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On the f -vectors of poset associahedra
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Abstract. For any finite connected poset P, Galashin introduced a simple convex (|P| −
2)-dimensional polytope A (P) called the poset associahedron. First, we show that the
f -vector of A (P) only depends on the comparability graph of P. Additionally, for a
family of posets called broom posets, whose poset associahedra interpolate between
permutohedra and associahedra, we give a simple combinatorial interpretation of the
h-vector. The interpretation relates to the theory of stack-sorting and allows us to prove
the real-rootedness of some of their h-polynomials.
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1 Introduction

For a finite connected poset P, Galashin introduced the poset associahedron A (P) (see [4]).
The faces of A (P) correspond to tubings of P, and the vertices of A (P) correspond to
maximal tubings of P; see Section 2.2 for the definitions. A (P) can also be described as a
compactification of the configuration space of order-preserving maps P → R.

The comparability graph of a poset P is a graph C (P) whose vertices are the elements of
P and where i and j are connected by an edge if i and j are comparable. A property of P
is said to be comparability invariant if it only depends on C (P). Properties of finite posets
known to be comparability invariant include the order polynomial and number of linear
extensions [10], the fixed point property [3], and the Dushnik–Miller dimension [11].
Our first main result is the following.

Theorem 3.6. The f -vector of A (P) is a comparability invariant.

In our study of the f -vectors of poset associahedra, we also consider a rich class of ex-
amples whose poset associahedra interpolate between associahedra and permutohedra.
A broom poset is a poset of the form An,k := Cn+1 ⊕ Ak where Cn is a chain of n elements,
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Ak is an antichain of k elements, and ⊕ denotes ordinal sum. In particular, A0,k is a claw
poset where A (A0,k) is a permutohedron, and An,0 is a chain where A (An,0) is an associ-
ahedron. Our second main result is to give a combinatorial interpretation of the h-vector
of An,k, giving a common interpretation for both permutohedra and associahedra. Our
interpretation involves the theory of stack-sorting.

West’s stack-sorting map is a function s : Sn → Sn which attempts to sort the
permutations w in Sn in linear time, not always sorting them completely (see Definition
4.1). It is well-known that for the associahedron, hi counts the number of permutations in
s−1(1 . . . n) with exactly i descents. We give a generalization of this result for all broom
poset associahedra. Define

Sn,k := {w | w ∈ Sn+k, wi = i for all i > k}.

We prove the following:

Theorem 4.2. Let h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the
number of permutations in s−1(Sn,k) with exactly i descents.

An immediate corollary of Theorem 4.2 is γ-nonnegativity of A (An,k). In particular,
we recall the following result of Bränden.

Theorem 4.4 ([2]). For A ⊆ Sn, we have

∑
σ∈s−1(A)

tdes(σ) =
⌊ n−1

2 ⌋
∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m tm(1 + t)n−1−2m,

where peak(σ) is the number of index i such that σi−1 < σi > σi+1.

Thus, we have the following corollary.

Corollary 4.5. The γ-vector of A (An,k) is nonnegative.

In addition, in the process of proving Theorem 4.2, we find the size of s−1(Sn,k) in
terms of k! and the Catalan convolution C(k)

n , which will be introduced in Section 4.2.

Corollary 4.3. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Finally, in Section 4.4, we prove the following strengthening of Corollary 4.5:

Theorem 4.10. Let Hn(t) be the h-polynomial of A (An,2). Then, Hn(t) is real-rooted.

This paper is an extended abstract to [5] and [6].
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2 Background

2.1 Face numbers

For a d-dimensional polytope P, the sequence ( f0(P), . . . , fd(P)) is called the f -vector of
P, where fi(P) is the number of i-dimensional faces of P and

fP(t) =
d

∑
i=0

fi(P)ti

is called the f -polynomial of P. When P is simple, recall that the h-polynomial and γ-
polynomial are defined by

fP(t) = hP(t + 1),

hP(t) = (1 + t)dγ

(
t

(1 + t)2

)
.

2.2 Poset associahedra

We recall the following definitions.

Definition 2.1. Let (P,⪯) be a finite poset and let σ, τ ⊆ P.

• τ is connected if it is connected as an induced subgraph of the Hasse diagram of P.

• τ is convex if whenever x, z ∈ τ and y ∈ P such that x ⪯ y ⪯ z, then y ∈ τ.

• τ is a tube of P if it is connected, convex, and |τ| > 1. We say τ is a proper tube if
additionally |τ| < |P|.

• τ and σ are nested if τ ⊆ σ or σ ⊆ τ and they are disjoint if τ ∩ σ = ∅.

• We say σ ≺ τ if σ ∩ τ = ∅ and there exists x ∈ σ and y ∈ τ such that x ⪯ y.

• A tubing T of P is a set of proper tubes such that any pair of tubes in T is either
nested or disjoint and there is no subset {τ1, τ2, . . . , τk} ⊆ T such that τ1 ≺ τ2 ≺
. . . ≺ τk ≺ τ1.

• A tubing T is maximal if it is maximal under inclusion, i.e. T is not a proper subset
of any other tubing.

Definition 2.2 ([4, Theorem 1.2]). For a finite, connected poset P, there exists a simple,
convex polytope A (P) of dimension |P| − 2 whose face lattice is isomorphic to the set
of tubings ordered by reverse inclusion. The faces of A (P) correspond to tubings of P,
and the vertices of A (P) correspond to maximal tubings of P. This polytope is called
the poset associahedron of P.
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3 Comparability invariance

The comparability graph of a poset P is the graph C (P) whose vertices are the elements
of P and where i and j are connected by an edge if i and j are comparable. A prop-
erty of a poset is said to be comparability invariant if it only depends on C (P). In [3],
Dreesen, Poguntke, and Winkler give a powerful characterization of comparability in-
variance which we recall in this section.

Definition 3.1. Let P and S be posets and let a ∈ P. The substitution of a for S is the
poset P(a → S) on the set (P − {a}) ⊔ S formed by replacing a with S.

More formally, x ⪯P(a→S) y if and only if one of the following holds:

• x, y ∈ P − {a} and x ⪯P y;

• x, y ∈ S and x ⪯S y;

• x ∈ S, y ∈ P − {a} and a ⪯P y;

• y ∈ S, x ∈ P − {a} and y ⪯P a.

Definition 3.2. Let P be a poset and let S ⊆ P. S is called autonomous if there exists a
poset Q and a ∈ Q such that P = Q(a → S).

Equivalently, S is autonomous if for all x, y ∈ S and z ∈ P − S, we have

(x ⪯ z ⇔ y ⪯ z) and (z ⪯ x ⇔ z ⪯ y).

Definition 3.3. For a poset S, the dual poset Sop is defined on the same ground set where
x ⪯S y if and only if y ⪯Sop x. A flip of S in P = Q(a → S) is the replacement of P by
Q(a → Sop).
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(a) An autonomous subset S of a poset P.
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(b) A flip of S.

Figure 1
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See Figure 1a for an example of an autonomous subset and Figure 1b for an example
of a flip.

Lemma 3.4 ([3, Theorem 1]). If P and P′ are finite posets such that C (P) = C (P′) then
P and P′ are connected by a sequence of flips of autonomous subsets.

Our main technical lemma is the following.

Lemma 3.5. Let P be a poset and let S ⊆ P be autonomous, and let P′ be the poset obtained by
flipping S in P. Then A (P) and A (P′) have the same f -vector.

Lemma 3.5 immediately gives our first theorem.

Theorem 3.6. The f -vector of A (P) is a comparability invariant.

Theorem 3.6 may lead one to ask if C(P) ≃ C(P′), then are A (P) and A (P′) nec-
essarily combinatorially equivalent? We answer this in the negative with the following
example:

3

1 2

4 5

P A (P)

1 2

3

4 5

P′ A (P′)

Figure 2: A (P) has an octagonal face, but A (P′) does not.

3.1 Proof sketch of Lemma 3.5

Let P = Q(a → S) and P′ = Q(a → Sop). By an abuse of notation, we let A (P) also
refer to the set of tubings of P. Our goal is to build a bijection ΦP,S : A (P) → A (P′)
such that for any tubing T ∈ A (P), we have |T| = |ΦP,S(T)|. Let T ∈ A (P). We will
describe how to construct T′ := ΦP,S(T).
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Definition 3.7. A tube τ ∈ T is good if τ ⊆ P − S, τ ⊆ S, or S ⊆ τ and is bad otherwise.
We denote the set of good tubes by Tgood and the set of bad tubes by Tbad.

The key idea of defining ΦP,S is to decompose Tbad into a triple (L,M,U ) where L
and U are nested sequences of sets, some of which may be marked, contained in P − S
and M is an ordered set partition of S. We build the decomposition in such a way so that
we can uniquely recover Tbad from (L,M,U ). Then, we construct T′ by keeping Tgood

and replacing Tbad by T′
bad, which is obtained from (L,M,U ) where M is the reverse of

M. We decompose Tbad as follows.

Definition 3.8. A tube τ ∈ Tbad is called lower (resp. upper) if there exist x ∈ τ − S and
y ∈ τ ∩ S such that x ⪯ y (resp. y ⪯ x). We denote the set of lower tubes by TL and the
set of upper tubes by TU.

Lemma 3.9 (Structure Lemma). Tbad is the disjoint union of TL and TU. Furthermore, TL and TU
each form a nested sequence.

Definition 3.10 (Tubing decomposition). Let TL = {τ1, τ2, . . .} where τi ⊂ τi+1 for all i.
For convenience, we define τ0 = ∅. We define a nested sequence L = (L1, L2, . . .) and a
sequence of disjoint sets ML = (M1

L, M2
L, . . .) as follows.

• For each i ≥ 1, let Li = τi − S, and mark Li with a star if (τi − τi−1) ∩ S ̸= ∅.

• If Li is the j-th starred set, let Mj
L = (τi − τi−1) ∩ S.

We define the sequences U and MU analogously. We make the following definitions.

• Let M̂ := S − ⋃
τ∈Tbad

τ.

• For sequences a and b, let the sequence a · b be b appended to a, and let a be the
reverse of a.

• We define

M :=

{
ML ·MU if M̂ = ∅
ML · (M̂) ·MU if M̂ ̸= ∅

where (M̂) is the sequence containing M̂.

• The decomposition of Tbad is the triple (L,M,U ).

Figure 3 gives an example of a decomposition.

Lemma 3.11 (Reconstruction algorithm). Tbad can be reconstructed from its decomposition.
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(a) TL is blue and TU is red.
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U = ({13, 15}∗, {13, 14, 15})

M = ({6}, {5}, {7}, {8, 9, 10, 11}, {12})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

(b) L is blue, M is purple, and U is red.

Figure 3: The decomposition of Tbad.

Proof. Let M = (M1, . . . , Mn). To reconstruct TL, we set τ1 = L1 ∪ M1 and take

τi =

{
τi−1 ∪ Li if Li is not starred
τi−1 ∪ Li ∪ Mj if Li is marked with the j-th star.

For TU, we set τ1 = U1 ∪ Mn and

τi =

{
τi−1 ∪ Ui if Ui is not starred
τi−1 ∪ Ui ∪ Mn−j+1 if Ui is marked with the j-th star.

Lemma 3.12. Applying the reconstruction algorithm to (L,M,U ) yields a proper tubing T′
bad

of P′ with exactly |Tbad| tubes.

We define T′ := T′
bad ⊔ Tgood and take ΦP,S(T) := T′.

Lemma 3.13. T′ is a proper tubing of P′. Furthermore, ΦP′,S(T′) = T and |ΦP,S(T)| = |T|.

4 Broom posets

Recall that the ordinal sum of two posets (P,<P) and (Q,<Q) is the poset (R,<R) whose
elements are those in P ∪ Q, and a ≤R b if and only if

• a, b ∈ P and a ≤P b or
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• a, b ∈ Q and a ≤Q b or

• a ∈ P and b ∈ Q.

We denote the ordinal sum of P and Q as P ⊕ Q. Let Cn be the chain poset of size n and
Ak be the antichain of size k. In this section, we study the broom posets An,k = Cn+1 ⊕ Ak.
In particular, An,0 is the chain poset Cn+1, and A0,k is the claw poset C1 ⊕ Ak. Recall that
A (An,0) is the associahedron and A (A0,k) is the permutohedron. We show that the h-
vectors of broom posets have a simple combinatorial interpretation in terms of descents
of stack-sorting preimages.

4.1 Stack-sorting

In [12], West defined a deterministic version of Knuth’s stack-sorting algorithm, which
we call the stack-sorting map and denote by s. The stack-sorting map is defined as follows.

Definition 4.1 (Stack-sorting). Given a permutation π ∈ Sn, s(π) is obtained through
the following procedure. Iterate through the entries of π. In each iteration,

• if the stack is empty or the next entry is smaller than the entry at the top of the
stack, push the next entry to the top of the stack;

• otherwise, pop the entry at the top of the stack to the end of the output permuta-
tion.

Figure 4 illustrates the stack-sorting process on π = 3142.

stack
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4

stack

1 3 2

stack

1 3 2 4

Figure 4: Example of s(3142)



On the f -vectors of poset associahedra 9

4.2 Catalan convolution

Recall that the Catalan numbers Cn = 1
n+1(

2n
n ) have generating function C(t) = 1−

√
1−4t

2t .
The k-th Catalan convolution is the sequence with generating function C(t)k. For conve-
nience, we denote [tn]C(t)k by C(k)

n .
The explicit formula for C(k)

n is

C(k)
n =

k + 1
n + k + 1

(
2n + k

n

)
.

4.3 h-vector

Recall that we defined Sn,k = {w | w ∈ Sn+k, wi = i for all i > k}. In this section, our
main theorem is:

Theorem 4.2. Let h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the
number of permutations in s−1(Sn,k) with exactly i descents.

As a corollary, we obtain the following result.

Corollary 4.3. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Recall also the following result by Brändén.

Theorem 4.4 ([2]). For A ⊆ Sn, we have

∑
σ∈s−1(A)

tdes(σ) =
⌊ n−1

2 ⌋
∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m tm(1 + t)n−1−2m,

where peak(σ) is the number of index i such that σi−1 < σi > σi+1.

This gives the following corollary.

Corollary 4.5. The γ-vector of A (An,k) is nonnegative.

Remark 4.6. Corollary 4.5 also follows from the fact that A (An,k) is isomorphic to the
graph associahedra of lollipop graphs, which are chordal. It was shown in [7] that graph
associahedra of chordal graphs are γ-nonnegative.
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4.4 Real-rootedness

In this section, we will sketch the proof of real-rootedness of the h-polynomial of A (An,2).
We say a polynomial a0 + a1t + . . . + antn is real-rooted if all of its zeros are real. We say
a sequence (a0, a1, . . . , an) is real-rooted if the polynomial a0 + a1t + . . . + antn is real-
rooted.

Let f and g be real-rooted polynomials with positive leading coefficients and real
roots { fi} and {gi}, respectively. We say that f interlaces g if

g1 ≤ f1 ≤ g2 ≤ f2 ≤ . . . ≤ fd−1 ≤ gd

where d = deg g = deg f + 1. We say that f alternates left of g if

f1 ≤ g1 ≤ f2 ≤ g2 ≤ . . . ≤ fd ≤ gd

where d = deg g = deg f . Finally, we say f interleaves g, denoted f ≪ g, if f either
interlaces or alternates left of g.

Recall that the Narayana polynomial Nn(t) is defined by

Nn(t) =
n−1

∑
i=0

aiti

where ai counts the number of permutations in s−1(1 . . . n) with exactly i descents. In
other words, Nn(t) is the h-polynomial of A (An,0) and A (An−1,1). We have the follow-
ing result.

Theorem 4.7 ([1]). For all n, Nn(t) is real-rooted. Furthermore, Nn−1(t) ≪ Nn(t).

To prove real-rootedness of the h-polynomial of A (An,2), we will need the following
“happy coincidence”.

Proposition 4.8. The number of permutations in s−1(2134 . . . n) with exactly i descents is
the same as the number of permutations w in s−1(1 . . . n) with exactly i descents such that
w1, wn < n.

Proposition 4.8 leads to the following important recurrence.

Proposition 4.9. Let Hn(t) be the h-polynomial of A (An,2), and recall that Nn+2(t) and
Nn+1(t) are the h-polynomials of A (An+2,0) and A (An+1,0), respectively. We have

Hn(t) = 2Nn+2(t)− (1 + t)Nn+1(t).

This recurrence and Theorem 4.7 allows us to prove the following theorem.

Theorem 4.10. Let Hn(t) be the h-polynomial of A (An,2). Then, Hn(t) is real-rooted.
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5 Open Questions

Question 5.1. Can we define fA (P)(z) purely in terms of C(P)? It would also be interest-
ing to answer this question even for f0.

Question 5.2. It remains open to find an interpretation of the h-vector of A (P) in terms
of the combinatorics of P. Can h(z) be defined purely in terms of C(P)?

Question 5.3. The map ΦP,S can be analogously defined for affine poset cyclohedra [4],
where an autonomous subset S has at most one representative from each residue class.
Again, it preserves the f -vector of the affine poset cyclohedron. Does Lemma 3.4 (and
hence Theorem 3.6) hold for affine posets?

We have the following conjectured generalization of Proposition 4.9.

Conjecture 5.4. Let P be a poset with an autonomous subposet S that is a chain of size 2, i.e.
S = C2. Let P1 be the poset obtained from P by replacing S by a singleton. Let P2 be the poset
obtained from P by replacing S by an antichain of size 2, i.e. A2. Let hP(t), hP1(t), hP2(t) be the
h-polynomials of A (P), A (P1), A (P2), respectively. Then,

2hP(t) = hP2(t) + (1 + t)hP1(t).

As a result, let γP(t), γP1(t), γP2(t) be the γ-polynomials of A (P), A (P1), A (P2), respectively.
Then,

2γP(t) = γP2(t) + γP1(t).

Conjecture 5.4 is useful in proving real-rootedness of the h-polynomials, as shown in
Theorem 4.10. Furthermore, the resulting recurrence of the γ-polynomial would also be
useful in proving γ-positivity. More generally, we have the following recurrence when S
is an antichain of size n.

Conjecture 5.5. Let P be a poset with an autonomous subposet S that is a chain of size n, i.e.
S = Cn. For 1 ≤ i ≤ n, let Pi be the poset obtained from P by replacing S by an antichain of
size i, i.e. Ai. Let hP(t), hP1(t), . . ., hPn(t) be the h-polynomials of A (P), A (P1), . . ., A (Pn),
respectively. Then,

hP(t) =
1
n! ∑

w∈Sn

B1(t)c1(w) . . . Bn(t)cn(w)hPℓ(λ(w))
(t) (5.1)

where

Bk(t) =
k−1

∑
i=0

(
k − 1

i

)2

ti

are type B Narayana polynomials, ci(w) is the number of cycles of size i in w, and ℓ(λ(w)) is
the length of the cycle type λ(w) of w.
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The type B Narayana polynomials above also show up as the rank-generating func-
tion of the type B analogue NCB

n of the lattice of non-crossing partitions (see [8]) and the
h-polynomials of type B associahedra (see [9]).

Equation 5.1 bears resemblance to the Frobenius characteristic map. Thus, it is a
natural question to ask if there is a representation theory story behind this equation.
This is an interesting question for future research.
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