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Abstract. The cohomology rings of regular semisimple Hessenberg varieties are only
completely understood in some cases. One such case is when the Hessenberg func-
tion is h = (h(1), n, . . . , n), and is described by Abe, Horiguchi, and Masuda in 2017.
We define an alternative basis for the cohomology ring in this case, which is a higher
Specht basis. We give combinatorial bijections between the monomials in this basis
and sets of P-tableaux, motivated by the work of Gasharov in 2008 and Shareshian
and Wachs in 2016. This bijection illustrates the connection between the symmetric
group action on these cohomology rings and the Schur expansion of chromatic sym-
metric functions. We further use the inversion formula for P-tableaux to give a new
combinatorial proof of the known Poincaré polynomial for these Hessenberg varieties.
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1 Introduction

In this extended abstract, we exhibit new connections between the combinatorics of Hes-
senberg varieties, P-tableaux, and chromatic symmetric functions, and illustrate their
use in proving geometric results using combinatorial tools. In particular, when S is a
regular semisimple matrix and h = (h(1), n, . . . , n), we construct a higher Specht basis
for the cohomology ring H∗(Hess(S, h)), display combinatorial bijections between these
higher Specht basis elements and sets of tableaux, and use a new combinatorial method
to find the Poincaré polynomial for Hess(S, h). Full proofs of the results in this paper
are forthcoming in [13].

Hessenberg varieties, initially defined and studied in [11, 12], are linear subvarieties
of the full flag variety Fl(Cn). They are connected to chromatic symmetric and qua-
sisymmetric functions due to the action of the symmetric group Sn on their cohomology
rings defined by Tymozcko in [18]. The geometry of Hessenberg varieties has been – and
continues to be – extensively studied, including in [1, 9, 7, 8, 10, 17].
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1.1 Background on Hessenberg Varieties and Specht Modules

Given a proper coloring κ : V → N of a finite simple graph G = (V, E) on a totally-
ordered vertex set V, define an ascent to be an edge {v, w} such that v < w and κ(v) <
κ(w). Define asc(κ) to be the total number of ascents in κ. In this paper, we consider
graphs with V = [n] = {1, 2, . . . , n}. In [14], Shareshian and Wachs defined the chromatic
quasisymmetric function, a graded analogue of Stanley’s chromatic symmetric function
[15], using the ascent statistic:

Definition 1.1. Given a finite simple graph G = (V, E), the chromatic quasisymmetric
function for G is

XG(x; q) = ∑
κ:V→N

(
∏
i∈V

xκ(i)

)
qasc(κ)

where the sum ranges over all proper colorings κ of the vertices of G.

Recall that the (full) flag variety of Cn is the variety Fl(Cn) whose points are flags
F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn such that dim(Fi) = i. We will define Hessenberg varieties to
be a subvariety of the flag variety, given a matrix X : Cn → Cn and a function h. First, a
Hessenberg function is a function h : [n] → [n] such that for all i, we have i ≤ h(i), and
h(i) ≤ h(i + 1). We usually denote this as a vector h = (h(1), h(2), . . . , h(n)).

Definition 1.2. Given a matrix X : Cn → Cn and a Hessenberg function h : [n] → [n], define
the Hessenberg variety to be:

Hess(X, h) =
{

F• ∈ Fl(Cn) | X(Fi) ⊆ Fh(i) for all 1 ≤ i ≤ n
}

(1.1)

In [18], Tymoczko defined an action of the symmetric group on the cohomology ring
H∗(Hess(S, h)) when S is a regular semisimple matrix, allowing us to study the structure
of this ring as an Sn-module. For each Hessenberg function, we can also construct a poset
Ph on [n], using h to determine which elements are comparable: We say that i <Ph j if
and only if h(i) < j. Let Gh be the incomparability graph of Ph, which has an edge {i, j}
whenever i and j are incomparable in Ph. Notably, posets formed by this construction
are (3 + 1)- and (2 + 2)-avoiding, so their incomparability graphs are relevant to the
following conjecture of Stanley and Stembridge on chromatic symmetric functions.

Conjecture 1.3 ([16] Conjecture 5.1). If P is a (3 + 1)-free poset, then Xinc(P)(x) is e-positive,
that is, it can be written with positive coefficients when expanded in the elementary basis of
symmetric functions.

In [5], Guay-Paquet proved that it suffices to prove the conjecture for posets which
are (3 + 1)- and (2 + 2)-avoiding. Shareshian and Wachs conjectured that there is a con-
nection between chromatic quasisymmetric functions and the graded cohomology ring
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Figure 1: On the left, the poset Ph for h = (3, 4, 4, 5, 5). On the right, three Ph-
tableaux (in French notation). The leftmost tableau has 4 inversions given by the pairs
(1, 3), (2, 3), (2, 4), and (4, 5), but does not have the inversion (2, 5) since 2 <Ph 5.

of regular semisimple Hessenberg varieties, using the ascent formula for the incompara-
bility graph Gh. This connection, stated below, was proven by Brosnan and Chow in [2]
and separately by Guay-Paquet in [6].

Proposition 1.4 ([2, 6]). Let S be a regular semisimple n × n matrix and h : [n] → [n] be a
Hessenberg function. Let Gh be the incomparability graph for Ph. Then

ωXGh(x; q) =
|E|

∑
k=0

Frob(H2k(Hess(S, h)))qk

Above, ω is the standard involution on symmetric functions which sends the Schur
function sλ to sλ′ , where λ′ is the transpose of λ, and Frob is the Frobenius characteristic
map which sends the irreducible Sn-module Vλ to the Schur function sλ.

Definition 1.5 ([3]). Let P be a poset and λ be a partition of n. A P-tableau of shape λ is a
filling of the Young diagram of λ with entries from P such that:

• Each entry in P is used at most once.

• Adjacent entries in rows are P-increasing from left to right.

• Adjacent entries in columns are P-nondecreasing from bottom to top.

We say a P-inversion in a P-tableau is a pair of entries (i, j) such that i < j as integers,
i is in a higher row than j, and i and j are incomparable in P. Define inv(T) to be the
number of P-inversions in T. In [3], Gasharov used P-tableaux to show that the chromatic
symmetric functions of incomparability graphs of (3 + 1)-free posets are Schur-positive.
Using this inversion statistic on P-tableaux, Shareshian and Wachs extended this result
to the chromatic quasisymmetric case, as stated below.
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Proposition 1.6 ([14] Theorem 6.3). Let G be the incomparability graph of a (3 + 1)-free poset
P, and let PT(λ) be the set of P-tableaux of shape λ. Then we have:

XG(x; q) = ∑
λ⊢n

 ∑
T∈PT(λ)

qinv(T)

 sλ

Combining the results of Propositions 1.4 and 1.6, we can connect the graded coho-
mology of Hess(S, h) with P-tableaux in the following way. If S is a regular semisimple
matrix, and h is a Hessenberg function with poset Ph and incomparability graph Gh, then

|E|

∑
k=0

Frob(H2k(Hess(S, h)))qk = ωXGh(x; q) = ∑
λ⊢n

 ∑
T∈PT(λ)

qinvh(T)

 sλ′ (1.2)

where λ′ is the transpose partition of λ, and invh is the inversion statistic for Ph.
The formula above gives us a nice way of understanding the decomposition of the

Sn-module H∗(Hess(S, h)) into irreducible modules. Irreducible Sn-modules are isomor-
phic to the Specht modules, which have a basis indexed by standard tableaux:

Definition 1.7. Given a standard tableau T of shape λ, define the Specht polynomial to be

FT = ∏
C∈λ

(
∏

i<j∈C
(xj − xi)

)

where the first product is over all columns in the Young diagram, and the second product is over
all pairs of entries i < j in the column C. If SYT(λ) is the set of all standard tableaux of shape
λ, then the Specht module Vλ is the subspace of Q[x1, . . . , xn] generated by {FT}T∈SYT(λ).

An immediate consequence of this definition is that the dimension of the Specht
module Vλ is the number of standard tableaux of shape λ, which we denote #SYT(λ).
We define a higher Specht basis for an Sn-module as follows.

Definition 1.8 ([4], Definition 1.5). If R is an Sn-module which decomposes into irreducible
Sn-modules as

R =
⊕

λ

cλVλ ,

then a higher Specht basis of R is a set of elements B with a decomposition B =
⋃

λ
⋃cλ

i=1 Bi,λ
such that the elements of Bi,λ are a basis of the i-th copy of Vλ in the decomposition of R.

Hence, higher Specht bases of Sn-modules are a natural way to understand the action
of Sn, and allow us to more easily identify the decomposition into irreducible modules.
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2 Higher Specht basis for the cohomology ring

In this section, let S be a regular semisimple n × n matrix, and h = (h(1), n, . . . , n)
be a Hessenberg function. In [9] (Theorem 4.3), Abe, Horiguchi, and Masuda give a
presentation of the cohomology ring H∗(Hess(S, h)) as a quotient of a polynomial ring
in 2n variables. Further, in Remark 4.5, they describe a set of basis elements for this ring.
We name the two sets of different types of elements below:

B1 =

{
xi1

1 xi2
2 · · · xin

n not containing the factor
h(1)

∏
ℓ=1

xℓ

}
(2.1)

B2 =

xℓ1
n xℓ2

n−1 · · · xℓn−1
2 yk not containing the factor

n

∏
ℓ=h(1)+1

xℓ

 (2.2)

over all 0 ≤ ij ≤ n − j in B1, and over all 0 ≤ ℓj ≤ n − 1 − j, and 1 ≤ k ≤ n − 1 in B2.
The symmetric group Sn acts on the above monomials by fixing the set of xi and

permuting the set of yi in the natural way. This group action gives a representation
of Sn, which decomposes into the direct sum of trivial representations (corresponding
to the Specht module V(n)) and standard representations (corresponding to the Specht
module V(n−1,1)).

We define B3 to be the following set of monomials:

B3 =

xℓ1
n xℓ2

n−1 · · · xℓn−1
2 (yk+1 − y1) not containing the factor

n

∏
ℓ=h(1)+1

xℓ

 (2.3)

over all 0 ≤ ℓj ≤ n − 1 − j and 1 ≤ k ≤ n − 1.
Notice that there are natural projections from B1 to the Specht module V(n) and from

B3 to the Specht module V(n−1,1) given by forgetting the xi variables.

Theorem 2.1 ([13]). The set B1 ∪ B3 forms a higher Specht basis of H∗(Hess(S, h)).

The proof (see [13] for full details) uses the fact that B1 ∪ B2 forms a Z−basis of
H∗(Hess(S, h)), and constructs the transition matrix from B1 ∪ B2 to B1 ∪ B3 using the
relations given in [9] to express the new elements in terms of the old basis. Then, we
prove that this transition matrix is invertible, which requires the following lemma.

Lemma 2.2 ([13]). If f (x1, . . . , xn) is a homogeneous polynomial in the ring H∗(Hess(S, h)),
then f can be expressed solely in terms of basis elements from B1.

Knowing that B1 ∪ B3 forms a higher Specht basis of H∗(Hess(S, h)) allows us to
obtain a more direct proof of the following fact, by counting the number of monomials
of each type in B1 and B3.

Corollary 2.3. The dot action of Sn on H∗(Hess(S, h)) decomposes into h(1)(n − 1)! copies of
the trivial representation, and (n − h(1))(n − 2)! copies of the standard representation.
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3 Bijections between basis elements and P-tableaux

As seen in Section 1.1, there is a bijection between the set of standard tableaux of shape
λ with basis elements of the Specht module Vλ, given by the construction of the basis
elements. Further, from Equation 1.2, we have an explicit connection between the num-
ber of basis elements of H∗(Hess(S, h)) of each degree and the set of Ph-tableaux with
each number of inversions. In particular, there should be bijections between the higher
Specht basis elements and the sets of Ph-tableaux with shape corresponding to the Specht
polynomials in the basis.

3.1 Regular Nilpotent Hessenberg Varieties

In the case of regular nilpotent Hessenberg varieties, a polynomial presentation of the
cohomology ring is known for any Hessenberg function h.

Proposition 3.1 ([7], Corollary 7.3). Let N be a regular nilpotent matrix, and let h : [n] →
[n] be a Hessenberg function. Then the following set of monomials form an additive basis for
H∗(Hess(N, h)):

Nh :=
{

xi1
1 · · · xin

n | 0 ≤ ik ≤ h(k)− k for 1 ≤ k < n
}

In [1], Abe et al. show that the cohomology rings of regular nilpotent Hessenberg va-
rieties are isomorphic to the fixed points of the cohomology rings for regular semisimple
Hessenberg varieties. In particular, these are the pieces of H∗(Hess(S, h)) which decom-
pose into trivial Sn-modules, corresponding to the Specht module V(n).

Define PT(h, λ) to be the set of Ph-tableaux of shape λ. Taking the transpose partition
for λ = (n) (because of Equation 1.2), we form a map φ between Nh and PT(h, (1n)) for
any Hessenberg function h.

Definition 3.2. Let xi1
1 · · · xin

n ∈ Nh.

• Begin with a Ph-tableau T of a single box whose entry is n.

• For each k = n − 1, . . . 1:

– If ik = 0, insert k into a new box at the bottom of T, so that k occurs directly below
some ℓ > k.

– If ik > 0, then since ik ≤ h(k)− k, we have k < h(k). List the entries k+ 1, . . . , h(k),
which already exist in T, in order from the lowest to highest row position in T. Insert
k in a new box directly above the ik-th lowest entry of this list.

Define φ(xi1
1 · · · xin

n ) ∈ PT(h, (1n)) to be the resulting tableau from this process.
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Example 3.3. Let h = (2, 3, 5, 5, 5), and consider the monomial x1x3x4 ∈ Nh. We construct
φ(x1x3x4) as follows.
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We start with a single box containing a 5. Then, to insert 4 with i4 = 1 Ph-inversion, we insert
the 4 above the 5. To insert 3 with i3 = 1 Ph-inversion, we insert the 3 above the 5 but below the
4. Notice that at each step, the number of elements in Ph greater than k that are incomparable to
k is h(k)− k, which is also the largest possible power ik.

In [13], we prove that φ is a bijection, which is weight preserving in the following
way: If m is a monomial of degree d, then φ(m) has d Ph-inversions.

Theorem 3.4 ([13]). The map φ is a well-defined, weight-preserving bijection.

3.2 Regular Semisimple Hessenberg Varieties

Now we turn our attention to regular semisimple Hessenberg varieties. In this section,
S is a regular semisimple matrix and h = (h(1), n, . . . , n). Recall the partial set of basis
elements B1 defined in Equation 2.1, and recall that Sn fixes these monomials, since
they contain no yi variable. These correspond to basis elements of the trivial Specht
module V(n). Again, we take the transpose partition, and define a map ψ between B1
and PT(h, (1n)) as follows.

Definition 3.5. Let xi1
1 · · · xin

n ∈ B1.

• Begin with a Ph-tableau T of a single box whose entry is n.

• For each k = n − 1, . . . , 1, insert k into T above exactly ik of the existing entries.

• Let k′ be the smallest index in 1, . . . , h(1) such that ik′ = 0, which exists by the definition
of B1. By this construction, after inserting n through 1, k′ will be on the bottom of T.

– If k′ = 1, then define ψ(xi1
1 · · · xin

n ) to be T.

– If 1 < k′ ≤ h(1), then slide the entry k′ up until it is directly below the 1, and define
ψ(xi1

1 · · · xin
n ) to be T after this slide.
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Example 3.6. Let h = (3, 5, 5, 5, 5), and consider the monomial x2
1x3x4 ∈ B1. We construct

φ(x2
1x3x4) as follows.
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We start with a single box containing a 5. Then we insert the 4 above one existing entry, the 3
above one existing entry, the 2 above no existing entries, and the 1 above two existing entries.
Since 1 <Ph 5 are comparable, the resulting tableau is not a Ph-tableau, so we shift the 2 (which
is incomparable to the 1) to be directly below the 1. In the second-to-last tableau, the number of
PN-inversions with each k as the smaller entry is exactly ik, so reading these inversions returns
the monomial x2

1x3x4.

In [13], we find the inverse map of ψ to prove the following theorem.

Theorem 3.7 ([13]). The map ψ is a well-defined bijection.

We now construct a map for the set of basis elements B3 defined in Equation 2.3.
Define PSPT(h, λ) to be the set of pairs (S, T) where S is a standard tableau and T is a
Ph-tableau, both of shape λ. Since the monomials in B3 correspond to the Specht polyno-
mials in the Specht module V(n−1,1), we construct the map τ to the set PSPT(h, (2, 1n−2),
with the xi variables corresponding to the Ph-tableau and the yi variables corresponding
to the standard tableau.

Definition 3.8. Let xℓ1
n · · · xℓn−1

2 (yk − y1) ∈ B3.

• Define S to be the unique standard tableau of shape (2, 1n−2) with entries 1 and k in the
bottom row.

• Let j be the largest entry among {h(1) + 1, . . . , n} such that the exponent ℓn−j+1 on xj is
zero, which exists by the definition of B3.

• Initialize a tableau T with a single row of two boxes, containing a 1 and j.

• For each i = 2, . . . , n, other than j, insert i into the left column so that it is under exactly
(i − 2)− ℓn−i+1 of the current entries in the left column.

Define τ(xℓ1
n · · · xℓn−1

2 (yk − y1)) ∈ PSPT(h, (2, 1n−2) to be the pair (S, T) resulting from this
construction.
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Example 3.9. Let h = (3, 5, 5, 5, 5), and consider the monomial x2
5x3(y3 − y1) ∈ B3. Note that

j = 4 is the largest index where xj has an exponent of zero. We construct τ(x2
5x3(y2 − y1)) as

follows.

S = 5

4

2

1 3 1 4

2

1 4

3

2

1 4

3

5

2

1 4

= T

S is defined to be the unique standard Young tableaux of shape (2, 1n−2) with a 1 and 3 in the
bottom row. Then, to form T, we start with a single row containing a 1 and a 4. We then insert
a 2 in the left column underneath (2 − 2)− 0 = 0 entries, a 3 in the left column underneath
(3 − 2)− 1 = 0 entries, and a 5 in the left column underneath (5 − 2)− 2 = 1 entry.

In [13], we again find the inverse map to prove the following theorem.

Theorem 3.10 ([13]). The map τ is a well-defined bijection.

This map is almost weight-reversing, since the exponents on the xi terms correspond
to inversions that are missing in the tableaux, since we insert i so that it forms (i − 2)−
ℓn−i+1) inversions. In future work, we hope to use bijections like these to extrapolate
potential bases for H∗(Hess(S, h)) in other cases.

4 Poincaré polynomials of Hessenberg varieties

Given a graded vector space V over a field k, if V =
⊕

i∈N Vi with each subspace Vi
consisting of vectors of degree i being finite dimensional, then the Poincaré polynomial
of V is

Poin(V, q) = ∑
i∈N

dimk(Vi)qi

Then, for an algebraic variety X with graded cohomology ring H∗(X), we define the
Poincaré polynomial of X to be Poin(X, q) := Poin(H∗(X), q). From Equation 1.2, we
can write the Poincaré polynomial of a regular semisimple Hessenberg variety in the
following way:

Poin(Hess(S, h), q) = ∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T)

 #SYT(λ) (4.1)

since the dimension of the irreducible Specht module Vλ is the number of standard
tableaux of shape λ. We use this formula to provide an alternate proof of the formula of
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the Poincaré polynomial for Hess(S, h) when h = (h(1), n, . . . , n), originally calculated
by Abe, Horiguchi, and Masuda in [9]. Recall that the q-analogue of n is (n)q = (1 + q +
· · ·+ qn−1), and the q-analogue of n! is (n)q! = (n)q(n − 1)q · · · (1)q. We present the full
proof here, as it illustrates the new combinatorial method using Ph-tableaux.

Theorem 4.1 ([9], Lemma 3.2). If h = (h(1), n, . . . , n), then the Poincaré polynomial of
Hess(S, h) is given by

Poin(Hess(S, h), q) =
1 − qh(1)

1 − q

n−1

∏
j=1

1 − qj

1 − q
+ (n − 1)qh(1)−1 1 − qn−h(1)

1 − q

n−2

∏
j=1

1 − qj

1 − q

= h(1)q(n − 1)q! + (n − 1)qh(1)−1(n − h(1))q(n − 2)q!

Proof. From above, we know that

Poin(Hess(S, h), q) = ∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T)

 #SYT(λ).

Let h = (h(1), n, . . . , n). All chains in Ph have length two and include the element 1.
Since distinct rows in a Ph tableaux need to contain entries from distinct chains in Ph,
the only shapes λ with a nonzero number of Ph-tableaux are λ = (1n) and µ = (2, 1n−2).
Further, we have that #SYT(λ) = 1 and #SYT(µ) = n − 1.

For λ = (1n), we need to count the Ph-inversions in the Ph tableaux of this shape.
Since the element 1 is incomparable to 2 through h(1), it can form between 0 and h(1)− 1
inversions as the smaller entry. For each i = 2, . . . , n, the entry i can form up to n − i
inversions as the smaller entry. Hence, we get that

∑
T∈PT(h,λ)

qinvh(T) = (1 + q + · · ·+ qh(1)−1)(1 + q + · · ·+ qn−2)! = h(1)q(n − 1)q!.

For µ = (2, 1n−2), the bottom row of any Ph-tableaux of shape µ must be filled with
entries from a chain in Ph, so it contains a 1 and an i for some i = h(1) + 1, . . . , n. Then,
since i > 1, it is incomparable with all other j ̸= 1, so the entry i in the bottom row forms
inversions as the larger entry with the entries 2, . . . , i − 1, of which there are i − 2. So this
entry contributes between h(1)− 1 and n − 2 inversions to the Ph-tableaux as the larger
entry. Then, for the column entries of j = 2, . . . , n and j ̸= i, if j < i, then j forms an
inversion with i where j is the smaller entry (which was already counted), and can form
an inversion as the smaller entry with the other n − j − 1 entries larger than j. If j > i,
then j does not form an inversion with i, and can form an inversion as the smaller entry
with any of the n − j entries larger than j. In each case, there is a unique placement for j
giving each set of inversions. Hence we have

∑
T∈PT(h,µ)

qinvh(T) = (qh(1)−1 + · · ·+ qn−1)(1 + · · ·+ qn−3)! = qh(1)−1(n − h(1))q(n − 2)q!
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Therefore, for λ = (1n) and µ = (2, 1n−2), we have the Poincaré polynomial of
Hess(S, h) as follows:

Poin(Hess(S, h), q) = ∑
T∈PT(h,λ)

qinvh(T) + (n − 1) ∑
T∈PT(h,µ)

qinvh(T)

= h(1)q(n − 1)q! + (n − 1)qh(1)−1(n − h(1))q(n − 2)q!

This completes the proof.

These methods provide a new, combinatorial means of finding Poincaré polynomials
of regular semisimple Hessenberg varieties, which may be useful in further understand-
ing the basis decomposition of their cohomology rings.
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