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Abstract. We introduce a probabilistic generalization of the dual Robinson–Schensted–
Knuth correspondence, called qtRSK∗, depending on two parameters q and t. This
correspondence extends the qRSt correspondence, recently introduced by the authors,
and allows the first tableaux-theoretic proof of the dual Cauchy identity for Macdonald
polynomials. By specializing q and t, one recovers the row and column insertion
version of the classical dual RSK correspondence as well as of q- and t-deformations
thereof which are connected to q-Whittaker and Hall–Littlewood polynomials, but also
a novel correspondence for Jack polynomials.
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1 Introduction

The Robinson–Schensted–Knuth (RSK) correspondence is a bijection between matrices
of nonnegative integers with finite support and pairs of semistandard Young tableaux of
the same shape and has significant applications in combinatorics, representation theory,
probability theory and algebraic geometry. It was introduced by Knuth [8] and gen-
eralizes the Robinson–Schensted correspondence (RS) introduced by Robinson [14] for
permutations and independently by Schensted [15] for words. A closely related bijection
is the dual RSK correspondence (RSK∗) introduced by Knuth [8] which yields a bijective
proof of the dual Cauchy identity

∑
λ

sλ(x)sλ′(y) = ∏
1≤i≤m
1≤j≤n

(1 + xiyj), (1.1)

where the sum is over all partitions λ, sλ denotes the Schur polynomial in the variables
x = (x1, . . . , xm) or y = (y1, . . . , yn) respectively, and λ′ is the conjugate of λ.
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All of the above mentioned correspondences have been extended in various directions
throughout the last few decades. Among others several randomized generalizations of
RS, RSK and RSK∗ were introduced in [2, 3, 4, 10, 11, 12, 13]. These generalizations
associate to each permutation or nonnegative integer matrix respectively a distribution
on pairs of (dual) (semi)standard Young tableaux depending on a parameter q or t and
thereby giving a proof of the (dual) Cauchy identity for q-Whittaker or Hall–Littlewood
symmetric functions. Similar to the classical RSK algorithm, these randomized general-
izations have many applications to probabilistic models, compare for example with [2,
3, 4, 10].

In a previous paper [1], the authors introduced a randomized generalization for RS
called qRSt depending on two parameters q and t. This generalization was designed
to prove the squarefree part of the Cauchy identity for the Macdonald symmetric func-
tions Pλ(x; q, t) and Qλ(x; q, t). Analogously to Macdonald symmetric functions, which
specialize to q-Whittaker, Hall–Littlewood and Schur symmetric polynomials, the qRSt
correspondence specializes to the corresponding randomized variations of RS, and to the
row and column insertion versions of RS itself for q = t = 0 or q = t→ ∞ respectively.

In this abstract we present a unifying generalization of both qRSt and RSK∗, called
qtRSK∗, and thereby give the first tableaux-theoretic proof of the dual Cauchy identity
for Macdonald polynomials

∑
λ

Pλ(x; q, t)Pλ′(y; t, q) = ∏
1≤i≤m
1≤j≤n

(1 + xiyj). (1.2)

Our map specializes to known randomized generalizations of RSK∗ by specializing q
or t respectively, and to (q, t)-variations of RS for words or RS, i.e., qRSt, by restricting
the input matrices. In particular we obtain a novel correspondence for Jack polynomials
with an intriguing property when restricting to words.

This extended abstract is organized as follows. In §2 we present the notion of an
insertion algorithm by using local growth rules. In §3 we review Macdonald polynomi-
als and introduce (q, t)-analogue of up and dual down operators. In §4 we define the
forward and backward probabilities which are the building block of qtRSK∗ which is in-
troduced in §5. In §6 we discuss the properties of qtRSK∗. For further details, including
the proofs, we refer the reader to our paper [7].

Notation

We assume the reader is familiar with (skew) Young diagrams, semistandard Young
tableaux (abbreviated SSYT), and Schur polynomials, as defined, e.g., in [16, Ch. 7].
We draw Young diagrams in French notation and starting from §4 in Quebecois notation,
in which the boxes are right-justified instead of left-justified. We write SSYT(λ) (resp.,
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SSYT∗(λ)) for the set of SSYTs (resp., dual SSYTs) of shape λ, where a dual SSYT is a
filling of the cells of λ with strictly increasing rows and weakly increasing columns. If
T is a (dual) SSYT, we denote by T(i) the shape of the subtableau consisting of entries at
most i.

2 Insertion algorithms and local dual growth rules

Young’s lattice is the partial order (Y,⊆) on partitions defined by the inclusion of Young
diagrams; its meet and join are given by ∩ and ∪, respectively. We say that λ/µ is a
horizontal strip (resp., vertical strip) if no two cells of λ/µ are in the same column (resp.,
row), where we use the notation µ ≺ λ (resp., µ ≺′ λ). We define the up operator Ux and
dual down operator D∗y as Q(x, y)-linear maps on the Q(x, y)-vector space Q(x, y)Y with
basis Y via

Uxλ = ∑
ν≻λ

x|ν/λ|ν, D∗yλ = ∑
µ≺′λ

y|λ/µ|µ.

The up and dual down operator satisfy the commutation relation

D∗yUx = (1 + xy)UxD∗y . (2.1)

The commutation relation immediately implies the dual Cauchy identity (1.1). Indeed
by rewriting the Schur polynomials as

sλ(x) = ⟨Uxm · · ·Ux1∅, λ⟩ , sλ′(y) =
〈

D∗y1
· · ·D∗yn λ, ∅

〉
, (2.2)

where ⟨·, ·⟩ is the inner product defined by ⟨λ, µ⟩ = δλ,µ, for all λ, µ ∈ Y, the dual Cauchy
identity follows by a straight forward induction using the commutation relation, see for
example [7, §2.2]. Define the sets U k(λ, ρ) := {ν : λ ≺′ ν ≻ ρ, |ν/(λ ∪ ρ)| = k} and
Dk(λ, ρ) := {µ : λ ≻ µ ≺′ ρ, |(λ ∩ ρ)/µ| = k}. The equation (2.1) can be reformulated as
the set of equations

|U k(λ, ρ)| = |Dk(λ, ρ)|+ |Dk−1(λ, ρ)|. (2.3)

for all partitions λ, ρ and non-negative integers k. It turns out to be quite fruitful to prove
these equations bijectively.

An inner corner of a partition λ is a cell c ∈ λ such that λ/µ = {c} for a partition
µ ⊆ λ. An outer corner of λ is a cell c /∈ λ such that ν/λ = {c} for a partition ν with
λ ⊆ ν. We call an inner corner c of λ ∩ ρ removable with respect to (λ, ρ) if λ/µ is a
horizontal strip and ρ/µ is a vertical strip, where (λ ∩ ρ)/µ = {c}. Analogously we call
an outer corner c of λ ∪ ρ addable with respect to (λ, ρ) if ν/λ is a vertical strip and ν/ρ

is a horizontal strip, where ν/(λ ∪ ρ) = {c}. For both removable and addable corners
we omit referring to (λ, ρ) whenever the partitions λ, ρ are clear from context. For an
example see Figure 1.
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Figure 1: For λ = (7, 7, 3, 2, 2) and ρ = (8, 5, 4, 2, 2, 1): (left) the partition λ∩ ρ together
with all inner corners, (middle) the partition λ ∪ ρ with all outer corners, and (right)
λ ∩ ρ with all removable inner corners of λ ∩ ρ and addable outer corners of λ ∪ ρ. At
the bottom we show the color and shading code for cells in certain skew shapes.

Each partition ν in U k(λ, ρ) corresponds to a k-subset of the addable outer corners of
λ ∪ ρ and each partition µ in Dk(λ, ρ) corresponds to a k-subset of the removable inner
corners of λ ∩ ρ. We call a collection F• = {Fλ,ρ,k : λ, ρ ∈ Y, k ∈N} of bijections

Fλ,ρ,k : Dk−1(λ, ρ) ∪Dk(λ, ρ)→ U k(λ, ρ),

a set of local dual growth rules. Two of the many possible bijections Fλ,ρ,k are very natural:
the dual row insertion bijection Frow

λ,ρ,k and the dual column insertion bijection Fcol
λ,ρ,k. For k = 1

the dual row (resp., column) insertion bijection maps a removable inner corner to the
next addable outer corner in a row above (resp., column to the right) and sends the
empty set to the lowest (resp., left-most) addable outer corner. Figure 2 illustrates this
case. For k > 1 both maps are defined recursively by

F•λ,ρ,k(X) =


⋃

x∈X
F•λ,ρ,1({x}) |X| = k,

F•λ,ρ,1(∅) ∪ ⋃
x∈X

F•λ,ρ,1({x}) |X| = k− 1,
(2.4)

where F•λ,ρ,k stands for Frow
λ,ρ,k or Fcol

λ,ρ,k respectively.
Each set of local growth rules F• determines a bijection

RSK∗F• : {0, 1}m×n →
⋃
λ

SSYT(λ)× SSYT∗(λ), A 7→ (P, Q).

While the bijection RSK∗F• is best understood by using Fomin’s growth diagrams [6], we
describe it as an insertion algorithm in order to save space and refer the reader to [7,
§2.3] for more details.
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Frow
λ,ρ,1 Fcol

λ,ρ,1

Figure 2: The two maps Frow
λ,ρ,1 (left) and Fcol

λ,ρ,1 (right) for λ = (7, 7, 3, 2, 2) and ρ =

(8, 5, 4, 2, 2, 1). The removable inner corners (colored in orange) and the addable outer
corners (colored in blue) are obtained in Figure 1.

Definition 2.1. Let F• be a set of local dual growth rules, T an SSYT and i1 < · · · < ir positive
integers. We define the F•-insertion of i1, . . . , ir into T as the SSYT T̂ obtained as follows. Call
the (multi-)1 set {i1, . . . , ir} the insertion queue. Let i be the smallest integer of the insertion
queue. Denote by C the set of cells of Fλ,ρ,k(µ)/(λ ∪ ρ) where λ = T(i), ρ = T̂(i−1), µ = T(i−1)

and k is the multiplicity of i in the insertion queue. Place i into each cell of C, delete all i’s from
the insertion queue and add all entries which have been replaced (bumped) in the current step to
the insertion queue. Repeat the previous step until the insertion queue is empty.

For a m× n {0, 1}-matrix A denote by i(j)
1 < · · · < i(j)

rj the rows for which A has a 1
entry in the j-th column. The insertion tableau P is obtained by the successive F•-insertion
of i(j)

1 , . . . , i(j)
rj , starting with j = 1, into the empty tableau. The recording tableau Q is the

dual SSYT such that Q(j) has the same shape as P after the j-th insertion process.

3 Macdonald polynomials

We review certain basic properties of Macdonald polynomials, following [9, Ch. VI].
The Macdonald symmetric functions Pλ(x; q, t) are symmetric functions in an infinite set
of variables x = (x1, x2, . . .) with coefficients in the field Q(q, t) of rational functions
in two additional variables q and t. While they are originally defined indirectly by
a linear algebra criterion, we take the somewhat unusual perspective to define them
combinatorially using their monomial expansion via SSYTs.

We define for a cell c = (x, y) ∈ λ its arm-length aλ(c) and its leg-length ℓλ(c) by

aλ(c) = λy − x, ℓλ(c) = λ′x − y.

1Note that at the initial step this is just an ordinary set. The same is true for Definition 5.1.
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c aλ(c)

ℓλ(c)

Figure 3: The Young diagram of the partition λ = (7, 6, 3, 2) for which the cell c =

(2, 1) is marked.

The hook-length of c is defined as hλ(c) = aλ(c) + ℓλ(c) + 1. The cell c as in Figure 3 has
arm-length aλ(c) = 5, leg-length ℓλ(c) = 3, and hook-length hλ(c) = 9. We define the
(q, t)-hook-lengths hℓλ(c) = 1− qaλ(c)tℓλ(c)+1 and ha

λ(c) = 1− qaλ(c)+1tℓλ(c) for c ∈ λ, and
hℓλ(c) = ha

λ(c) = 1 if c ̸∈ λ. Further we need their ratio which is denoted by bλ(c)

bλ(c) =
hℓλ(c)
ha

λ(c)
.

For µ ⊆ λ, define2

ψλ/µ(q, t) = ∏
c∈Rλ/µ−Cλ/µ

bµ(c)
bλ(c)

, φ∗λ/µ(q, t) = ∏
c∈Cλ/µ−Rλ/µ

bλ(c)
bµ(c)

,

where Rλ/µ (resp., Cλ/µ) is the set of all cells in λ which are in the same row (resp.,
column) as a cell of λ/µ. For a semistandard Young tableau T and a dual semistandard
Young tableau T∗, define the rational functions ψT(q, t), φ∗T∗(q, t) by

ψT(q, t) = ∏
i≥1

ψT(i)/T(i−1)(q, t), φ∗T∗(q, t) = ∏
i≥1

φT∗(i)/T∗(i−1)(q, t).

Macdonald [9, Ch. VI (7.13)] showed the following monomial expansions over semistan-
dard Young tableaux of shape λ

Pλ(x; q, t) = ∑
T∈SSYT(λ)

ψT(q, t)xT, Pλ′(x; t, q) = ∑
T∗∈SSYT∗(λ)

φ∗T∗(q, t)xT∗ . (3.1)

By using the linear algebraic definition, Macdonald proved the following generalization
of the dual Cauchy identity.

Theorem 3.1 ([9, Ch. VI (5.4)]). Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two sets of
variables. Then

∏
i,j
(1 + xiyj) = ∑

λ

Pλ(x; q, t)Pλ′(y; t, q). (3.2)

2Contrary to Macdonald [9, Ch. VI (6.24)] we use the symbol φ∗ instead of ψ′.
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In this abstract our goal is to provide a tableaux-theoretic proof of this theorem by
starting with the monomial expansion of Macdonald polynomials. We define the (q, t)-
up operator and (q, t)-dual down operator as

Ux(q, t)λ = ∑
ν≻λ

x|ν/λ|ψν/λ(q, t) ν, D∗y(q, t)λ = ∑
µ≺′λ

y|λ/µ|φ∗λ/µ(q, t) µ.

Theorem 3.2. The (q, t)-up and (q, t)-dual down operators satisfy the commutation relation

D∗y(q, t)Ux(q, t) = (1 + xy)Ux(q, t)D∗y(q, t). (3.3)

Note that the commutation relation (3.3) is actually equivalent to the skew version
of the dual Cauchy identity, compare to [9, Ch. VI, Ex 6(c)]. It is immediate by the
definition of the (q, t)-up and (q, t)-dual down operator and the monomial expansions
of Pλ and Pλ′ in (3.1) that

Pλ(x; q, t) = ⟨Uxm(q, t) · · ·Ux1(q, t)∅, λ⟩, Pλ′(y; t, q) = ⟨D∗y1
(q, t) · · ·D∗yn(q, t)λ, ∅⟩,

when restricting to x = (x1, . . . , xm) and y = (y1, . . . , yn). The Cauchy identity (3.2)
follows algebraically by the same standard argument as in the Schur case.

4 The qtRSK∗ correspondence

Definition 4.1. Let X and Y be finite sets equipped with weight functions ω : X → A, ω :
Y → A, where A is an algebra. A probabilistic bijection from (X, ω) to (Y, ω) is a pair of
maps P ,P : X×Y → A satisfying

1. for each x ∈ X, ∑
y∈Y
P(x, y) = 1, and for each y ∈ Y, ∑

x∈X
P(x, y) = 1,

2. for each x ∈ X and y ∈ Y, ω(x)P(x, y) = P(x, y)ω(y).

For the remainder of the abstract we write P(x → y) for P(x, y) and P(x ← y)
for P(x, y), and think of P(x → y) as the “probability” of mapping x to y, called for-
ward probability, and of P(x ← y) as the “probability” of mapping y back to x, called
the backward probability. We put “probability” in quotes because we do not require
P(x → y),P(x ← y) ∈ [0, 1] (they need not even be real-valued). We refer to (2) as
the compatibility condition. It is immediate that a probabilistic bijection from (X, ω) to
(Y, ω) implies the identity

∑
x∈X

ω(x) = ∑
y∈Y

ω(y).

We want to point out, that there is an easy connection between the concept of probabilis-
tic bijections and joint distributions, compare for example with [1, Remark 4.1.4].
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For partitions λ, ρ, µ, ν satisfying µ ≺ λ ≺′ ν and µ ≺′ ρ ≺ ν we define the weights

ωλ,ρ(µ) = ψλ/µ(q, t)φ∗ρ/µ(q, t), ωλ,ρ(ν) = ψν/ρ(q, t)φ∗ν/λ(q, t).

Analogously to (2.3), the commutation relation (3.3) is equivalent to the family of equa-
tions

∑
µ∈Dk(λ,ρ)∪Dk−1(λ,ρ)

ωλ,ρ(µ) = ∑
ν∈U k(λ,ρ)

ωλ,ρ(ν). (4.1)

In the remainder of this section we define the forward probabilities Pλ,ρ(µ → ν) and
the backward probabilities Pλ,ρ(µ← ν) which form a probabilistic bijection and thereby
prove this equation. Before we can define these probabilities, we need to introduce some
notations.

Denote by d the number of removable inner corners of λ ∩ ρ. For a subset R ⊆
[d] = {1, 2, . . . d} we define µ(R) as the partition obtained by removing from λ ∩ ρ the
i-th removable inner corner, counted from bottom to top, for all i ∈ R. For a subset
S ⊆ [0, d] = {0, 1, . . . , d} we define ν(S) as the partition obtained by adding to λ ∪ ρ the
i-th addable (“supplementable”) outer corner, where we count the addable outer corners
again from bottom to top but starting with 0.

As we see in a moment, it turns out to be convenient to draw Young diagrams using
Quebecois notation in which the boxes are right-justified instead of left-justified, i.e., one
obtains this new convention by reflecting diagrams in French convention vertically, see
Figure 4. We define Ri (resp., Ri) to be the lower right (resp., upper left) corner of the
i-th removable inner corner of λ ∩ ρ, Si (resp., Si) to be the lower right (resp., upper left)
corner of the i-th addable outer corner of λ ∪ ρ, and set Ii = Ri and Oi = Si. For an
example see Figure 4. For the rest of the abstract we identify a point with coordinates
(x, y) with the monomial qxty. Since the expressions we are interested in are homoge-
neous rational functions of degree 0 in the above defined points, these expressions are
invariant under translation of the points and hence well-defined.

For R ⊆ [d] and S ⊆ [0, d], we define the probabilities

Pλ,ρ(µ
(R) → ν(S)) = ∏

s∈S

∏
i∈[d]\R

(Ss − Ii)

∏
j∈[0,d]\S

(Ss −Oj)
∏
r∈R

∏
j∈[0,d]\S

(Rr −Oj)

∏
i∈[d]\R

(Rr − Ii)
, (4.2)

Pλ,ρ(µ
(R) ← ν(S)) = ∏

s∈S

∏
i∈[d]\R

(Ss − Ii)

∏
j∈[0,d]\S

(Ss −Oj)
∏
r∈R

∏
j∈[0,d]\S

(Rr −Oj)

∏
i∈[d]\R

(Rr − Ii)
. (4.3)

For an integer k ≥ 0 and a set S, we denote by (S
k) the set of k-element subsets of S.
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−

S0 = O0

S0 S1 = O1

S1

S2 = O2

S2

R1

R1 = I1

R1

R1 = I1

Figure 4: The partition λ ∪ ρ together with the points Ii, Oj, Ri, Ri, Sj and Sj for λ =

(7, 7, 3, 2, 2) and ρ = (8, 5, 4, 2, 2, 1) as in Figure 1.

Theorem 4.2. Let λ, ρ be partitions, d the number of removable inner corners of λ ∩ ρ, and
k ∈ [d + 1]. The probabilities defined in (4.2) and (4.3) satisfy

∑
S∈([0,d]

k )

Pλ,ρ(µ
(R) → ν(S)) = 1 for each R ∈

(
[d]

k− 1

)
∪
(
[d]
k

)
, (4.4)

∑
R∈( [d]

k−1)∪(
[d]
k )

Pλ,ρ(µ
(R) ← ν(S)) = 1 for each S ∈

(
[0, d]

k

)
, (4.5)

ωλ,ρ(µ
(R))

ωλ,ρ(ν(S))
=
Pλ,ρ(µ

(R) ← ν(S))

Pλ,ρ(µ(R) → ν(S))
for each R ∈

(
[d]

k− 1

)
∪
(
[d]
k

)
, S ∈

(
[0, d]

k

)
. (4.6)

The above theorem shows that our probabilities define a probabilistic bijection. The
proof of (4.4) and (4.5) uses an extension of Lagrange interpolation for symmetric poly-
nomials by Chen and Louck [5]. The proof of (4.6) is based on a careful analysis of the
involved terms and alternative representations of the probabilities. We refer the reader
to [7, §5] for more details.

5 The qtRSK∗ correspondence

We view the probabilities Pλ,ρ as a set of “probabilistic” local dual growth rules and
define the qtRSK∗ correspondence analogously to the insertion algorithm RSK∗F• in §2.

Definition 5.1. Let T be a semistandard Young tableau and i1 < · · · < ir be positive integers.
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The qtRSK∗-insertion of i1, . . . , ir into T, denoted

(i1, . . . , ir)
qtRSK∗−−−−→ T = T̂,

is the probability distribution computed as follows. Call the (multi-) set {i1, . . . , ir} the insertion
queue. Let i be the smallest integer of the insertion queue and denote by k the multiplicity of i
in the insertion queue. For each ν ∈ U k (λ, ρ), place i in each cell of ν/ (λ ∪ ρ) with probability
Pλ,ρ (µ→ ν), where λ = T(i), ρ = T̂(i−1), µ = T(i−1). Delete all i′s from the insertion queue
and add all entries which have been replaced (bumped) by an i to the insertion queue. Repeat the
previous step until the insertion queue is empty.

For an m × n {0, 1}-matrix A denote by i(j)
1 < · · · < i(j)

rj the rows for which A has
a 1 entry in the j-th column. The qtRSK∗-correspondence associates to A a probability
distribution P(A → P, Q) on pairs (P, Q) of an SSYT P and a dual SSYT Q of the same
shape, where the probability P(A → P, Q) is the sum of the forward probabilities of
all ways to obtain the insertion tableau P by successively qtRSK∗-inserting i(j)

1 , . . . , i(j)
rj ,

starting with j = 1, into the empty tableau and Q as the recording tableau by the analo-
gous construction as for RSK∗F• . Note that the backward probabilities P(A ← P, Q) are
defined analogously by summing over the backward probabilities instead of the forward
probabilities. By using the perspective of Fomin’s growth diagrams, it is not difficult to
prove that qtRSK∗ defines a probabilistic bijection between the weighted sets of m× n
{0, 1}-matrices with weight ω and

⊔
λ⊆(mn)

SSYT(λ)× SSYT∗(λ) with weight ω, where

ω(A) = ∏
1≤i≤m
1≤j≤n

(xiyj)
Ai,j and ω(P, Q) = ψP(q, t)φ∗Q(q, t)xPyQ.

See [7, §4.4] for more details.

Example 5.2. The insertion (2, 3)
qtRSK∗−−−−→ 1 2

3 produces

1 2 2
3 3 with probability = P(2),(1)((1)→ (3)) =

1− qt
1− q2t

,

1 2 3
2 3 with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (3, 2))

= q2t
(1− q)2(1− t)2

(1− qt)(1− q2)(1− q2t)(1− q2t2)
,

1 2
2 3
3

with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (2, 2, 1))

= qt2 (1− q)2(1− q2t)
(1− qt)(1− q2)(1− q2t2)

,
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1 2 3
2
3

with probability = P(2),(1)((1)→ (2, 1))P(2,1),(2,1)((2)→ (3, 1, 1))

= qt
(1− q)2(1− t)
(1− q2)(1− qt)2 .

6 Properties of qtRSK∗

Our randomized qtRSK∗ correspondence can be specialized in two different ways: one
can specialize the parameter q, t or restrict the correspondence to a smaller family of
matrices.

For q, t ∈ [0, 1) or q, t ∈ (1, ∞) the probabilities P(A → P, Q) and P(A ← P, Q) take
values in [0, 1], i.e., they become actual probabilities. The qtRSK∗-insertion specializes
to the q-Whittaker dual row insertion (t = 0) first described by Matveev and Petrov [10,
§5.1] and to a Hall–Littlewood dual-row insertion (q = 0), first described Matveev and
Petrov in [10, §5.4] as a q-Whittaker dual column insertion. Finally for q = t = 0 or
q = t→ ∞ we obtain the row or column insertion version of RSK∗.

By restricting the input of qtRSK∗ to {0, 1}-matrices with at most one entry equal to
1 in each column, we obtain a (q, t)-deformation of RS for words. By further restricting
to permutation matrices we obtain the qRSt correspondence. The restriction of qtRSK∗

to words is in particular interesting when further specializing to Jack polynomials, i.e.,
by setting q = tα and taking the limit t → 1. We prove in [7, Thm 6.5] that in the Jack
limit of qtRSK∗ restricted to words, interchanging adjacent columns of the input matrix
does not affect the distribution of the P-tableau. Note that this can not be extended to
all {0, 1}-matrices.

Similarly to the classical dual RSK, the qtRSK∗ correspondence also yields a tableaux-
theoretic proof of the dual Pieri rule for Macdonald polynomials. This can be obtained
by considering a growth diagram with one column for which the number of 1 entries is
fixed to k; this corresponds to multiplying by ek.
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