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Abstract. The chromatic quasisymmetric functions (csf) of Shareshian and Wachs as-
sociated to unit interval orders have attracted a lot of interest since their introduction
in 2016, both in combinatorics and geometry, because of their relation to the famous
Stanley-Stembridge conjecture (1993) and to the topology of Hessenberg varieties, re-
spectively. In the present work we study the csf associated to the larger class of interval
orders with no restriction on the length of the intervals. Inspired by an article of Abreu
and Nigro, we show that these csf are weighted sums of certain quasisymmetric func-
tions associated to the increasing spanning forests of the associated incomparability
graphs. Furthermore, we define quasisymmetric functions that include the unicellu-
lar LLT symmetric functions and generalize an identity due to Carlsson and Mellit.
Finally we conjecture a formula giving their expansion in the type 1 power sum qua-
sisymmetric functions which should extend a theorem of Athanasiadis.

Keywords: Chromatic quasisymmetric functions, LLT quasisymmetric functions, in-
creasing spanning forests

1 Introduction

In [15] Shareshian and Wachs introduced the chromatic quasisymmetric function χG[X; q]
associated to every graph G whose vertices are totally ordered, as a sum over proper
colorings of G of suitable monomials. At q = 1 the series χG[X; q] reduces to the well-
known chromatic symmetric function χG[X; 1] = χG(x) introduced by Stanley in [17]. A
famous conjecture of Stanley and Stembridge ([17, Conjecture 5.1], [18, Conjecture 5.5])
states that if G is the incomparability graph of a (3 + 1)-free poset, then χG[X; 1] is e-
positive, i.e. its expansion in the elementary symmetric functions has coefficients in N.
Shareshian and Wachs showed (cf. [15, Theorem 4.5]) that if G is the incomparability
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graph of a poset that is both (3 + 1)-free and (2 + 2)-free, then χG[X; q] is a symmetric
function, and they conjecture that it is e-positive, i.e. its expansion in the elementary
symmetric functions has coefficients in N[q]. Thanks to a result of Guay-Paquet [9], it is
known that the Shareshian-Wachs conjecture implies the Stanley-Stembridge conjecture.
The former problem attracted a lot of attention recently: see e.g. [10, 2, 16, 7, 12, 8].

The posets that are (3 + 1)-free and (2 + 2)-free are precisely the unit interval orders
(see [14]), whose elements are intervals in R of the same length, and an interval a is
smaller than an interval b if all the points of a are strictly smaller than all the points of
b. If in such a poset we order the intervals increasingly according to their left endpoints,
then we get a total order on them, and now the incomparability graphs of these posets
will inherit this total order on the vertices, giving the labelled graphs G involved in the
Shareshian-Wachs conjecture. In our article we call these labelled graphs Dyck graphs, as
they are in a natural bijection with Dyck paths.

If in the definition of unit interval orders we drop the condition on the intervals to
have all the same length, then we get the interval orders. The incomparability graphs of
these posets will be called interval graphs in our article, and their chromatic quasisym-
metric functions χG[X; q] are the object of our study.

Inspired by the work of Abreu and Nigro [1], given an interval graph G, for every
increasing spanning forest F of G we will define a quasisymmetric function Q(G)

F so
that the following formula holds (the statistic wtG(F) is essentially the one in [1], while
ISF(G) is the set of increasing spanning forests of G).

Theorem 4.1. Given an interval graph G on n vertices, we have

χG[X; q] = ∑
F∈ISF(G)

qwtG(F)Q(G)
F . (1.1)

For every simple graph G with totally ordered vertices we introduce the quasisym-
metric function LLTG[X; q], analogous to χG[X; q] but defined as a sum over all (not
necessarily proper) colorings of G of suitable monomials.

The main result of this article is the following theorem, stated in plethystic notation
(ρ and ψ are well-known involutions of the algebra QSym of quasisymmetric functions).

Theorem 5.1. Given G an interval graph on n vertices, we have

(1− q)nρ

(
ψχG

[
X

1
1− q

])
= LLTG[X; q].

This result extends the identity in [6, Proposition 3.5] proved by Carlsson and Mellit
when G is a Dyck graph.

In [5] the authors study a family of quasisymmetric functions that they call type 1
quasisymmetric power sums, denoted Ψα. Actually {Ψα | α composition} is a basis of
QSym that refines the power symmetric function basis.
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Figure 1: The interval graph G = ([8], {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7),
(3, 4), (3, 5), (3, 6), (5, 6), (5, 7), (6, 7), (6, 8), (7, 8)}), on the left. On the right, the Dyck
graph G2 = ([8], {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (5, 6), (5, 7), (6, 7), (7, 8)}).

We state the following conjecture which is supposed to provide an extension of the
formula proved by Athanasiadis in [4].

Conjecture 6.1. For any interval graph G on n vertices we have

ρψχG[X; q] = ∑
α⊨n

Ψα

zα
∑

σ∈NG,α

qĩnvG(σ).

2 Preliminaries

For every n ∈ Z>0 := {1, 2, 3, . . . } we will use the notation [n] := {1, 2, . . . , n}.

2.1 Interval graphs

In this abstract a graph will always be simple, i.e. no loops and no multiple edges.
In our work a (labelled) graph G = ([n], E) will be called interval if whenever {i, j} ∈ E

and i < j, then {i, k} ∈ E for every i < k ≤ j. We will call IGn the set of all interval
graphs with vertex set [n].

We can represent an interval graph G = ([n], E) in the following way: in a n × n
square grid we order the columns from left to right with numbers 1, 2, . . . , n and similarly
the rows from bottom to top; then we color the cells {i, j} ∈ E with i < j. See Figure 1,
on the left, for an example1.

Notice that in these pictures we simply obtain a bunch of (possibly empty) colored
columns, starting just above the diagonal cells. Hence clearly there are n! interval graphs
on n vertices.

1Sometimes we denote by (i, j) an edge {i, j} ∈ E with i < j, like in the caption of Figure 1.
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Given an interval graph G on n vertices, we can consider its flipped, obtained from
G by replacing each edge {i, j} with an edge {n + 1− i, n + 1− j}: in terms of pictures,
this corresponds to flip the picture of G around the line y = −x.

An interval graph G on n vertices such that its flipped is still an interval graph is
called a Dyck graph. The explanation of the name is obvious, since the picture of a Dyck
graph determines a Dyck path: see the graph G2 in Figure 1, on the right (the Dyck path
is the thicker one).

It turns out that the interval graphs are the incomparability graphs of certain posets
called interval orders (hence their name).

Given a (naturally labelled) poset P = ([n],<P), its incomparability (labelled) graph
Inc(P) = ([n], EP) is defined by setting {i, j} ∈ EP if and only if i and j are incomparable
in P.

Let I be the set of all bounded closed intervals of R, and given I = [a, b] and J = [c, d]
we set I ≺ J if and only if b < c. Clearly (I ,≺) is a poset. Any subposet of (I ,≺) is
called an interval order.

2.2 Symmetric and quasisymmetric functions

In this section we recall a few basic facts of symmetric and quasisymmetric functions,
mainly to fix the notation.

Given a composition α = (α1, α2, . . . , αk) of n ∈ N (denoted α ⊨ n), we denote its size
by |α| = ∑i αi = n and its length by ℓ(α) = k. For brevity, sometimes we will use the
exponential notation, so that for example we will write (14) for (1, 1, 1, 1), or (13, 22, 1, 3)
for (1, 1, 1, 2, 2, 1, 3).

To a composition α = (α1, α2, . . . , αk) of n we associate a set set(α) = setn(α) ⊆ [n− 1]:

set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

Viceversa, to a subset S ⊆ [n− 1] whose elements are i1 < i2 < · · · < ik we associate the
composition

comp(S) = compn(S) = (i1, i2 − i1, i3 − i2, . . . , ik − ik−1, n− ik) ⊨ n.

Notice that the functions setn and compn are inverse of each others.
Given a composition α ⊨ n, α = (α1, α2, . . . , αk), its reversal is αr = (αk, αk−1, . . . , α1),

its complement is αc = comp([n− 1] \ set(α)), and its transpose is αt = (αr)c = (αc)r.
We denote by QSym the algebra of quasisymmetric functions in the variables x1, x2,. . .

and coefficients in Q(q), where q is a variable.
Given n ∈ N and S ⊆ [n − 1], we define the fundamental (Gessel) quasisymmetric

function Ln,S as
Ln,S := ∑

i1≤i2≤···≤in
j∈S⇒ij ̸=ij+1

xi1 xi2 · · · xin



Chromatic functions, interval orders, and increasing forests 5

and for every α ⊨ n, we define Lα := Ln,set(α).
It is well known that {Lα | α composition} is a basis of QSym.
We have the following three involutions of QSym: ψ : QSym → QSym, defined by

ψ(Lα) := Lαc , ρ : QSym → QSym defined by ρ(Lα) = Lαr , and ω : QSym → QSym
defined by ω(Lα) = Lαt .

We will use the plethysm of quasisymmetric functions: cf. [11].

2.3 Colorings and (co)inversions

Given n ∈ Z>0, let G = ([n], E) be a (simple) graph.
A coloring of G is simply a function κ : [n] → Z>0. We call C(G) the set of colorings

of G. We can and will identify a coloring κ ∈ C(G) with the word κ(1)κ(2) · · · κ(n) in
the alphabet Z>0.

A coloring of G is called proper if {i, j} ∈ E implies κ(i) ̸= κ(j). We call PC(G) the set
of proper colorings of G. Notice that with the above identifications we always have that
the symmetric group Sn is a subset of PC(G).

Given κ ∈ C(G) a G-inversion of κ is a pair (i, j) with {i, j} ∈ E, i < j and κ(i) > κ(j).
Similarly, a G-coinversion of κ is a pair (i, j) with {i, j} ∈ E, i < j and κ(i) < κ(j).
We denote by InvG(κ), respectively CoInvG(κ), the set of G-inversions, respectively G-
coinversions, of κ. Let us denote by Inv(G) the (finite) set of possible sets of G-inversions
of a coloring of G: in other words Inv(G) := {InvG(σ) | σ ∈ Sn}. Similarly, we set
CoInv(G) := {CoInvG(σ) | σ ∈ Sn}.

We can now set for every κ ∈ C(G)

invG(κ) := |InvG(κ)| and coinvG(κ) := |CoInvG(κ)|.

Example 2.1. Consider the graph G in Figure 1, and σ = 31852647 ∈ S8 ⊆ PC(G). Then

InvG(σ) = {(1, 2), (3, 4), (3, 5), (3, 6), (6, 7)} and
CoInvG(σ) = {(1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (5, 6), (5, 7), (6, 8), (7, 8)},

so that invG(σ) = 5 and coinvG(σ) = 10.

Let ϕ : C(G) → Sn be the standardization from left to right: given κ(1)κ(2) · · · κ(n),
if c1 < c2 < · · · < ck is the ordered set of values κ(i), then ϕ(κ) is the permutation
obtained by replacing the d1 occurrences of c1 with the numbers 1, 2, . . . , d1 from left to
right, then the d2 occurrences of c2 with the numbers d1 + 1, d1 + 2, . . . , d1 + d2 from left
to right, and so on. For example ϕ(3253353) = 2163475.
Remark 2.2. Observe that for any κ ∈ C(G),

CoInvG(κ) ⊆ CoInvG(ϕ(κ)) and InvG(κ) = InvG(ϕ(κ)).

The asymmetry is due to the fact that the standardization ϕ is from left to right. But
observe that if κ ∈ PC(G), then in fact CoInvG(κ) = CoInvG(ϕ(κ)) as well.
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2.4 Interval graphs and (co)inversions

Given n ∈ Z>0, let G = ([n], E) be an interval graph.
Given τ ∈ Sn, set

DesG(τ) := {i ∈ [n− 1] | τ(i) > τ(i + 1) or {τ(i), τ(i + 1)} ∈ E} ⊆ [n− 1].

The next proposition is sort of implicit in the work of Shareshian and Wachs [15].

Proposition 2.3. Given G = ([n], E) an interval graph, for every S ∈ Inv(G) we have

∑
κ∈PC(G)

InvG(κ)=S

qinvG(κ)xκ = ∑
σ∈Sn

InvG(σ)=S

qinvG(σ)Ln,DesG(σ−1) = q|S| ∑
σ∈Sn

InvG(σ)=S

Ln,DesG(σ−1),

and for every S ∈ CoInv(G) we have

∑
κ∈PC(G)

CoInvG(κ)=S

qcoinvG(κ)xκ = ∑
σ∈Sn

CoInvG(σ)=S

qcoinvG(σ)Ln,DesG(σ−1) = q|S| ∑
σ∈Sn

CoInvG(σ)=S

Ln,DesG(σ−1).

3 Increasing spanning forests and quasisymmetric func-
tions

Given a graph G = ([n], E), we say that a subgraph F ⊆ G is a spanning forest if F is a
forest on the vertices [n]. In this case, the connected components are labelled trees, with
the vertex set contained in [n]. Given such a tree T, we call root(T) its minimal vertex.
Then T is called increasing if in the paths stemming from root(T) the other vertices appear
in increasing order.

A spanning forest F of a graph G = ([n], E) is called increasing if all its connected
components are increasing trees. In this case, we think of F as the ordered collection
F = (T1, T2, . . . , Tk), where the Ti are its connected components, ordered so that

root(T1) < root(T2) < · · · < root(Tk).

E.g. the forest F = (T1, T2) in Figure 2, with1 T1 = (V(T1), E(T1)) = ({1, 3}, {(1, 3)})
and T2 = (V(T2), E(T2)) = ({2, 4, 5, 6, 7, 8}, {(2, 4), (2, 5), (2, 6), (5, 7), (6, 8)}), is an in-
creasing spanning forest of the graph G in Figure 1, .

We denote by ISF(G) the set of increasing spanning forests of G.
Given a graph G = ([n], E) and an F ∈ ISF(G), F = (T1, T2, . . . , Tk), we say that

a pair (u, v) with u, v ∈ [n] is a G-inversion of F if u ∈ V(Ti), v ∈ V(Tj), i > j and
(u, v) ∈ E (so that u < v). Given an edge (u, v) ∈ E(Ti) of Ti we define its weight in G,
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Figure 2: An example of increasing spanning forest of the graph G in Figure 1.

denoted wtG((u, v)), to be the number of w ∈ V(Ti) vertex of Ti such that u ≤ w < v
and (w, v) ∈ E(G). So for every tree Ti we define its weight in G as

wtG(Ti) = ∑
(u,v)∈E(Ti)

wtG((u, v))

and finally the weight of F (in G) as

wtG(F) := #{G-inversions of F}+
k

∑
i=1

wtG(Ti).

Example 3.1. The forest F = (T1, T2) in Figure 2 is an increasing spanning forest of the
graph G in Figure 1: we observe that its only G-inversion is (2, 3) (as 3 occurs in T1, 2
occurs in T2 and (2, 3) ∈ E), wtG(T1) = wtG((1, 3)) = 1, and

wtG(T2) = wtG((2, 4)) + wtG((2, 5)) + wtG((2, 6)) + wtG((5, 7)) + wtG((6, 8))
= 1 + 1 + 2 + 2 + 2 = 8,

so that wtG(F) = 1 + 1 + 8 = 10.

Let G = ([n], E) be an interval graph, i.e. G ∈ IGn. We define a function ΦG :
PC(G)→ ISF(G) via Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm defining the function getW(G, v, S, κ)

Input: A graph G = ([n], E), S ⊂ [n], v ∈ [n] \ S, and κ ∈ PC(G)
Output: W ▷ It will be W ⊆ S ∪ {v}

W ← {v}
for w ∈ S do

if {u ∈W | u < w, (u, w) ∈ E and κ(u) < κ(w)} ̸= ∅ then
W ←W ∪ {w}

end if
end for
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Algorithm 2 The algorithm defining the function ΦG(κ)

Input: A graph G = ([n], E) and κ ∈ PC(G)
Output: F = (T1, T2, . . . ) ▷ It will be F ∈ ISF(G)

S← [n]
F ← ( ) ▷ Empty list
while S ̸= ∅ do

v← min(S)
S← S \ {v}
T = (V(T), E(T))← ({v},∅) ▷ The tree we are going to build
W ← getW(G, v, S, κ) ▷ Defined in Algorithm 1
for i ∈ {2, . . . , #W} do

L← {u ∈ V(T) | u < Wi and (u, Wi) ∈ E} ▷ W = {W1 < W2 < · · · < W#W}
r ← #{u ∈ L | (u, Wi) ∈ E and κ(u) < κ(Wi)}
T ← (V(T) ∪ {Wi}, E(T) ∪ {(L#L−r+1, Wi)}) ▷ L = {L1 < L2 < · · · < L#L}
S← S \ {Wi}

end for
Append T to the right of F

end while

Proposition 3.2. Given a graph G = ([n], E), the Algorithm 2 defines a function ΦG :
PC(G)→ ISF(G).

The first nontrivial property of the function ΦG is its surjectivity.

Theorem 3.3. Let G = ([n], E) a graph. There exists an explicit function fG : ISF(G)→ Sn ⊂
PC(G) such that ΦG ◦ fG(F) = F for every F ∈ ISF(G). In particular ΦG is surjective, fG is
injective, and ISF(G) = {ΦG(σ) | σ ∈ Sn} = {ΦG(σ) | σ ∈ fG(ISF(G))}.

When G = ([n], E) is an interval graph, ΦG has also the following property.

Proposition 3.4. Given an interval graph G = ([n], E), the function ΦG : PC(G) → ISF(G)
defined by Algorithm 2 is such that for every κ, κ′ ∈ PC(G), ΦG(κ) = ΦG(κ

′) if and only if
CoInvG(κ) = CoInvG(κ

′). Moreover wtG(ΦG(κ)) = coinvG(κ) for every κ ∈ PC(G).

We are now ready to define quasisymmetric functions associated to increasing span-
ning forests of interval graphs.

Definition 3.5. Given an interval graph G = ([n], E), and given F ∈ ISF(G), we define
the formal power series

Q(G)
F = Q(G)

F [X] := ∑
κ∈PC(G)

ΦG(κ)=F

xκ.
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We have the following fundamental formula.

Theorem 3.6. Given an interval graph G = ([n], E) ∈ IGn, and given F ∈ ISF(G), we have

Q(G)
F = ∑

σ∈Sn
CoInvG(σ)=CoInvG(F)

Ln,DesG(σ−1), (3.1)

where
CoInvG(F) := CoInvG( fG(F)).

4 Interval orders, chromatic functions and LLT

Given any simple graph G = ([n], E), Shareshian and Wachs defined in [15] its chromatic
quasisymmetric function as

χG[X; q] := ∑
κ∈PC(G)

qcoinvG(κ)xκ.

The following theorem is a direct consequence of Proposition 3.4 and Theorem 3.3.

Theorem 4.1. Given an interval graph G = ([n], E), we have

χG[X; q] = ∑
F∈ISF(G)

qwtG(F)Q(G)
F . (4.1)

Example 4.2. For G = ([3], {(1, 2), (1, 3)}), the increasing spanning forests of G are

F1 = (([3], {(1, 2), (1, 3)})), F2 = (({1, 3}, {(1, 3)}), ({2},∅)),
F3 = (({1, 2}, {(1, 2)}), ({3},∅)), F4 = (({1},∅), ({2},∅), ({3},∅)),

and we compute

wtG(F1) = 2, wtG(F2) = wtG(F3) = 1, wtG(F4) = 0,

Q(G)
F1

= L(1,2) + L(13), Q(G)
F2

= Q(G)
F3

= L(13), Q(G)
F4

= L(2,1) + L(13),

hence finally
χG[X; q] = L(2,1) + q2L(1,2) + (1 + 2q + q2)L(13).

The following corollary is a reformulation of [15, Theorem 3.1] in our cases, and it
follows immediately from Theorems 4.1 and 3.6.

Corollary 4.3. Given an interval graph G on n vertices, we have

χG[X; q] = ∑
σ∈Sn

qcoinvG(σ)Ln,DesG(σ−1). (4.2)
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Given any simple graph G = ([n], E) ∈ IGn, we define its LLT quasisymmetric function
as

LLTG[X; q] := ∑
κ∈C(G)

qinvG(κ)xκ.

The following formula is an immediate consequence of Proposition 2.3.

Theorem 4.4. Given any interval graph G = ([n], E), we have

LLTG[X; q] = ∑
σ∈Sn

qinvG(σ)Ln,Des(σ−1).

The name LLT of these quasisymmetric functions comes from the following well-
known facts: when G is a Dyck graph, LLTG[X; q] is a symmetric function, and in fact it
is a so called unicellular LLT symmetric functions (see e.g. [3, Section 3]). In this case the
formula in Theorem 4.4 is well known (e.g. it can be deduced from [13, Theorem 8.6]).

5 The main identity

Recall from Section 2.2 the involutions ψ and ρ. We use the plethysm of quasisymmetric
functions: cf. [11].

Theorem 5.1. Let G = ([n], E) be an interval graph. Then

(1− q)nρ

(
ψχG

[
X

1
1− q

])
= LLTG[X; q]. (5.1)

Remark 5.2. This is really an extension of [6, Proposition 3.5]. Indeed, when G is a
Dyck graph, χG[X; q] is symmetric (by [15, Theorem 4.5]), the plethysm reduces to the
usual plethysm of symmetric functions (cf. [11]), ρ fixes the symmetric functions while
ψ gives the usual ω involution of symmetric functions, and LLTG[X; q] is precisely the
unicellular LLT symmetric function corresponding to the Dyck graph G, so, our (5.1) is
just a rewriting of [6, Proposition 3.5].

6 Expansions in the Ψα

In [5] the authors study a family of quasisymmetric functions that they call type 1 qua-
sisymmetric power sums, and they denote Ψα. Actually {Ψα | α composition} is a basis
of QSym, and these quasisymmetric functions refine the power symmetric functions, i.e.
for any partition λ ⊢ n

∑
α⊨n

λ(α)=λ

Ψα = pλ , (6.1)
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where λ(α) is the unique partition obtained by rearranging in weakly decreasing order
the parts of α, and the pλ = pλ1 pλ2 · · · are the usual power symmetric functions.

Given G = ([n], E) a graph and σ ∈ Sn a permutation, we say that r ∈ [n] is a left-
to-right G-maximum if for every s ∈ [r − 1] we have σ(s) < σ(r) and {σ(s), σ(r)} /∈ E.
Notice that 1 is always a left-to-right G-maximum, that we call trivial. We set

ĩnvG(σ) := {{σ(i), σ(j)} ∈ E | i < j and σ(i) > σ(i + 1)},

and
D̃esG(σ) := {i ∈ [n− 1] | σ(i) > σ(i + 1) and {σ(i), σ(i + 1)} /∈ E}.

We say that i ∈ [n− 1] is a G-descent if i ∈ D̃esG(σ).
Given a composition α = (α1, α2, . . . , αk) ⊨ n, let NG,α be the set of σ ∈ Sn such that if

we break σ = σ(1)σ(2) · · · σ(n) into contiguous segments of lengths α1, α2, . . . , αk, each
contiguous segment has neither a G-descent nor a nontrivial left-to-right G-maximum.

Given a composition α, define zα := zλ(α), where, as usual, for every partition λ ⊢ n,
if mi denotes the number of parts of λ equal to i, then zλ := ∏n

i=1 mi! · imi .
Finally, recall the involution ω : QSym→ QSym from Section 2.2.
We state our conjecture.

Conjecture 6.1. For any interval graph G = ([n], E) we have

ωχG[X; q] = ∑
α⊨n

Ψα

zα
∑

σ∈NG,α

qĩnvG(σ).

This conjecture should generalize the following formula, proposed by Shareshian and
Wachs [15, Conjecture 7.6] and later proved by Athanasiadis [4].

Theorem 6.2. For any Dyck graph G = ([n], E) we have

ωχG[X; q] = ∑
λ⊢n

pλ

zλ
∑

σ∈NG,λ

qĩnvG(σ).
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