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Chain polynomials of generalized paving matroids
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Abstract. We prove that the chain polynomial of the lattice of flats of a paving matroid
is real-rooted, and we define a class of matroids called generalized paving matroids.
Generalized paving matroids associated to subspace lattices are shown to have real-
rooted chain polynomials, by a study of a q-analog of the subdivision operator. We
finish by studying single element extensions, and prove that the chain polynomials of
the lattice of flats of single element extensions of Un

n and Un−1
n are real-rooted.
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1 Introduction

The chain polynomial of a finite poset P is defined as

cP(t) := ∑
k≥0

ck(P)tk, (1.1)

where ck(P) is the number of k-element chains in P. The chain polynomials of posets in
several important classes have been proven to be real-rooted. For example face lattices
of simplicial [8] and cubical polytopes [1], (3 + 1)-free posets [14, Corollary 2.9], and for
some classes of distributive lattices [7, 18], but not all [16]. In [2] the authors asked for
which posets the chain polynomial is real-rooted. In particular the following conjecture
was formulated.

Conjecture 1.1. [2, Conjecture 1.2] The chain polynomial cL(t) is real-rooted for every geomet-
ric lattice L.

This conjecture can bee seen as a member of a family of recent conjectures about the
real-rootedness of Kazhdan-Lusztig polynomials [9, 11] and Chow ring Poincaré poly-
nomials [10, 17] associated matroids arising in the emerging Hodge theory of matroids
[12].

In [2], Athanasiadis and Kalampogia-Evangelinou proved Conjecture 1.1 for the sub-
space lattices Ln(q), for the partition lattices Πn and ΠB

n , and for the lattice of flats of
near-pencils and uniform matroids.
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The purpose of this paper is to verify Conjecture 1.1 for further classes of geometric
lattices. We prove Conjecture 1.1 for the lattice of flats of paving matroids, a class of
matroids which is conjectured to correspond to almost all finite matroids. We define
a new class of matroids, called generalized paving matroids, that includes the class of
paving matroids and we prove Conjecture 1.1 for generalized paving matroids associated
to subspace lattices. In the process we extend the well studied subdivision operator E
(see [6, 8]) to subspace lattices, and prove several real-rootedness results concerning
these generalized subdivision operators. We finish the paper by studying single-element
extensions and proving that the chain polynomials of the lattice of flats of single-element
extensions of some uniform matroids are real-rooted.

2 Interlacing polynomials

In this section we collect a few results and terminology that will be needed in subsequent
sections, for proofs we refer to [6].

Let f , g ∈ R[t] be real-rooted polynomials with nonnegative coefficients and of
degrees r and s, respectively. Let xr ≤ · · · ≤ x2 ≤ x1 be the zeros of f , and let
ys ≤ · · · ≤ y2 ≤ y1 be the zeros of g. We say that g interlaces f (written g ⪯ f ) if
either r = s and

ys ≤ xr ≤ · · · ≤ y2 ≤ x2 ≤ y1 ≤ x1

or r = s + 1 and
xr ≤ ys ≤ xr−1 ≤ · · · ≤ y2 ≤ x2 ≤ y1 ≤ x1.

We say that a sequence of polynomials f1, f2, . . . , fm ∈ R[t] is interlacing if fi ⪯ f j
whenever i < j.

Proposition 2.1. Let f , g, h ∈ R[t].

1. If f ⪯ g and f ⪯ h, then f ⪯ ag + bh for all a, b ≥ 0.

2. If g ⪯ f and h ⪯ f , then ag + bh ⪯ f for all a, b ≥ 0.

Proposition 2.2. Let f0, f1, . . . , fm ∈ R[t] be an interlacing sequence of real-rooted polynomials
with positive leading coefficients.

1. Every nonnegative linear combination f of f0, f1, . . . , fm is real-rooted, and f0 ⪯ f ⪯ fm;

2. If we define

gk := t
k−1

∑
i=0

fi +
m

∑
i=k

fi,

for k = 0, 1, . . . , m, then {gi}m
i=0 is interlacing.
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Proposition 2.3. Let f1, . . . , fm ∈ R[t]. If f1 ⪯ f2 ⪯ · · · ⪯ fm and f1 ⪯ fm, then fi ⪯ f j for
all i ≤ j.

Lemma 2.4. Suppose f0, f1, . . . , fn is an interlacing sequence of polynomials of degree d, such
that for each 0 ≤ j ≤ n, the polynomial f j has nonnegative leading coefficient and all zeros in the
interval [−1, 0]. Then the sequence g0, g1, . . . , gn+1 defined by

gk = t
k−1

∑
j=0

f j + (1 + t)
n

∑
j=k

f j,

is interlacing.

Proof. Let hj(t) = (1 − t)d f j(t/(1 − t)) and rj(t) = (1 − t)d+1gj(t/(1 − t)). Then {hj}n
j=0

is an interlacing sequence of polynomials with nonnegative coefficients. Moreover,

rj = t
k−1

∑
j=0

hj +
n

∑
j=k

hj,

and hence {rj}n+1
j=0 is interlacing by Proposition 2.2. Since gj = (1 + t)d+1rj(t/(1 + t)),

the lemma follows.

3 Generalized subdivision operators

Let P be a locally finite and graded poset with a least element 0̂, such that [0̂, x] is
isomorphic to [0̂, y] whenever x and y have the same rank. Define a linear operator
EP : R[t] → R[t] by EP(1) = 1, and

EP(tn) =
n

∑
j=1

|{0̂ < x1 < · · · < xj = x}| · tj =
t

(1 + t)2 · c[0̂,x](t),

where x is any element in P of rank n. Let further RP : R[t] → R[t] be the linear operator
defined by

RP(tn) =
n

∑
k=0

rn,ktk,

where rn,k is the number of elements in [0̂, x] of rank k, where x is any element in P of
rank n. Hence, for n ≥ 1,

EP(tn) = tEP
(
RP(tn)− tn) and (1 + t)EP(tn) = tEP(RP(tn)). (3.1)

If P is a Boolean lattice, then EP is the subdivision operator E , which has the property
that

E( f∆(t)) = fsd(∆)(t),
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for any simplicial complex ∆, where f∆ is the f -polynomial of ∆ and sd(∆) is the
barycentric subdivision of ∆, see [6, 8]. The subdivision operator is important in proving
real-rootedness for polynomials associated to simplicial complexes, posets or Ehrhart
theory [6]. In this section we will generalize and refine the following result to subspace
lattices Ln(q).

Proposition 3.1. [5, Section 4] The sequence {E
(
ti(t + 1)d−i)}d

i=0 is interlacing.

Let L(q) be the inverse limit, as n → ∞, of the subspace lattices Ln(q) of all subspaces
of Fn

q , where Fq is a finite field with q elements. Denote by Eq, the linear operator EL(q).
Hence

Eq(tn) = tEq
(
Gn(t)− tn), (3.2)

where Gn(t) = ∑n
k=0 (

n
k)qtk, and (n

k)q, 0 ≤ k ≤ n, are the Gaussian polynomials which may
be defined recursively by (n

0)q = 1, and(
n
k

)
q
= qk

(
n − 1

k

)
q
+

(
n − 1
k − 1

)
q
, (3.3)

see [15, Section 1.7]. Henceforth we let q be any real number greater or equal to 1.

Lemma 3.2. Let n be a nonnegative integer. Then

Eq(tkGn+1−k(t)) = t
k−1

∑
j=0

Eq(tjGn−j(qt)) + (1+ t)
n

∑
j=k

Eq(tjGn−j(qt)), 0 ≤ k ≤ n+ 1, (3.4)

and

Eq(tkGn−k(qt)) = Eq(tkGn−k(t)) + (qn−k − 1)Eq(tk+1Gn−(k+1)(t)), 0 ≤ k ≤ n. (3.5)

Proof. The identity (3.3) implies

tkGn+1−k(t)− tn+1 =
n

∑
j=k

tjGn−j(qt). (3.6)

By (3.2) and (3.6),

Eq(tn+1) = tEq(Gn+1(t)− tn+1) = t
n

∑
j=0

Eq(tjGn−j(qt)),

which combined with (3.6) gives (3.4).
Similarly, the identity

qk
(

n
k

)
q
=

(
n
k

)
q
+ (qn − 1)

(
n − 1
k − 1

)
q

(3.7)

implies (3.5).
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The following theorem generalizes Theorem 3.1 to any q ≥ 1.

Theorem 3.3. Let n be a nonnegative integer. The sequence of polynomials {Eq(tkGn−k(t))}n
k=0

is interlacing. Moreover all zeros of Eq(tkGn−k(t)) lie in the interval [−1, 0].

Proof. The proof is by induction over n, the case n = 0 being trivial.
Suppose true for n − 1 ≥ 0. Since {Eq(tkGn−k(t))}n

k=0 is interlacing, we have by (3.5)
and [6, Corollary 8.6] that {Eq(tkGn−k(qt))}n

k=0 is interlacing. Moreover (3.5) implies

Eq(tkGn−k(t)) ≺ Eq(tkGn−k(qt)) ≺ Eq(tk+1Gn−k−1(t)),

so that all zeros of Eq(tkGn−k(qt)) are in the interval [−1, 0]. The lemma now follows by
induction from (3.4) and Lemma 2.4.

Corollary 3.4. Suppose f = ∑d
k=0 hktkGd−k, where hk ≥ 0 for all 0 ≤ k ≤ d. Then Eq( f ) is

real-rooted and Eq(Gd) ≺ Eq( f ) ≺ Eq(td).

Proof. Follows immediately from Proposition 2.2 and Theorem 3.3.

For d ≤ n, let Gd
n,k be the polynomial obtained from tkGn−k(t) by removing all terms

tj, where j > d.

Lemma 3.5. Let d be a nonnegative integer.

(a) If n ≥ d, then {Eq(Gd
n,k)}

d
k=0 is interlacing.

(b) If 0 ≤ k ≤ d, then {Eq(Gd
n,k)}

∞
n=d is interlacing.

Proof. We first prove (a) by induction over n ≥ d, the case n = d being Theorem 3.3.
Assume true for n. Equations (3.6) and (3.7) imply

tkGn+1−k − tn+1 = tkGn−k +
n

∑
j=k+1

qn+1−jtjGn−j,

and thus

Eq(Gd
n+1,k) = Eq(Gd

n,k) +
d

∑
j=k+1

qn+1−jEq(Gd
n,j),

which by [6, Corollary 8.6] proves that {Eq(Gd
n+1,k)}

d
k=0 is interlacing, and that Eq(Gd

n,k) ≺
Eq(Gd

n+1,k). This proves (a) by induction.
Notice that

lim
n→∞

Eq(Gd
n,k)

(n−k
d )q

= Eq(td),

and that Eq(Gd
d,k) ≺ Eq(td) by Theorem 3.3. Hence (b) now follows from Proposition 2.3.
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The next theorem generalizes a recent result [3] of Athanasiadis and Kalampogia-
Evangelinou from Boolean lattices to subspace lattices. Suppose P is a graded poset, and
S = {0 = s0 < s1 < s2 < · · · } ⊆ N. Consider the rank selected poset PS := {x ∈ P :
ρ(x) ∈ S}. Define a linear operator TS : R[t] → R[t] by

TS(tk) =

{
0 if k ̸∈ S,
ti if k = si.

Theorem 3.6. Let n be a positive integer, and let S be a subset of N containing 0. The
sequence{EP(TS(tkGn−k))}n

k=0 is interlacing, where P = L(q)S. In particular the chain poly-
nomial of Ln(q)S is real-rooted.

Proof. The proof is omitted in this extended abstract.

4 Generalized paving matroids

Recall that a geometric lattice L of rank d + 1 is the lattice of flats of a paving matroid
on E if and only if

• the set H of hyperplanes of L form a d-partition, i.e., |H| ≥ d for each H ∈ H, and
for each set S of size d there exists a unique H ∈ H such that S ⊆ H;

• the flats of rank k ≤ d − 1 are the sets of size k of the Boolean lattice on E.

For example, if P = ([n]d ), then P is a d-partition of [n] and, hence, there is a paving

matroid whose set of hyperplanes is H1 = ([n]d ). Another example, a 2-partition of [7], is
H2 = {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {3, 4, 6}, {2, 6, 7}, {4, 5, 7}, {2, 3}, {2, 5}, {2, 3}, {3, 5}}.

We will now generalize this construction to any geometric lattice, and prove that the
chain polynomials of the lattice of flats of generalized paving matroids associated to
subspace lattices and Boolean lattices are real-rooted.

Let L be a geometric lattice with rank function ρ on a ground set E. Suppose d ≥ 1,
and suppose H ⊂ L satisfies

(a) ρ(H) ≥ d for each H ∈ H,

(b) for each F ∈ L with ρ(F) = d, there exists a unique H ∈ H such that F ≤ H.

Let L(H) be the graded meet semi-lattice of rank d + 1,

L(H) = {F ∈ L(H) : ρ(F) ≤ d − 1} ∪H ∪ {E}.

Lemma 4.1. L(H) is a geometric lattice with set of hyperplanes H.
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Proof. Let ρ′ be the rank function of L(H), and let ∨ and ∨′ (respectively, ∧ and ∧′) be
the joins (respectively, the meets) in L and L(H), respectively. We will prove that L(H)
is (1) a lattice, (2) atomistic and (3) semimodular:

1. L(H) is a lattice - Since L(H) is a finite meet semi-lattice with a largest element, then,
by [15, Proposition 3.3.1], it is a lattice;

2. L(H) is atomistic - Let F ∈ L(H). If ρ′(F) ≤ d − 1, then, by definition of L(H), if
F =

∨
i Fi, then F =

∨′
i Fi. If ρ′(F) = d, then there exist a unique G ∈ L such that

ρ(G) = d and G ≤ F. Since G =
∨

i Gi for atoms Gi ∈ L, then F =
∨′

i Gi. Finally, if
F = E, then F is the join of two elements in H and hence a join of atoms, by the above;

3. L(H) is semimodular - Let F, G ∈ L(H). We want to prove that

ρ′(F) + ρ′(G) ≥ ρ′(F ∨′ G) + ρ′(F ∧′ G). (4.1)

There are three different cases to deal with:

• F and G are in H. Then ρ′(F) = ρ′(G) = d, ρ′(F ∨′ G) = d + 1 and ρ′(F ∧′ G) ≤
d − 1, which implies (4.1);

• F is not in H and G is in H. If F ≤′ G, then there is nothing to prove. Otherwise,
ρ′(F ∧′ G) ≤ ρ′(F)− 1 and F ∨′ G = E, and (4.1) holds;

• F and G are not in H. We may assume F and G are smaller than E. Then

ρ′(F) + ρ′(G) = ρ(F) + ρ(G) ≥ ρ(F ∨ G) + ρ(F ∧ G)

= ρ(F ∨ G) + ρ′(F ∧′ G).

Hence it remains to prove

ρ′(F ∨′ G) ≤ ρ(F ∨ G). (4.2)

If ρ(F ∨ G) ≤ d − 1, then F ∨ G = F ∨′ G and so (4.2) holds. If ρ(F ∨ G) = d,
then there exists H ∈ H such that F ∨ G ≤ H, and hence ρ′(F ∨′ G) ≤ d. If
ρ(F ∨ G) ≥ d + 1, then (4.2) holds since ρ′(E) = d + 1.

If L is the Boolean algebra, then the lattices L(H) are precisely the lattices of flats of
paving matroids.

Notice that
cL(H)(t) = cLd(t) + t ∑

H∈H
c[0̂,H]d(t), (4.3)

where Ld = {F ∈ L : ρ(F) ≤ d − 1} ∪ {E} is the truncation of L to rank d.
The next theorem verifies Conjecture 1.1 for the lattice of flats of paving matroids and

generalized paving matroids associated to subspace lattices.
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Theorem 4.2. Suppose L is a subspace lattice Ln(q) or a Boolean lattice, and that H satisfies
(a) and (b). Then cL(H)(t) is real-rooted and cLd(t) ≺ cL(H)(t).

Proof. Clearly,

cLd(t) = (1 + t) · Eq(Gd−1
n,d−1(t)) and c[0̂,H]d(t) = (1 + t) · Eq(Gd−1

m,d−1(t)),

where m ≤ n, and q = 1 for the Boolean case. The theorem now follows from Proposi-
tion 2.1, Lemma 3.5 and (4.3).

5 Single-element extensions

Let N be a matroid with ground set E. Recall that, if T ⊂ E, then the deletion of T in N is
N\T, the matroid on E\T with independent sets given by

{I : I is independent in N and I ∩ T = ∅}.

In this case, N is called an extension of N\T. For the particular case when |T| = 1, we
call N a single-element extension of N\T.

A modular cut M of a matroid M is a set of flats of M that satisfies the following:

(i) if F ∈ M and F′ is a flat of M containing F, then F′ ∈ M;

(ii) if F1, F2 ∈ M and r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2), then F1 ∩ F2 ∈ M.

There is a one-to-one correspondence between the modular cuts of a matroid M and
single-element extensions of M, see [13, Chapter 7.2]. Hence, for each modular cut M of
M we can associate a single-element extension M +M e of M, where e is an element not
in the ground set of M, whose lattice of flats fall into the three following disjoint classes
(see [13, Corollary 7.2.]):

(i) flats F of M that are not in M;

(ii) sets F ∪ e, where F is a flat of M that is in M;

(iii) sets F ∪ e, where F is a flat of M that is not in M and F is not contained in a
member F′ of M of rank r(F) + 1.

Moreover, we can use this construction to determine all matroids: any matroid M is
obtained from a uniform matroid Un

n by a sequence of single-element extensions.
For example, consider the uniform matroid U3

3 . Then, M1 = [[1], [3]] and M2 =
[[2], [3]] are modular cuts. The lattices of flats of U3

3 , U3
3 +M1 4 and U3

3 +M2 4 are given
as follows:
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Lemma 5.1. Conjecture 1.1 is true for all matroids of ranks 1, 2 or 3.

Proof. The result is trivial for matroids of ranks 1 and 2. For matroids of rank 3, its lattice
of flats is given by

1̂

2-flats

1-flats

0̂

and, hence, its chain polynomial is cL(t) = [1 + (m1 + m2)t + et2](1 + t)2, where mi is
the number of i-flats and e is the number of edges between 1-flats and 2-flats. Since
e ≤ m1m2, then cL(t) is real-rooted.

Now, consider uniform matroids Un
n , n ≥ 4. The lattice of flats of M is Bn. So,

if M is a modular cut of Un
n (and, in general, a modular cut of Ur

n), then M = ∅ or
M = [X, [n]], where X ⊆ [n]. Hence, every flat of the lattice of flats of Un

n +M {n + 1}
fall into one of the following disjoint classes:

(i) F ⊂ {1, . . . , n, n + 1} such that {1, . . . , m, n + 1} is not a subset of F. In this case,
the rank of F is |F|;

(ii) F ⊂ {1, . . . , n, n + 1} such that {1, . . . , m, n + 1} ⊆ F. In this case, the rank of F is
|F| − 1.
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It follows that Un
n +M {n + 1} is isomorphic to the direct product Um

m+1 × Un−m
n−m .

Lemma 5.2. [6, Theorem 7.6] If all zeros of E( f ) and E(g) lie in the interval [−1, 0], then so
does E( f g).

Lemma 5.3. Let P and Q be two posets with a least and a greatest element such that |P|, |Q| ≥ 2,
and define

ĉP(t) =
t

(1 + t)2 · cP(t).

Then
ĉP×Q = ĉP ⋄ ĉQ := E(E−1(ĉP)E−1(ĉQ)).

Proof. Omitted in the long abstract.

Lemma 5.4 ([5]). If

f (x) =
d

∑
k=0

hkxk(1 + x)d−k

has hk ≥ 0 for all 0 ≤ k ≤ d, then all zeros of E( f ) are real, simple and located in [−1, 0]. In
particular, the h-polynomial of a Cohen-Macaulay poset is real-rooted.

Now, we can prove the following:

Theorem 5.5. If the h-polynomials of the order complexes of the posets P and Q have nonnegative
coefficients, then the chain polynomial of P × Q is real-rooted.

Proof. It follows directly from Lemmas 5.4, 5.2 and 5.3.

Corollary 5.6. The chain polynomial of Un
n +M {n + 1} is real-rooted for any modular cut of

Un
n .

Proof. As mentioned before, Un
n +M {n + 1} is isomorphic to Um

m+1 × Un−m
n−m . So, by

Lemma 5.3,
ĉL(Un

n+M{n+1}) = ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m ).

By Theorem 3.3, cL(Um
m+1)

and cL(Un−m
n−m ) are real-rooted. So, by Lemma 5.2, cL(Un

n+M{n+1})
is real-rooted.

Corollary 5.7. The chain polynomial of Un−1
n +M {n + 1} is real-rooted for any modular cut of

Un−1
n .

Proof. First, observe that Un−1
n is a truncation of Un

n and that modular cuts of Un−1
n are

also intervals. Let M̂ = [[m], [n]] be a modular cut of Un−1
n and M = [[m], [n]] be a

modular cut of Un
n . So Un−1

n +M̂ {n + 1} is a truncation of Un
n +M {n + 1}. Hence, if H

is the set of hyperplanes of Un
n +M {n + 1} = Um

m+1 × Un−m
n−m , then H ∈ H if and only if
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H = A × [n − m] or H = [m + 1]× B, where A ∈ A is a hyperplane of Um
m+1 and B ∈ B

is a hyperplane of Un−m
n−m . So,

ĉL(Un−1
n +M̂{n+1})(t) = ĉL(Un

n+M{n+1})(t)− t ∑
Hi∈H

ĉ[∅,Hi]
(t)

= ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t)− t ∑

Ai∈A
ĉ[∅,Ai×[n−m]](t)

− t ∑
Bj∈B

ĉ[∅,[m+1]×Bj]
(t)

= ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t)− t ∑

Ai∈A
ĉ[∅,Ai]

(t) ⋄ ĉL(Un−m
n−m )(t)

− t ∑
Bj∈B

ĉL(Um
m+1)

(t) ⋄ ĉ[∅,Bj]
(t).

Since ĉ[∅,Ai]
(t) ⪯ ĉL(Um

m+1)
(t) for all Ai ∈ A and ĉ[∅,Bj]

(t) ⪯ ĉL(Un−m
n−m )(t) for all Bj ∈ B,

ĉ[∅,Ai×[n−m]](t) ⪯ ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t), for all Ai ∈ A

and
ĉ[∅,[m+1]×Bj]

(t) ⪯ ĉL(Um
m+1)

⋄ ĉL(Un−m
n−m )(t), for all Bj ∈ B.

by [4, Theorem 3]. Hence ĉL(Un−1
n +M̂{n+1})(t) is real-rooted.
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