = ∑

i1<···<in

xi1 · · · xin . (1.2)

We say that G is e-positive if the chromatic symmetric function XG(x) is a nonnegative
linear combination of elementary symmetric functions.

Example 1. Figure 1 shows the claw graph G. Some proper colourings of G, the corresponding
monomials of XG(x), and the e-expansion of XG(x) are given. Because of the negative coefficient
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on the term −2e22, the graph G is not e-positive. By contrast, the bowtie graph H is e-positive.
For the complete graph Kn, proper colourings must use n distinct colours and given n distinct
colours there are n! proper colourings, so XKn(x) = n!en and Kn is e-positive.

There has been considerable interest in characterizing e-positive graphs. The most
prominent open problem in this direction is the Stanley–Stembridge conjecture [26,
Corollary 5.1], equivalently [27, Corollary 5.5], which by a result of Guay-Paquet [19,
Theorem 5.1] can be equivalently stated for unit interval graphs G, which are graphs
whose vertices can be labelled 1 through n so that

for i < j < k, if (i, k) ∈ E(G), then (i, j) ∈ E(G) and (j, k) ∈ E(G). (1.6)

Conjecture 1. (Stanley–Stembridge conjecture) All unit interval graphs are e-positive.

2 A signed formula

Let G = ([n], E) be a natural unit interval graph, meaning it satisfies (1.6). We give a signed
combinatorial formula for the elementary symmetric function expansion of XG(x).

Definition 1. A subtree T of G is decreasing if every vertex v ∈ V(T) has at most one larger
neighbour. A subforest F of G is decreasing if all of its trees are decreasing.

Definition 2. A tree triple of G is an object T = (T, α, r) consisting of the following data.

• T is a decreasing subtree of G.

• α is an integer composition with size |α| = |V(T)|.

• r is a positive integer with 1 ≤ r ≤ α1, the first part of α.

A forest triple of G is a set of tree triples F = {Ti = (Ti, α(i), ri)}m
i=1 with ⊔m

i=1V(Ti) = [n],
so the set of trees is a decreasing spanning forest of G. The type of F is the integer partition

type(F ) = sort(α(1) · · · α(m)) (2.1)

formed by concatenating the compositions and then sorting to form a partition. The sign of F is
the integer

sign(F ) = (−1)∑m
i=1(ℓ(α

(i))−1) = (−1)ℓ(type(F ))−m, (2.2)

where ℓ(α) is the length of a composition α. We denote by FT(G) the set of forest triples of G and
by FTµ(G) the set of forest triples of G of type µ.

We now state our combinatorial formula. It was proven by first expanding XG(x) in
the power sum basis and then applying a change-of-basis to the elementary symmetric
function basis. The technique of studying properties of XG(x) by converting between
different bases is explored in upcoming work of Sagan and the author [23].
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Figure 2: The bowtie graph G and the forest triples of G of type 32
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Theorem 1. [28, Theorem 4.3] Let G be a natural unit interval graph. The chromatic symmetric
function XG(x) satisfies

XG(x) = ∑
F∈FT(G)

sign(F )etype(F ) = ∑
µ

 ∑
F∈FTµ(G)

sign(F )

 eµ. (2.3)

Example 2. Figure 2 shows the forest triples of type 32 for the bowtie graph. We can have a single
tree triple T = (T, α, r), in which case α is either 32 or 23 and there are either 3 or 2 choices
for r. Alternatively, we can have two tree triples T1 = (T1, α(1), r1) and T2 = (T2, α(2), r2) with
α(1) = 3 = |V(T1)| and α(2) = 2 = |V(T2)|, and there are 3 choices of r1 and 2 choices of r2.

Example 3. For the case of µ = n, forest triples F ∈ FTn(G) consist of a single tree triple
T = (T, α, r), where T is a decreasing spanning tree, we must have α = n so sign(F ) = 1, and
we can have any value of 1 ≤ r ≤ n. Because a decreasing spanning tree can be identified by
specifying the unique larger neighbour of each vertex 1 ≤ i ≤ n − 1, we have that the coefficient
of en in XG(x) is nd1 · · · dn−1, where di is the number of larger neighbours of vertex i in G.

Now our goal is to find a sign-reversing involution on forest triples of G to combina-
torially prove that G is e-positive. The structure of forest triples suggests the following
approach. Let us say that a tree triple T = (T, α, r) is breakable if ℓ(α) ≥ 2. In this case,
we would like to somehow define a pair of forest triples break(T ) = (S1,S2) of the form

S1 = (S1, α \ αℓ, r) and S2 = (S2, αℓ, r2) (2.4)
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for some decreasing trees S1 and S2 with V(S1) ⊔ V(S2) = V(T) and some integer
1 ≤ r2 ≤ αℓ, where αℓ is the last part of α and α \ αℓ denotes the composition with
αℓ removed. Let us say that the pair (S1,S2) is joinable if it is of the form break(T ) for
some unique T , which we will denote join(S1,S2). Then we would like to somehow
define a map φ on FT(G) by either replacing some breakable tree triple T by break(T )
or by replacing some joinable pair of tree triples (S1,S2) by join(S1,S2), if one exists.

If we can systematically choose which tree triples to replace so that φ is an involu-
tion, then it would reverse sign because it changes the total number of tree triples by
one, it would preserve type by construction, and fixed points F must have no breakable
tree triples or joinable pairs of tree triples so in particular sign(F ) = (−1)∑m

i=1(1−1) = 1.
Therefore, we would prove that G is e-positive, and we would also get a combinatorial
formula for the chromatic symmetric function XG(x) in terms of the fixed points of φ.

We now demonstrate this method in the case of paths. More general results are
known [25, Section 5], [26, Proposition 5.3] but this proof technique is new.

Proposition 1. The chromatic symmetric function of a path Pn is given by

XPn(x) = ∑
α⊨n

α1(α2 − 1) · · · (αℓ − 1)esort(α), (2.5)

where the notation α ⊨ n means that α is a composition with size n. In particular, Pn is e-positive.

Proof. We label the vertices of Pn so that its edges are of the form (i, i + 1), so decreasing
subtrees of Pn are paths from some i to some j > i, which we will denote Pi→j. For a
breakable tree triple T = (Pi→j, α, r) of Pn, we define break(T ) = (S1,S2), where

S1 = (Pi→j−αℓ , α \ αℓ, r) and S2 = (Pj−αℓ+1→j, αℓ, 1), (2.6)

and we define a pair of tree triples (S1 = (Pi→j, α(1), r1),S2 = (Pi′→j′ , α(2), r2)) to be
joinable if ℓ(α(2)) = 1, i′ = j + 1, and r2 = 1, in which case we define the tree triple

join(S1,S2) = (Pi→j′ , α(1) · α(2), r1). (2.7)

Note that T is breakable with break(T ) = (S1,S2) if and only if (S1,S2) is joinable with
join(S1,S2) = T . Now given a forest triple

F = {T1 = (Pi1→i2−1, α(1), r1), T2 = (Pi2→i3−1, α(2), r2), . . . , Tℓ = (Piℓ→n, α(ℓ), rℓ)}, (2.8)

we let j be maximal so that either Tj is breakable or the pair (Tj−1, Tj) is joinable, if such
a j exists, and we define φ(F ) by either breaking Tj, joining (Tj−1, Tj), or doing nothing
if no such j exists. We can check that φ is a sign-reversing involution, the fixed points
can be associated with a composition α ⊨ n by reading the tree sizes from left to right,
they have type sort(α), and in order for no pair to be joinable, we must have ri ≥ 2 for
every i ≥ 2, so there are α1(α2 − 1) · · · (αℓ − 1) choices of the ri.
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Figure 3: The forest triples of P6 of type 222 paired under our sign-reversing involu-
tion φ

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

FIXED

FIXED

1 2 3 4 5 6

1 2 3 4 5 6

Example 4. Figure 3 shows all of the forest triples of P6 of type 222 paired under our sign-
reversing involution φ. The compositions are not written but they are 2, 22, or 222. We have
indicated whether each ri is 1 or 2 by circling the ri-th smallest vertex of the corresponding tree.
There are 2(2 − 1)(2 − 1) = 2 fixed points, so the coefficient of e222 in XP6(x) is 2.

3 Positive formulas

We are able to use sign-reversing involutions on forest triples to prove several combina-
torial e-positive expansions of unit interval graphs.

Definition 3. Let L(t)
a,b denote the unit interval graph where a path of length b is joined to a clique

of size a, and then t edges incident to the joined vertex are removed from the clique. An example
is given in Figure 4. Such graphs are called melting lollipops.

Huh, Nam, and Yoo showed that melting lollipops are e-positive [21, Theorem 4.9].
A result of Aliniaeifard, Wang, and van Willigenburg [3, Proposition 3.1] implies that
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Figure 4: The melting lollipop graph L(3)
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t=0 forms an arithmetic progression. We were able to use forest

triples to get a new explicit formula and see this arithmetic progression directly.

Theorem 2. [28, Theorem 5.2] The chromatic symmetric function of a melting lollipop L(t)
a,b is

given by

X
L(t)

a,b
(x) = t(a − 2)! ∑

α⊨n
αℓ=a−1

α1(α2 − 1) · · · (αℓ−1 − 1)esort(α) (3.1)

+ (a − t − 1)(a − 2)! ∑
α⊨n

αℓ≥a

α1(α2 − 1) · · · (αℓ − 1)esort(α).

In particular, L(t)
a,b is e-positive.

Definition 4. For a composition γ with all parts at least 2, let Kγ denote the unit interval graph
where cliques of sizes γ1, . . . , γℓ are successively joined end to end at single vertices. An example
is given in Figure 5. Such graphs are called K-chains.

Gebhard and Sagan showed that K-chains are e-positive [18, Corollary 7.7] by using
a generalization of the chromatic symmetric function in noncommuting variables. We
were able to use forest triples to get a new explicit formula as a sum over a certain set
Aγ of weak compositions.

Theorem 3. [28, Theorem 6.13] The chromatic symmetric function of a K-chain Kγ is given by

XKγ(x) = (γ1 − 2)! · · · (γℓ−1 − 2)!(γℓ − 1)! ∑
α∈Aγ

(
α1

ℓ(γ)

∏
i=2

|αi − (γi−1 − 1)|
)

esort(α) (3.2)

In particular, Kγ is e-positive.

Example 5. If γ = ab has length 2, we get that

XKab(x) = (a − 1)!(b − 1)!
n

∑
k=max{a,b}

(2k − n)ek,n−k. (3.3)
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Figure 5: The K-chain K466 and the melting K-chain K(032,032)
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Definition 5. Let γ be a composition with all parts at least 2, and let ϵ and ζ be weak composi-
tions with ℓ(ϵ) = ℓ(ζ) = ℓ(γ) such that 0 ≤ ϵt, ζt ≤ γt − 2 for all t and ϵt = 0 if and only
if ζt = 0. Let K(ϵ,ζ)

γ denote the unit interval graph formed by removing edges from the K-chain
Kγ so that for all t, the t-th clique has ϵt edges absent from the smallest vertex and ζt edges
absent from the largest vertex. An example is given in Figure 5. Such graphs are called melting
K-chains, and if every ϵt, ζt ∈ {0, 1} (so ϵ = ζ), they are called slightly melting K-chains.

Aliniaeifard, Wang, and van Willigenburg showed that slightly melting K-chains are
e-positive [3, Proposition 5.5]. We were able to use forest triples to get a new explicit
formula as a sum over a certain set A(ϵ)

γ of weak compositions.

Theorem 4. [28, Theorem 7.9] The chromatic symmetric function of a slightly melting K-chain
K(ϵ,ϵ)

γ (x) is given by

X
K(ϵ,ϵ)

γ
(x) = (γ1 − 2)! · · · (γℓ − 2)! ∑

α∈Aϵ
γ

(
α1

ℓ(γ)

∏
i=1

|αi+1 − (γi − 1 − ϵi)|
)

esort(α). (3.4)

In particular, K(ϵ,ϵ)
γ is e-positive.

We also proved the new result that all melting K-chains are e-positive. We have a
combinatorial description of the fixed points but they are much more complicated to
describe and enumerate.

Theorem 5. [28, Theorem 8.3] All melting K-chains K(ϵ,ζ)
γ are e-positive.

It would be interesting to see whether sign-reversing involutions on forest triples
could be used to show e-positivity of other unit interval graphs. Alternatively, we could
take a dual approach where we fix µ and show that the coefficient of eµ is nonnegative
for every unit interval graph. This is done by Hwang [22, Theorem 5.13] if µ2 = 1, by
Abreu and Nigro [1, Corollary 1.10] if ℓ(µ) = 2, and in upcoming work by Sagan and the
author [23] if µ1 ≤ 3. If we can prove the following inequality, the forest triple formula
would give another proof of nonnegativity for all two-part partitions.
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Problem 1. Let G = ([n], E) be a natural unit interval graph and let 1 ≤ k ≤ n − 1. Let sk(G)
be the number of decreasing spanning forests (T1, T2) of G, where |V(T2)| = k and 1 ∈ V(T1).
Let s(G) be the number of decreasing spanning trees of G. Prove that ksk(G) ≥ s(G).

The author checked by computer that this inequality holds for all unit interval graphs
G with n ≤ 10 vertices.

4 A quasisymmetric generalization

We also generalize our forest triple formula for the chromatic quasisymmetric function
defined by Shareshian and Wachs [25, Definition 1.2].

Definition 6. The chromatic quasisymmetric function of a labelled graph G = ([n], E) is the
formal power series

XG(x; q) = ∑
κ:[n]→P
κ proper

qasc(κ)xκ, (4.1)

where asc(κ) = |{(i, j) ∈ E(G) : i < j, κ(i) < κ(j)}|.

Alexandersson used the following idea to study e-positivity of LLT polynomials [2].

Definition 7. Let θ ⊆ E(G). For a vertex u ∈ [n], let hrvθ(u) be the highest v ∈ [n] reachable
from u by an increasing path in ([n], θ) and let {[u1]θ, . . . , [um]θ} be the set of equivalence classes
of [n] under the relation u ∼θ u′ if hrvθ(u) = hrvθ(u′). Let θ′ ⊆ θ be the subset of edges used
by the increasing paths from every u to hrvθ(u) that go to the largest possible vertex at each step.
We let U(θ) = θ \ θ′ and the elements of U(θ) are called unnecessary edges.

Definition 8. A subgraph quadruple of G is an object S = (θ, f , α, r) consisting of the
following data.

• θ ⊆ E(G) is a subset of the edges of G.

• f : U(θ) → {q,−1} is a function that assigns either a q or a (−1) to each unnecessary
edge.

• α = (α(1), . . . , α(m)) is a sequence of compositions such that each |α(i)| = |[ui]θ|.

• r = (r1, . . . , rm) is a sequence of positive integers such that each 1 ≤ ri ≤ α
(i)
1 .

The type of S is the partition

type(S) = sort(α(1) · · · α(m)), (4.2)
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Figure 6: The edges of the subgraph quadruples of type 32 for the bowtie graph G
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the sign of S is the integer

sign(S) = (−1)∑m
i=1(ℓ(α

(i))−1)(−1)|{e∈U(θ): f (e)=−1}|, (4.3)

and the weight of S is the integer

weight(S) =
m

∑
i=1

(ri − 1) + |{e ∈ U(θ) : f (e) = q}|. (4.4)

We denote by SQ(G) the set of subgraph quadruples of G.

Theorem 6. [28, Theorem 9.5] The chromatic quasisymmetric function XG(x; q) of a natural
unit interval graph G satisfies

XG(x; q) = ∑
S∈SQ(G)

sign(S)qweight(S)etype(S). (4.5)

Example 6. Figure 6 shows the edges of the subgraph quadruples of type 32 for the bowtie graph,
where the unnecessary edges are shown by dotted lines and would each be assigned a q or a (−1).
If we have a single equivalence class, then α is either 32 or 23 and there are either 3 or 2 choices
for r. If we have two, then α(1) = 3, α(2) = 2, there are 3 choices of r1, and 2 choices of r2. We
have written the contributions to the coefficient of e32, taking into account the choices of f and r.
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We can apply the earlier sign-reversing involution to subgraph quadruples to prove
the following combinatorial e-expansion of Shareshian and Wachs [25, Section 5].

Proposition 2. The chromatic quasisymmetric function of the path Pn is given by

XPn(x; q) = ∑
α⊨n

qℓ(α)−1[α1]q[α2 − 1]q · · · [αℓ − 1]qesort(α), (4.6)

where the vertices of Pn are labelled so that (1.6) holds and we define [k]q = 1 + q + · · ·+ qk−1.

We could try to adapt our other sign-reversing involutions to subgraph quadruples.

Problem 2. Use subgraph quadruples to prove combinatorial e-positive expansions for the chro-
matic quasisymmetric functions XKγ(x; q) and X

K(ϵ,ζ)
γ

(x; q).
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