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Abstract. This extended abstract is an introduction to a conjecture attempting to relate
the representation theory of finite unipotent groups to the representation theory of
symmetric groups via combinatorial Hopf algebras. Chromatic symmetric functions
arise naturally through the representation theory of unipotent groups, and a positive
answer to the conjecture should have useful things to say about the e-positivity of these
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1 Introduction

Stanley chromatic symmetric functions have seen increased attention in recent years
with attempts to construct Sn-modules via Hessenberg varieties [9], and connections
to the representation theory of the finite general linear groups via induced characters
from unipotent groups [6]. This paper explores a seemingly more direct relationship
between the representation theory of the finite groups of unipotent upper-triangular
matrices and the representation theory of symmetric groups that has chromatic functions
at its core. A framework developed by Aguiar–Bergeron-Sottile [1] for canonical maps
on combinatorial Hopf algebras gives the mechanism underlying this connection. In
particular, for a cocommutative Hopf algebra H, we get Hopf algebra morphisms

ch : H → Sym ∼= cf(S•),

where Sym is the Hopf algebra of symmetric functions and

cf(S•) =
⊕
n≥0

cf(Sn)

is the Hopf algebra of class functions of the finite symmetric groups Sn with product
given by induction from Young subgroups and coproduct given by restriction to Young
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subgroups (e.g. [8]). While the function ch can be given quite explicitly, it unfortunately
does not obviously lend itself to representation theoretic interpretations (vis-a-vis Sn).

The paper [2] established a Hopf algebra structure on

cf(UT•) =
⊕
n≥0

cf(UTn),

where cf(UTn) is the set of class functions on the finite group of upper-triangular matri-
ces UTn (the product comes from inflation and the coproduct from restriction). In fact,
this paper lifts the Hopf structure from a subHopf algebra

scf(UT•) =
⊕
n≥0

scf(UTn)

defined in [3]. While the latter paper also shows this Hopf algebra is isomorphic to the
symmetric functions in non-commuting variables NCSym, this point of view will not be
the focus of this abstract.

In summary, we have the following Hopf algebras of interest:

Sym ∼= cf(S•) ∼= Sym∗

scf(UT•) scf(UT•)∗

cf(UT•) cf(UT•)∗

c̃h∗
1•⟩c̃h1•⟩

ch1•⟩ ch∗
1•⟩

It is worth noting that while c̃h1•⟩ is the restriction of ch1•⟩, the functions ch∗
1•⟩ and c̃h∗

1•⟩
are fundamentally different, and only ch∗

1•⟩ seems to be functorial. The main conjecture
of this paper is as follows.

Conjecture 1. The functions ch1•⟩ and ch∗
1•⟩ come from adjoint functors UTn-mod −→ Sn-mod

and Sn-mod −→ UTn-mod.

In particular, if we apply either function to a character we should obtain a character.
By construction, it will be clear that both functions are in fact virtual characters (send
a character to a Z-linear combination of characters), but all evidence seems to indicate
that the signs all cancel.

2 Setting the stage

This section reviews the Aguiar–Bergeron–Sottile framework for combinatorial Hopf al-
gebras, and introduces the main Hopf algebra of interest on characters of the unipotent
upper-triangular matrices.
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2.1 The Aguiar–Bergeron–Sottile framework

The framework developed by Aguiar–Bergeron–Sottile [1] takes a pair (H, ζ) —where
H is a cocommutative, graded, connected Hopf algebra and ζ : H → C is an algebra
morphism— and constructs a canonical Hopf algebra homomorphism chζ : H → Sym
given explicitly on graded components by

chζ : Hn −→ Symn
h 7→ ∑

µ⊢n
ζ(∆µ(h))mµ,

where mµ is the monomial symmetric functions corresponding to the integer partition
µ, and if ℓ(µ) = ℓ, then ∆µ is the composition of ∆ℓ with the standard projection H⊗ℓ →
Hµ1 ⊗ · · · ⊗Hµℓ

; in this case, ζ is applied diagonally.
While often applied to other situations, the framework can in fact be applied to the

classical situation of
ch : cf(S•) −→ Sym

ψλ 7→ sλ,
(2.1)

where λ is an integer partition, ψλ is the corresponding irreducible character of S|λ|, and
sλ is the corresponding Schur function. Let 1n denote the trivial character of Sn, and ⟨·, ·⟩
the usual inner product on class functions. If 1•⟩ : cf(S•) → C is the algebra morphism
on graded components given by

1•⟩ : cf(Sn) −→ C

γ 7→ ⟨γ,1n⟩,

then ch1•⟩ is the same as the standard function (2.1).

2.2 The Hopf algebra cf(UT•)

Fix a power of a prime q, and for n ∈ Z≥0, let

UTn = {g ∈ GLn(Fq) | (g − Idn)ij ̸= 0 implies i < j}

be the subgroup of unipotent upper-triangular matrices with entries in the finite field
Fq. The representation theory of these groups is well-known to be wild, but we won’t
let that deter us. In particular, the space of class functions cf(UTn) has a canonical basis
given by the irreducible characters Irr(G).

We form a graded vector space,

cf(UT•) =
⊕
n≥0

cf(UTn),
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which has an inner product

⟨γ, ψ⟩ =


1

|UTn| ∑
u∈UTn

γ(u)ψ(u) if γ, ψ ∈ cf(UTn),

0 otherwise.
(2.2)

The basis of irreducible characters forms an orthonormal basis of this space. We upgrade
to a graded Hopf algebra with the graded product

· : cf(UTm)⊗ cf(UTn) −→ cf(UTm+n)

ψ ⊗ γ 7→ InfUTm+n
UTm⊕UTn

(ψ ⊗ γ),

where UTm ⊕UTn is the block diagonal quotient (and inflation Inf lifts functions up from
that quotient), and coproduct

∆ : cf(UTn) −→
n⊕

j=0

cf(UTj)⊗ cf(UTn−j)

ψ 7→ ∑
A⊆{1,2,...,n}

ResUTn
UTA×UTA

(ψ),

where Ā is the complement of A and UTA (∼= UT|A|) is the subset of matrices whose
nonzero entries above the diagonal only occur in the rows and columns in A.

We obtain the dual Hopf algebra cf(UT•)∗ by dualizing using the inner product (2.2).
The underlying space is the same, but uses the adjoint functor induction for the product
and deflation for the coproduct.

Returning to the ABS framework, we have an algebra morphism suggested by the
symmetric group case given by

1•⟩ : cf(UTn) −→ C

γ 7→ ⟨γ,1n⟩,

which gives a corresponding canonical map ch1•⟩ : cf(UT•) −→ Sym. In particular, for
γ ∈ cf(UTn),

ch1•⟩(γ) = ∑
A⊨{1,2,...,n}

bl(A)⊢n

⟨ResUTn
UTA

(γ),1⟩mbl(A),

where A = (A1, . . . , Aℓ) ⊨ {1, 2, . . . , n} is a set composition (an ordered list of nonempty
subsets that partition {1, 2, . . . , n}) and bl(A) = (|A1|, |A2|, . . . , |Aℓ|) is a composition of
n. In particular, since the transition matrix from monomial to symmetric functions is
integral, we see that the image of a character will be a virtual character.
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3 Evidence for the conjecture

In this section we gather some evidence for the conjecture (though we omit complete
computations of smaller examples). We begin by examining some natural UTn charac-
ters that are more understandable than the basis Irr(UTn). Then we examine the two
functions ch1•⟩ and ch∗

1•⟩, individually.

3.1 More combinatorial spaces of characters

An F×
q -set partition of {1, 2, . . . , n} is a subset

λ ⊆ {(i, j; a) | 1 ≤ i < j ≤ n, a ∈ F×
q }

such that if (i, k; a), (j, l; b) ∈ λ, then i = j or k = l implies (i, k; a) = (j, l; b). Let

Pn(q) = {F×
q -set partitions of {1, 2, . . . , n}}.

We typically view λ as an edge labeled graph Γλ on vertices {1, 2, . . . , n} with an edge
(called an arc) labeled by a from i to j if (i, j; a) ∈ λ. For example,

{
(1, 3; a), (2, 7; b), (3, 5; c),

(7, 8; d), (8, 9; e)

}
↔ •

1
•
2

•
3

•
4

•
5

•
6

•
7

•
8

•
9

a
b

c ed .

In practice, the labels are not particularly important for our purposes, so we will usually
omit the edge labels in the graph Γλ, and we obtain a more standard interpretation of
set partition if we let the blocks of the set partition be the connected components of Γλ.

We say an element λ ∈ Pn(q) is

• non-nesting if the set of nestings NSTλ = ∅, where

NSTλ = {((i, l; a), (j, k; b)) ∈ λ × λ | i < j < k < l}.

• non-crossing if the set of crossings CRSλ = ∅, where

CRSλ = {((i, k; a), (j, l; b)) ∈ λ × λ | i < j < k < l}.

In either case, we can evaluate in the graph Γλ whether the edges have any nestings or
crossings.

Using this combinatorics we construct two families of characters by inducing from
families of subgroups. Fix a non-trivial homomorphism ϑ : F+

q → C×. For λ ∈ Pn(q),
define

ϑλ : UTn −→ C

u 7→ ∏
(i,j;a)∈λ

ϑ(auij),
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which restricts to a linear character of the subgroup

UTλ = {u ∈ UTn | uij = 0 if (i, k; a) ∈ λ, i < j < k}.

This gives us an induced character

χλ = IndUTn
UTλ

(ϑλ).

For λ, µ ∈ Pn(q), these characters are orthogonal

⟨χλ, χµ⟩ = q|CRSλ|δλµ, (3.1)

and every irreducible character in Irr(G) is a constituent of exactly one such character
[5]. Here, χ∅ = 1UTn is the trivial character.

If we take the space spanned by these characters we get a subspace

scf(UT•) =
⊕
n≥0

scf(UTn), where scf(UTn) = C-span{χλ | λ ∈ Pn(q)},

that forms a subHopf algebra of cf(UT•) [3].
Another family of characters comes from λ ∈ Pn(2) non-nesting. Define

χ̄λ = IndUTn
UTλ

(1) where UTλ = {u ∈ UTn | ujk = 0, if i ≤ j < k ≤ l, (i, l; a) ∈ λ}.

For example, if λ = {(1, 4; 1), (3, 5; 1), (5, 6; 1)} ∈ P6(2), then

UTλ =



1 0 0 0 ∗ ∗
0 1 0 0 ∗ ∗
0 0 1 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 0
0 0 0 0 0 1

 ⊆ UTλ =



1 0 0 ⊛ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 0 ⊛ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ⊛
0 0 0 0 0 1

 ,

where the coordinates of λ are indicated by bold 0 or circled ⊛. Both the regular char-
acter χ̄{(1,n;1)} and the trivial character χ̄∅ of UTn are of this form.

While these characters are no longer pairwise orthogonal, we still have that

scf(UT•) =
⊕
n≥0

scf(UTn), where scf(UTn) = C-span{χ̄λ | λ ∈ Pn(2), non-nesting},

is a subHopf algebra of scf(UT•) [4].
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3.2 The function ch1•⟩

We begin by considering the image of the characters χλ for λ ∈ Pn(q). Our most com-
plete answer is for those characters χλ corresponding to elements λ ∈ Pn(q) that are
both non-nesting and non-crossing. By (3.1), these are also irreducible characters.

Chromatic symmetric functions arise naturally in the image. Recall, a proper coloring
of a graph Γ = (V, E) is a function c : V → Z≥1 such that if (a, b) ∈ E then c(a) ̸= c(b).
Stanley [10] defined the chromatic symmetric function

XΓ = ∑
c:V→Z≥1

a proper coloring

Xc, where Xc = X|c−1(1)|
1 X|c−1(2)|

2 · · · .

For λ ∈ Pn(q), let

Nλ = {1 ≤ j ≤ n | i < j < k, (i, k, a) ∈ λ},

and for any subset M ⊆ Nλ define a graph ΓM
λ with vertices {1, 2, . . . , n} and edges

{{j, k} | i ≤ j < k ≤ l, (i, l, a) ∈ λ, j, k ∈ M ∪ {i, l}}.

For example, if λ = {(1, 5; a), (5, 6; b), (8, 10; c)}, then

Nλ = {2, 3, 4, 9} and Γ{2,4,9}
λ = •

1
•
3

•
5

•
6

•
7

•
8

•
10− − − −

•
2

•
4

•
9

.

Note that Γλ is a subgraph of ΓM
λ for every subset M. We now get the image of some of

the irreducible characters of UTn.

Theorem 1. Let t = q − 1. For λ ∈ Pn(q) non-nesting and non-crossing,

ch1•⟩(χ
λ) = ∑

M⊆Nλ

t|M|XΓM
λ

.

The following lemma gives an essential outline for how to compute the restriction of
characters with an eye towards finding a copy of the trivial character. Heuristically, we
can think of restriction as picking a subset of vertices in our graph Γλ. If an edge has
endpoints in the subset, that edge remains. If an edge is missing one or two endpoints,
we either re-attach the unattached endpoints in all possible ways such that the new edge
weakly nests in the original edge or remove the edge.

Lemma 1 ([11]). (a) Factorization. For λ ∈ Pn(q) and A = (A1, A2, . . . , Aℓ) ⊨ n,

ResUTn
UTA

( χλ

χλ(1)

)
=

⊙
1≤j≤ℓ
(i,l;a)∈λ

ResUTn
UTAj

( χ(i,l;a)

χ(i,l;a)(1)

)
,

where ⊙ denotes the pointwise product on functions.
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(b) Local restriction. For (i, l, a) ∈ λ and A ⊆ {1, 2, . . . , n},

ResUTn
UTA

(χ(i,l;a)) =



q#{1≤j≤l|j/∈A}χ(i,l;a) if i, l ∈ A,

q#{1≤j≤l|j/∈A}
(
1+ ∑

i<k<l,
k∈A,b∈F×q

χ(i,k;b)
)

if i ∈ A, l /∈ A,

q#{1≤j≤l|j/∈A}
(
1+ ∑

i<k<l
k∈A,b∈F×q

χ(k,l;b)
)

if i /∈ A, l ∈ A,

q#{1≤j≤l|j/∈A}
(
(|A ∩ [i, l]|t + 1)1+ ∑

i<j<k<l
j,k∈A,b∈F×q

χ(j,k;b)
)

if i, l /∈ A.

(c) Conflict resolution. For i ≤ j < k ≤ l,

χ(i,k;a) ⊙ χ(j,l,b) =



χ{(i,k;a),(j,l;b)} if i ̸= j and k ̸= l,
χ(i,l;b) + ∑

i<i′<k
c∈F×q

χ{(i′,k;c),(i,l;b)} if i = j and k ̸= l,

χ(i,k;a) + ∑
j<l′<l
c∈F×q

χ{(i,k;a),(i,l′;c)} if i ̸= j and k = l.

Using this lemma we see that to get the trivial character (corresponding to the graph
with no edges) when λ ∈ Pn(q) is non-nesting, we must detach an endpoint of every
arc.

Lemma 2. Suppose λ ∈ Pn(q), and A ⊨ n. Then

(a) If (i, j, a) ∈ λ implies i and j are in different blocks of A, then

⟨ResUTn
UTA

(χλ),1⟩ ̸= 0.

(b) If λ is non-nesting and
⟨ResUTn

UTA
(χλ),1⟩ ̸= 0,

then (i, j, a) ∈ λ implies i and j are in different blocks of A.

Note that if λ ∈ Pn(q), then every A specifies a function

cA : {1, 2, . . . , n} −→ {1, 2, . . . , ℓ(A)}
j 7→ i, where j ∈ Ai

By the Lemma 2, when λ is also non-nesting, this function is a proper coloring of the
graph Γλ if and only if

⟨ResUTn
UTA

(χλ),1⟩ ̸= 0.
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Lemma 3. If λ ∈ Pn(q) is a non-nesting and non-crossing, then

ch1⟩(χ
λ) = ∑

c:Vλ→Z≥1
a proper coloring

of Γλ

∏
(i,k;a)∈λ

d/∈{c(i),c(k)}

(
#{i < j < k | c(j) = d}t + 1

)
Xc.

Since the graphs in question are unit interval graphs, from Gasharov [7] we obtain
the following corollary to Theorem 1.

Corollary 1. For λ ∈ Pn(q) non-nesting and non-crossing, ch1•⟩(χ
λ) is a non-negative linear

combination of schur functions with coefficients in Z≥0[t].

Examples 1. Some easy examples include:

(a) Since the trivial character 1n ∈ cf(UTn) is in fact InfUTn
{1} (1), by the multiplicativity

of the canonical map,

ch1•⟩(1UTn) = IndSn
S1×S1×···×S1

(11 ⊗ 11 ⊗ · · · ⊗ 11),

or the regular character of Sn.

(b) The linear characters of UTn are all obtained from F×
q -set partitions and they cor-

respond to λ ∈ Pn(q) such that (i, j; a) ∈ λ implies j − i = 1. At q = 2 these are in
bijective correspondence with integer compositions and give a subHopf algebra of
cf(UTn) isomorphic to the Hopf algebra of noncommutative symmetric functions
NSym. For the single block partition σn, we have

ch1•⟩(χ
σn) = XPn ,

where Pn is the path graph. In general, we get a product of path graphs corre-
sponding to the composition part lengths.

(c) The minimal n such that scf(UTn) ̸= cf(UTn) is n = 4. In particular, for a, b ∈ F×
q ,

χ{(1,3;a),(2,4;b)} = ∑
c∈Fq

χ
{(1,3;a),(2,4;b)}
c ,

is a decomposition into irreducible characters, where

χ
{(1,3;a),(2,4;b)}
c (u) =

{
qϑc(u12)ϑa(u13)ϑb(u24) if u23 = 0 and u12a = u34b,
0, otherwise.

Then direct computation gives

ch1•⟩(χ
{(1,3;a),(2,4;b)}
c ) = 2(1 + δc,0)m(2,2) + (6 + 2q)m(2,1,1) + 24qm(14)

=

{
4s(2,2) + 2(2 + t)s(2,1,1) + (18t + 4)s(14) if c = 0,
2s(2,2) + 2(3 + t)s(2,1,1) + (18t + 2)s(14) if c ̸= 0.
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For the permutation modules χ̄λ we again get a sum of chromatic symmetric func-
tions with coefficients powers of t = q − 1.

Theorem 2. For λ ∈ Pn non-nesting,

ch1•⟩(χ̄
λ) = ∑

E⊆E
Nλ
λ

t|E|X({1,2,...,n},E),

where ENλ
λ is the edge set of ΓNλ

λ .

The key step to this theorem is the following lemma that writes the image of ch1•⟩
in terms of monomials. Given a coloring c : {1, 2, . . . , n} → Z≥1 of a graph ΓNλ

λ (not
necessarily proper), we define

Mc(λ) = max{E | c is a proper coloring of ({1, 2, . . . , n}, E)},

where maximality is with respect to containment.

Lemma 4. For λ ∈ Pn non-nesting,

ch1•⟩(χ̄
λ) = ∑

c:{1,2,...,n}→Z≥1

q|Mc(λ)|Xc.

Note that Theorem 2 hardly seems like evidence, since we get plenty of graphs show-
ing up that are not unit-interval graphs. In fact, in the case of λ = {(1, n; a)}, we get
all possible graphs appearing in the sum, since ΓNλ

λ is the complete graph. However, it
appears that we still get positive sums, as the bad graphs get corrected by good ones.
For example,

ch1•⟩(χ̄
{(1,4;a)}) =t0(s(4) + 3s(3,1) + 2s(2,2) + 3s(2,1,1) + s(1,1,1,1))

+ t112(s(3,1) + s(2,2) + 2s(2,1,1) + 1s(1,1,1,1))

+ t212(s(3,1) + 2s(2,2) + 6s(2,1,1) + 5s(1,1,1,1))

+ t34(s(3,1) + 5s(2,2) + 23s(2,1,1) + 38s(1,1,1,1))

+ t46(s(2,2) + 9s(2,1,1) + 31s(1,1,1,1))

+ t512(s(2,1,1) + 9s(1,1,1,1)) + t624s(1,1,1,1).

In fact, the constant term is a familiar module.

Proposition 1. For λ ∈ Pn(2) non-nesting,

lim
t→0

ch1•⟩(χ̄
λ) = h(1n),

or the symmetric function corresponding to the regular character of Sn.
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3.3 The function ch∗
1•⟩

In this section, we investigate the dual map ch∗
1•⟩ : Sym → cf(UT•)∗, given by

⟨ch∗
1•⟩( f (X)), γ⟩ = ⟨ f (X), ch1•⟩(γ)⟩.

The previous section allows us to quickly compute the image of hn by duality.

Proposition 2. For n ∈ Z≥0,
ch∗

1•⟩(hn) = 1UTn .

Note that the codomain is in fact the dual to cf(UT•), so has product given by

γm · φn = ∑
A=(A1,A2)⊨m+n
|A1|=m,|A2|=n

IndUTm+n
UTA

(γm ⊗ φn) for γm ∈ cf(UTm)
∗, φn ∈ cf(UTn)

∗.

Remark 1. Here we note that while scf(UT•) ⊆ cf(UT•) as Hopf algebras, the same does
not hold for the dual spaces, as we instead obtain quotient Hopf algebras. While the
coproduct is defined in the same way for both dual spaces, the product will use different
adjoint functors to restriction in each case. In this paper we are therefore using the dual
of cf(UT•), since it preserves modules unlike the variant of induction used in the dual to
scf(UT•). However, it is worth noting that Proposition 2 holds for the dual of scf(UT•)
as well.

By Proposition 2 and because ch∗
1•⟩ is a Hopf algebra morphism, for any integer

partition λ ⊢ n of length k,

ch∗
1•⟩(hλ) = ∑

A=(A1,...,Ak)⊨{1,2,...,n}
|Aj |=λj

IndUTn
UTA

(1).

In particular, we get that the permutation module IndSn
Sλ
(1) gets sent to a UTn-module.

If we add the Jacobi–Trudi formula we obtain that for an integer partition λ ⊢ n of
length k,

ch∗
1•⟩(sλ) = ∑

w∈Sk

(−1)ℓ(w) ∑
A=(A1,A2,...,Ak)⊨{1,2,...,n}

|Aj |=λw(j)−w(j)+j

IndUTn
UTA

(1). (3.2)

In particular, it is evident that ch∗
1•⟩(sλ) will be a virtual character.

A particular case of interest is the sign character or en.

Lemma 5. For n ∈ Z≥0

en = ∑
µ⊨n

(−1)n−ℓ(µ)hµ.
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We conclude with the following intriguing consequence concerning the antipode S∗

of the dual Hopf algebra cf(UT•)∗.

Corollary 2. For n ∈ Z≥0,
ch∗

1•⟩(en) = (−1)nS∗(1n).

Remark 2. Note that if one could show that ch∗
1•⟩(en) is a character, then this would

imply that ch1•⟩(χ) is e-positive for all χ ∈ Irr(UTn).
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