Séminaire Lotharingien de Combinatoire **91B** (2024) Article #61, 12 pp.

Monomial expansions for *q*-Whittaker and modified Hall-Littlewood polynomials

Aritra Bhattacharya^{*1}, T V Ratheesh^{†1}, and Sankaran Viswanath^{‡1}

¹The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India

Abstract. We consider the monomial expansion of the *q*-Whittaker polynomials given by the fermionic formula and via the *inv* and *quinv* statistics. We construct bijections between the parametrizing sets of these three models which preserve the *x*- and *q*weights, and which are compatible with natural projection and branching maps. We apply this to the limit construction of local Weyl modules and obtain a new character formula for the basic representation of $\widehat{\mathfrak{sl}_n}$. Finally, we indicate how our main results generalize to the modified Hall-Littlewood case.

Keywords: *q*-Whittaker polynomial, modified Hall-Littlewood polynomial, local Weyl modules

1 Introduction

Let λ be a partition. For $n \ge 1$, let X_n denote the tuple of indeterminates x_1, x_2, \dots, x_n . The *q*-Whittaker polynomial $W_{\lambda}(X_n; q)$ and the modified Hall-Littlewood polynomial $Q'_{\lambda}(X_n; q)$ are well-studied specializations of the modified Macdonald polynomial. Several different monomial expansions for these polynomials are known. In this article, our focus will be on three of these: the so-called *fermionic formulas* [13, (0.2), (0.3)] and the inv- and quinv-expansions arising from specializations of the formulas of Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1].

We recall that the Schur expansion of the $W_{\lambda}(X_n;q)$ (resp. $Q'_{\lambda}(X_n;q)$) has certain q-Kostka polynomials as coefficients [13]. In turn, this implies yet another monomial expansion, with the underlying indexing set involving pairs of semistandard Young tableaux of conjugate (resp. equal) shapes. This relates to the inv-expansion via the RSK correspondence [9].

The fermionic formula, expressed as a sum of products of *q*-binomials, is seemingly of a very different nature from all the other monomial expansions, and should probably viewed as a kind of compression of these formulas. Recently, Garbali-Wheeler [8]

⁺ratheeshtv@imsc.res.in

^{*}baritra@imsc.res.in. The authors acknowledge partial support under a DAE Apex Grant to the Institute of Mathematical Sciences.

[‡]svis@imsc.res.in

obtained a general formula of the fermionic kind for the full modified Macdonald polynomial $\tilde{H}_{\lambda}(X_n; q, t)$.

The purpose of this article is to bijectively reconcile the fermionic formula with both the inv- and quinv-expansions. We construct bijections between the underlying sets of these three models which (i) preserve the *x*- and *q*-weights, and (ii) are compatible with natural projection and branching maps.

As a corollary, we obtain bijections between the inv- and quinv-models in the *q*-Whittaker and modified Hall-Littlewood specializations, partially answering a question of [1]. We find that the *inv*- and *quinv*-models are related by the simple *box*-*complementation* map of the fermionic model and that inv + quinv is a constant on fibers of the natural projection. We also apply this to the limit construction for Weyl modules [7, 15] and obtain an apparently new character formula for the basic representation of the affine Lie algeba $\widehat{\mathfrak{sl}_n}$.

In this extended abstract, we describe the *q*-Whittaker polynomials in greater detail, contenting ourselves with brief remarks about the modified Hall-Littlewood case in §8 due to space limitations. Complete proofs will appear in [3].

2 Specializations of $\widetilde{H}_{\lambda}(X_n; q, t)$

Given a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots)$, we will draw its Young diagram dg(λ) following the English convention, as a left-up justified array of boxes, with λ_i boxes in the *i*th row from the top. The boxes are called the cells of dg(λ). We let $|\lambda| := \sum_i \lambda_i$. Fix $n \ge 1$ and let $\mathcal{F}(\lambda)$ denote the set of all maps ("fillings") $F : dg(\lambda) \to [n]$ where $[n] = \{1, 2, \cdots, n\}$. If the values of F strictly increase (resp. weakly decrease) as we move down a column, we say F is a *column strict filling* (CSF) (resp. *weakly decreasing filling* (WDF)¹), and denote the set of such fillings by CSF(λ) (resp. WDF(λ)). The x-weight of a filling F is the monomial $x^F := \prod_{c \in dg(\lambda)} x_{F(c)}$.

We recall that the modified Macdonald polynomial $\tilde{H}_{\lambda}(X_n; q, t)$ is a symmetric polynomial in the x_i with $\mathbb{N}[q, t]$ coefficients. We expand this in powers of t; our interest lies in the coefficients of the lowest and highest powers [2, (3.1)]:

$$\widetilde{H}_{\lambda}(X_n;q,t) = \mathcal{H}_{\lambda}(X_n;q)t^0 + \dots + W_{\lambda}(X_n;q)t^{\eta(\lambda)}$$
(2.1)

where $\eta(\lambda) = \sum_{j\geq 1} {\binom{\lambda'_j}{2}}$ where λ'_j denote the parts of the partition conjugate to λ . The $W_{\lambda}(X_n;q)$ is the *q*-Whittaker polynomial. The *q*-reversal (or reciprocal) polynomial of $\mathcal{H}_{\lambda}(X_n;q)$ coincides with the modified Hall-Littlewood polynomial $Q'_{\lambda'}(X_n;q)$ where λ'

¹These latter ones may be easily transformed into the familiar *tabloids* by transposing rows and columns and replacing $i \mapsto n - i + 1$

is the partition conjugate to λ , i.e., $q^{\eta(\lambda')}\mathcal{H}_{\lambda}(X_n;q^{-1}) = Q'_{\lambda'}(X_n;q)$. These are further related to each other by $\omega W_{\lambda}(X_n;q) = Q'_{\lambda'}(X_n;q)$ where ω is the classical involution on the ring of symmetric polynomials.

Following Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1], there are statistics *inv*, *quinv* and *maj* on $\mathcal{F}(\lambda)$ such that

$$\widetilde{H}_{\lambda}(X_n;q,t) = \sum_{F \in \mathcal{F}(\lambda)} x^F q^{v(F)} t^{\operatorname{maj}(F)}$$
(2.2)

where $v \in \{\text{inv}, \text{quinv}\}$. The next lemma follows directly from the definition of maj [9]: **Lemma 1.** Let $F \in \mathcal{F}(\lambda)$. Then (i) maj(F) = $\eta(\lambda)$ iff $F \in \text{CSF}(\lambda)$, and (ii) maj(F) = 0 iff $F \in \text{WDF}(\lambda)$.

Putting together (2.1), (2.2) and Lemma 1, we obtain for $v \in \{inv, quinv\}$:

$$W_{\lambda}(X_n;q) = \sum_{F \in \text{CSF}(\lambda)} x^F q^{v(F)}$$
(2.3)

$$Q'_{\lambda'}(X_n;q) = \sum_{F \in \text{WDF}(\lambda)} x^F q^{\eta(\lambda') - v(F)}$$
(2.4)

These are in fact symmetric in the *x*-variables and can be viewed as expansions in terms of the monomial symmetric functions in x_1, x_2, \dots, x_n .

3 Fermionic formula for $W_{\lambda}(X_n;q)$

Let $n \ge 1$ and $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$ be a partition with at most n nonzero parts. Let $GT(\lambda)$ denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row λ . Given $T \in GT(\lambda)$, we denote its entries by T_i^j for $1 \le i \le j \le n$ as in Figure 1. It will also be convenient to define $T_{j+1}^j = 0$ for all $1 \le j \le n$. We define the North-East and South-East differences of T by: $NE_{ij}(T) = T_i^{j+1} - T_i^j$ and $SE_{ij}(T) = T_i^j - T_{i+1}^{j+1}$ for $1 \le i \le (j+1) \le n$. The GT inequalities ensure that these differences are non-negative.

We will interchangeably think of a GT pattern as a semistandard Young tableau (SSYT). In this perspective, $(T_1^j, T_2^j, \dots, T_j^j)$ is the partition formed by the cells of the tableau which contain entries $\leq j$. It follows that $NE_{ij}(T)$ is the number of cells in the i^{th} row of the tableau which contain the entry j + 1. We let x^T denote the *x*-weight of the corresponding tableau. The following fermionic formula for the *q*-Whittaker polynomial appears in [10, 13] and follows readily from Macdonald's more general formula [14, Chap VI, (7.13)']:

$$W_{\lambda}(X_n;q) = \sum_{T \in GT(\lambda)} x^T \prod_{1 \le i \le j < n} \begin{bmatrix} NE_{ij}(T) + SE_{ij}(T) \\ NE_{ij}(T) \end{bmatrix}_q$$
(3.1)

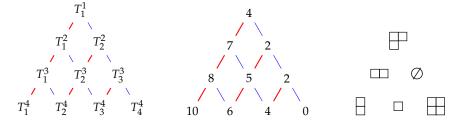


Figure 1: A GT pattern for n = 4. The NE and SE differences are those along the red and blue lines. On the right is a partition overlay compatible with this GT pattern.

Following [12], we define
$$\operatorname{wt}_q(T) = \prod_{1 \le i \le j < n} \begin{bmatrix} NE_{ij}(T) + SE_{ij}(T) \\ NE_{ij}(T) \end{bmatrix}_q$$
.

3.1 Partition overlaid patterns

We recall that the *q*-binomial ${k+\ell \brack k}_q$ is the generating function of partitions that fit into a $k \times \ell$ rectangle, i.e., ${k+\ell \brack k}_q = \sum q^{|\gamma|}$ where $\gamma = (\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0)$ with $\ell \ge \gamma_1$. We also identify partitions of the above form with strictly decreasing *k*-tuples of integers between 0 and $k + \ell - 1$ via the bijection $\gamma \mapsto \overline{\gamma} = \gamma + \delta$ where $\delta = (k - 1, k - 2, \cdots, 0)$.

As shown in [15], the right-hand side of (3.1) can be interpreted in terms of the so-called *partition overlaid patterns* (POPs). A POP of shape λ is a pair (T, Λ) where $T \in GT(\lambda)$ and $\Lambda = (\Lambda_{ij} : 1 \le i \le j < n)$ is a tuple of partitions such that each Λ_{ij} fits into a rectangle of size $NE_{ij}(T) \times SE_{ij}(T)$. For example, if *T* is the GT pattern of Figure 1, we could take $\Lambda_{11} = (2, 1, 0)$, $\Lambda_{12} = (2)$, $\Lambda_{13} = (1, 1)$, $\Lambda_{22} = (0, 0, 0)$, $\Lambda_{23} = (1)$, $\Lambda_{33} = (2, 2)$. We imagine the Λ_{ij} as being placed in a triangular array as in Figure 1. We let $POP(\lambda)$ denote the set of POPs of shape λ . It is now clear from (3.1) that

$$W_{\lambda}(X_n;q) = \sum_{(T,\Lambda)\in \text{POP}(\lambda)} x^T q^{|\Lambda|}$$
(3.2)

where $|\Lambda| = \sum_{i,j} |\Lambda_{ij}|$. We remark that $W_{\lambda}(X_n; q)$ is the character of the *local Weyl module* $W_{\text{loc}}(\lambda)$ - a module for the current algebra $\mathfrak{sl}_n[t]$ [6, 5]. Further, POPs of shape λ index a special basis of this module with Gelfand-Tsetlin like properties [6, 15].

3.2 Projection and Branching for Partition overlaid patterns

Given $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$, we say that $\mu = (\mu_1, \mu_2, \cdots, \mu_{n-1})$ interlaces λ (and write $\mu \prec \lambda$) if $\lambda_i \ge \mu_i \ge \lambda_{i+1}$ for $1 \le i < n$. The *q*-Whittaker polynomials have the following important properties which readily follow from (3.2):

(*projection*) $W_{\lambda}(X_n; q = 0) = s_{\lambda}(X_n)$, the Schur polynomial, and

$$(branching) W_{\lambda}(x_1, x_2, \cdots, x_{n-1}, x_n = 1; q) = \sum_{\mu \prec \lambda} \prod_{1 \le i < n} \left[\frac{\lambda_i - \lambda_{i+1}}{\lambda_i - \mu_i} \right]_q \cdot W_{\mu}(X_{n-1}; q) \quad (3.3)$$

In fact, Chari-Loktev [6] lift (3.3) to the level of modules, showing that the local Weyl module $W_{\text{loc}}(\lambda)$ when restricted to $\mathfrak{sl}_{n-1}[t]$ admits a filtration whose successive quotients are of the form $W_{\text{loc}}(\mu)$ for $\mu \prec \lambda$; further their graded multiplicities are precisely given by the product of *q*-binomial coefficients that appear in (3.3).

The combinatorial shadow of projection is the map pr : $POP(\lambda) \rightarrow GT(\lambda)$ given by $pr(T, \Lambda) = T$. Likewise, we define *combinatorial branching* to be the map br : $POP(\lambda) \rightarrow \bigcup_{\mu \prec \lambda} POP(\mu)$ defined by $br(T, \Lambda) = (T^{\dagger}, \Lambda^{\dagger})$ where T^{\dagger} is obtained from *T* by deleting its bottom row, and Λ^{\dagger} is obtained from Λ by deleting the overlays Λ_{ij} with j = n - 1.

3.3 Box complementation

In addition to pr and br, POP(λ) is endowed with another important map, which we term *box complementation*. Observe that given a partition $\pi = (\pi_1 \ge \pi_2 \ge \cdots \ge \pi_k \ge 0)$ fitting into a $k \times \ell$ rectangle, i.e., with $\pi_1 \le \ell$, we may consider its complement in this rectangle, defined by $\pi^c = (\ell - \pi_k \ge \ell - \pi_{k-1} \ge \cdots \ge \ell - \pi_1)$. Now, for $(T, \Lambda) \in$ POP(λ), define boxcomp $(T, \Lambda) = (T, \Lambda^c)$ where for each $i, j, (\Lambda^c)_{ij}$ is defined to be the complement of Λ_{ij} in its bounding rectangle of size NE_{ij} $(T) \times$ SE_{ij}(T).

We note that since $|\Lambda| \neq |\Lambda^c|$ in general, boxcomp preserves *x*-weights, but not *q*-weights. However $|\Lambda| + |\Lambda^c| = \sum_{i,j} NE_{ij}(T) SE_{ij}(T) =: area(T)$ (in the terminology of [15]), which depends only on *T*.

4 Projection and branching for Column strict fillings

Our goal is to construct natural bijections between $CSF(\lambda)$ and $POP(\lambda)$ which explain the equality of (2.3) and (3.2) for v = inv, quinv. In addition to preserving *x*- and *q*weights, we would like our bijections to be compatible with projection and branching. Towards this end, we first define these latter maps in the setting of $CSF(\lambda)$.

4.1 **Projection:** rowsort

Given $F \in CSF(\lambda)$, let rsort(F) denote the filling obtained from F by sorting entries of each row in ascending order. In light of the following easy lemma, we think of rsort as the projection map in the CSF setting.

Lemma 2. *If* $F \in CSF(\lambda)$ *, then* $rsort(F) \in SSYT(\lambda) \cong GT(\lambda)$ *.*

4.2 Branching: delete-and-splice

A strictly increasing sequence $a = (a_1 < a_2 < \cdots < a_m)$ of positive integers will also be termed a *column tuple* with len(a) = $m \ge 0$. Let $\ell \ge 1$ and suppose $\sigma = (\sigma_1 < \sigma_2 < \sigma_2)$ $\cdots < \sigma_{\ell-1}$) and $\tau = (\tau_1 < \tau_2 < \cdots < \tau_\ell)$ are column tuples of length $\ell - 1$ and ℓ respectively. We set $\sigma_0 = 0$ and let *k* denote the maximum element of the (non-empty) set $\{1 \le i \le \ell : \sigma_{i-1} < \tau_i\}$. Define splice $(\sigma, \tau) = (\overline{\sigma}, \overline{\tau})$ where

$$\overline{\sigma}_i = \begin{cases} \sigma_i & 1 \le i < k \\ \tau_i & k \le i \le \ell \end{cases} \quad \text{and} \quad \overline{\tau}_i = \begin{cases} \tau_i & 1 \le i < k \\ \sigma_i & k \le i < \ell \end{cases}$$

We now define the delete-and-splice rectification ("dsplice") map on $F \in CSF(\lambda)$ as follows: (1) delete all cells in F containing the entry n and let F^{\dagger} denote the resulting filling. While its column entries remain strictly increasing, F^{\dagger} may no longer be of partition shape. (2) Let $\sigma^{(j)}$ ($j \ge 1$) denote the column tuple obtained by reading the j^{th} column of F^{\dagger} from top to bottom. If F^{\dagger} is not of partition shape, there exists $j \ge 1$ such that len($\sigma^{(j+1)}$) = len($\sigma^{(j)}$) + 1. Choose any such j and modify F^{\dagger} by replacing the pair of columns ($\sigma^{(j)}, \sigma^{(j+1)}$) in F^{\dagger} by splice($\sigma^{(j)}, \sigma^{(j+1)}$). This swaps the column lengths and brings the shape of F^{\dagger} one step closer to being a partition. (3) If the shape of F^{\dagger} is a partition, STOP. Else go back to step 2.

It is clear that this process terminates and finally produces a CSF of partition shape (filled by numbers between 1 and n - 1), which we denote dsplice(*F*). The following properties hold:

Proposition 1. With notation as above: (i) D := dsplice(F) is independent of the intermediate choices of *j* made in step 2 of the procedure. (ii) rsort(D) is obtained from rsort(F) by deleting the cells containing the entry *n*. (iii) If μ and λ are the shapes of *D* and *F* respectively, then $\mu \prec \lambda$.

We consider dsplice to be the combinatorial branching map in the CSF context. Its key property is its compatibility with the natural branching map be of the POP setting.

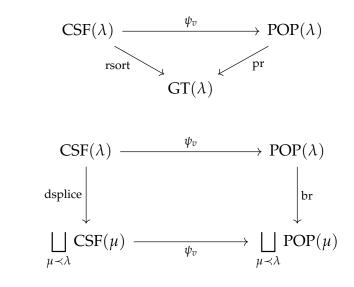
5 The main theorem

Theorem 1. For any $n \ge 1$ and any partition $\lambda : \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ with at most *n* nonzero parts, there exist two bijections ψ_{inv} and ψ_{quinv} from $CSF(\lambda)$ to $POP(\lambda)$ with the following properties:

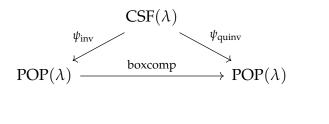
1. If $\psi_v(F) = (T, \Lambda)$, then $x^F = x^T$ and $v(F) = |\Lambda|$, for v = inv or quinv.

2. The following diagrams commute (v = inv or quinv):

(A)



3. The two bijections are related via the commutative diagram:



To summarize, ψ_{inv} and ψ_{quinv} acting on a CSF produce POPs with the same underlying GT pattern, but with complementary overlays. These bijections are compatible with the natural projection and branching maps, and preserve *x*- and appropriate *q*-weights (inv or quinv). Note the slight abuse of notation in part 2(B) above: for $\mu \prec \lambda$, CSF(μ) denotes the set of column strict fillings $F : dg(\mu) \rightarrow [n-1]$ (rather than [n]). Theorem 1, with the exception of part 2(B), can also be formulated in the setting of *q*-Whittaker functions in infinitely many variables. Next, we obtain the following corollaries:

Corollary 1. Let $T \in GT(\lambda)$ and let $rsort^{-1}(T) = \{F \in CSF(\lambda) : rsort(F) = T\}$ be the fiber of rsort over *T*.

- 1. $\sum_{F \in \operatorname{rsort}^{-1}(T)} q^{\operatorname{inv}(F)} = \sum_{F \in \operatorname{rsort}^{-1}(T)} q^{\operatorname{quinv}(F)} = \operatorname{wt}_q(T).$
- 2. inv(F) + quinv(F) = area(T) is constant for $F \in rsort^{-1}(T)$.

An interpretation of $wt_q(T)$ in terms of flags of subspaces compatible with nilpotent operators appears in [12, Theorem 5.8(i)]. In [1], the authors asked for an explicit bijection on $\mathcal{F}(\lambda)$ which interchanges the inv and quinv statistics. We describe this bijection on $CSF(\lambda)$, thereby partially answering their question.

(B)

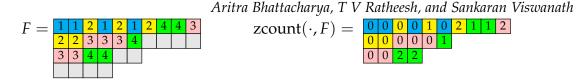


Figure 2: Here $F \in CSF(\lambda)$ for $\lambda = (10, 6, 4, 0)$ and n = 4. Cells of *F* are coloured according to their entries. The gray cells are the extra cells in the augmented diagram $\widehat{dg}(\lambda)$. On the right are cellwise zcount values. Here quinv(*F*) = 12.

Corollary 2. The map $\Omega: \psi_{inv}^{-1} \circ \psi_{quinv} = \psi_{inv}^{-1} \circ \text{boxcomp} \circ \psi_{inv}: \text{CSF}(\lambda) \to \text{CSF}(\lambda)$ is an involution satisfying $\text{inv}(\Omega(F)) = \text{quinv}(F)$ for all $F \in \text{CSF}(\lambda)$.

The explicit construction of the ψ_v and their inverses in the next section makes Ω effectively computable.

6 **Proof sketch**

For a partition λ , the augmented diagram $\widehat{dg}(\lambda)$ is $dg(\lambda)$ together with one additional cell below the last cell in each column (see Figure 2). Given $F \in CSF(\lambda)$, a *quinv-triple* in F is a triple of cells (x, y, z) in $\widehat{dg}(\lambda)$ such that (i) $x, z \in dg(\lambda)$ and z is to the right of x in the same row, (ii) y is the cell immediately below x in its column, (iii) F(x) < F(z) < F(y), where we set $F(y) = \infty$ if y lies outside $dg(\lambda)$. It is easy to see that the quinv-triples considered in [1] for $F \in \mathcal{F}(\lambda)$ reduce to this description when F is a CSF rather than a general filling. Thus, quinv(F) as defined in [1] equals the number of quinv-triples in F (as defined above) for a CSF F.

Given $F \in \text{CSF}(\lambda)$, we define a function *zcount* which tracks the contributions of individual cells of dg(λ) to quinv(F) as follows: for each cell $c \in \text{dg}(\lambda)$, let zcount(c, F) = the number of quinv-triples (x, y, z) in F with z = c. Clearly

$$\sum_{c \in dg(\lambda)} \operatorname{zcount}(c, F) = \operatorname{quinv}(F)$$
(6.1)

We next group cells of the filling *F* row-wise according to the entries they contain. More precisely, let cells(*i*, *j*, *F*) = { $c \in dg(\lambda) : c$ is in the *i*th row and F(c) = j + 1} for $1 \le i \le j + 1 \le n$. Figure 2 shows an example, with these groups colour-coded in each row. It readily follows from §3 that

$$|\operatorname{cells}(i, j, F)| = NE_{ii}(T)$$
, where $T = \operatorname{rsort}(F)$. (6.2)

The next proposition brings the SE differences also into play [3]:

Proposition 2. Let $F \in CSF(\lambda)$ and T = rsort(F). Fix $1 \le i \le j+1 \le n$. (1) If $c \in cells(i, j, F)$, then $zcount(c, F) \le SE_{ij}(T)$. (2) If $c, d \in cells(i, j, F)$ with c lying to the right of d, then $zcount(c, F) \ge zcount(d, F)$. (3) Further, equality holds in (1) for all i, j and all cells $c \in cells(i, j, F)$ iff F = T.

Figure 3: (left to right) Configuration of quinv, inv and refinv triples.

6.1 Definition of ψ_{quinv}

We now have all the ingredients in place to define ψ_{quinv} . Let $F \in CSF(\lambda)$ and T = rsort(F). For each $1 \le i \le j + 1 \le n$, consider the sequence

$$\Lambda_{ij} = (\operatorname{zcount}(c, F) : c \in \operatorname{cells}(i, j, F) \text{ traversed right to left in row } i).$$
(6.3)

In Figure 2, this amounts to reading the entries of a fixed colour from right to left in a given row of $\operatorname{zcount}(\cdot, F)$. By Proposition 2, this is a weakly decreasing sequence bounded above by $\operatorname{SE}_{ij}(T)$. Together with (6.2), this implies that Λ_{ij} may be viewed as a partition fitting into the $\operatorname{NE}_{ij}(T) \times \operatorname{SE}_{ij}(T)$ rectangle. Since $\operatorname{SE}_{ij} = 0$ for i = j + 1, Λ_{ij} is the zero sequence in this case. We drop the pairs (j + 1, j) to conclude that if $\Lambda = (\Lambda_{ij} : 1 \le i \le j < n)$, then $(T, \Lambda) \in \operatorname{POP}(\lambda)$. We define $\psi_{quinv}(F) = (T, \Lambda)$. Clearly, $x^F = x^T$ and (6.1) implies quinv $(F) = |\Lambda|$, establishing (1) of Theorem 1 for v = quinv.

6.2 refinv triples

We now turn to the definition of ψ_{inv} . While we may anticipate doing this via a modification of the foregoing arguments, replacing quinv-triples with Haglund-Haiman-Loehr's inv-triples, that turns out not to work out-of-the-box. In place of the latter (see Figure 3), we consider triples (x, y, z) in $\widehat{dg}(\lambda)$ where (i) $x, z \in dg(\lambda)$ with z to the left of x in the same row, (ii) y is the cell immediately below x in its column. Given $F \in CSF(\lambda)$, we call (x, y, z) a *refinv-triple* (or "reflected inv-triple") for F if in addition to (i) and (ii), we also have (iii) F(x) < F(z) < F(y), where $F(y) := \infty$ if $y \notin dg(\lambda)$. We have [3]:

Proposition 3. For $F \in CSF(\lambda)$, inv(F) equals the number of refinv-triples of F.

Remarks. 1. We may in fact define a new statistic² *refinv* on all fillings $F \in \mathcal{F}(\lambda)$ as follows: refinv(F) = Inv(F) – $\sum_{u \in \text{Des } F} \text{coarm}(u)$, borrowing notation of [9, §2]. This replaces *arm* in HHL's definition by *coarm*. The content of Proposition 3 is that refinv(F) = inv(F) for $F \in \text{CSF}(\lambda)$. In fact, this equality holds more generally for all fillings F whose descent set is a union of rows of dg(λ).

2. The refinv triples for $F \in \text{CSF}(\lambda)$ actually make an appearance in [13, §2.2], where they are attributed to Zelevinsky (and their total number denoted \widetilde{ZEL}). From this perspective, the content of Proposition 3 is that $\widetilde{ZEL}(F) = \text{inv}(F)$.

²In fact, *refquinv* can also be likewise defined on all fillings, and agrees with *quinv* on CSFs. But rephrased in terms of refquinv-triples, this involves counting such triples with signs [3].

6.3 zcount, zcount and the proof of the main theorem

Given $F \in \text{CSF}(\lambda)$ and $c \in \text{dg}(\lambda)$, define $\overline{\text{zcount}}(c, F)$ = the number of refinv-triples (x, y, z) in F with z = c. In light of Proposition 3, it is clear that

$$\sum_{c \in dg(\lambda)} \overline{\text{zcount}}(c, F) = \text{inv}(F)$$
(6.4)

We have the following relation between $\overline{\text{zcount}}$ and $\overline{\text{zcount}}$ [3]:

Proposition 4. Let $F \in CSF(\lambda)$ and T = rsort(F). Let $1 \le i \le j+1 \le n$ and $c \in cells(i, j, F)$. Then $zcount(c, F) + \overline{zcount}(c, F) = SE_{ij}(T)$.

We may now define ψ_{inv} following the template of ψ_{quinv} . Given $F \in CSF(\lambda)$, let T = rsort(F). For each $1 \le i \le j < n$, consider the sequence:

 $\overline{\Lambda}_{ij} = (\overline{\text{zcount}}(c, F) : c \in \text{cells}(i, j, F) \text{ traversed left to right in row } i)$

Recall also the definition of the partition Λ_{ij} from (6.3). It follows from Propositions 2 and 4 that $\overline{\Lambda}_{ij}$ is the box-complement of Λ_{ij} in the NE_{*ij*}(*T*) × SE_{*ij*}(*T*) rectangle. Letting $\overline{\Lambda} = (\overline{\Lambda}_{ij} : 1 \le i \le j < n)$, we define $\psi_{inv}(F) = (T, \overline{\Lambda})$. As in the case of quinv, we have $x^F = x^T$, and inv(F) = $|\overline{\Lambda}|$ by (6.4). This proves part (1) of Theorem 1 for v = inv.

Since by definition $pr(\psi_v(F)) = T$ for v = inv, quinv, Part (2A) of Theorem 1 follows. Part (3) of Theorem 1 follows from the fact that Λ and $\overline{\Lambda}$ are box complements of each other in the appropriate rectangles. That the diagrams in part (2B) of Theorem 1 are commutative follows from an analysis of each elementary splice step of the dsplice map.

Finally, this leaves us with proving that the ψ_v are bijections. We sketch the construction of ψ_{inv}^{-1} . Given $(T, \Lambda) \in POP(\lambda)$, construct the filling $F := \psi_{inv}^{-1}(T, \Lambda) \in CSF(\lambda)$ inductively row-by-row, from the bottom (n^{th}) row to the top as follows: (a) fill all cells of the n^{th} row (if nonempty) with n, (b) let $1 \le i \le j < n$; assuming that all rows of F strictly below row i have been completely determined and that the locations of entries > (j+1) in row i have been determined, we now need to fill $NE_{ij}(T)$ many cells of row i with the entry j + 1. It turns out that the number of cells in row i in which we can potentially put a j + 1 without violating the CSF condition thus far is exactly $k + \ell$ where $k = NE_{ij}(T)$ and $\ell = SE_{ij}(T)$. We label these cells $0, 1, \dots, k + \ell - 1$ from right to left (left-to-right when defining ψ_{quinv}^{-1}). We now use the identification from §3.1 of partitions fitting inside a $(k \times \ell)$ -box with k-tuples of distinct integers in $0, 1, \dots, k + \ell - 1$. Via this, the partition Λ_{ij} can be viewed as a k-tuple of candidate cells in row i; we put the entry j + 1 into these, (c) fill the remaining cells of row i with the entry i. The rest of the argument is straightforward [3].

For example, let n = 4, $\lambda = (10, 6, 4, 0)$ and let T, Λ be the GT pattern and overlay depicted in Figure 1. Then $\psi_{quinv}^{-1}(\mathcal{T}, \Lambda)$ is precisely the CSF *F* of Figure 2, while

$$\psi_{\text{inv}}^{-1}(\mathcal{T},\Lambda) = \boxed{\begin{smallmatrix} 2 & 1 & 1 & 1 & 3 & 2 & 1 & 4 & 4 & 2 \\ \hline 3 & 3 & 2 & 2 & 4 & 3 \\ \hline 4 & 4 & 3 & 3 & - \\ \hline \end{array}$$

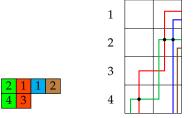


Figure 4: A CSF *F* with columns colour-coded to match its lattice path representation. The three marked intersections show that inv(F) = 3.

7 Local Weyl modules and limit constructions

Finally, we can apply these ideas to the study of local Weyl modules, in particular to the *limit constructions* of [7, 15, 16]. Let $L(\Lambda_0)$ denote the basic representation of the affine Lie algebra $\widehat{\mathfrak{sl}_n}$ [11, Prop. 12.13]. Using Theorem 1 to replace POPs with CSFs as our model in [15, Corollary 5.13], we deduce [3]:

Proposition 5. Fix $n \ge 2$ and consider the partition $\theta = (2, 1, 1, \dots, 1, 0)$ with n - 1 nonzero parts and $|\theta| = n$. For $k \ge 0$, let C_k denote the set of CSFs F of shape $k\theta$ and entries in [n], with the property that either 1 occurs in the first column of F or 1 does not occur in its last column. Then $\sum_{k>0} \sum_{F \in C_k} x^F q^{k^2 - inv(F)}$ equals the character of $L(\Lambda_0)$.

There is also a more general version with $\lambda + k\theta$ in place of $k\theta$ (for appropriate λ), mirroring [15, Corollary 5.13].

8 Concluding Remarks

For the modified Hall-Littlewood polynomials $Q'_{\lambda'}(X_n;q)$ of (2.4), the fermionic formula appears in [13, (0.2)]. Analogous to (3.2), this can now be recast as a *weighted sum* over *partition overlaid plane-partitions* (POPP) of shape λ . Theorem 1 takes the form of bijections from WDF(λ) to POPP(λ) (or equivalently, from tabloids to partition overlaid reverse-plane-partitions). The subtlety here is that POPPs need to be weighted with an additional power of q (which depends only on the underlying plane-partition, cf [13, (0.2)]). The refinv- or quinv-triples in this case also involve \leq relations (rather than just <) and this extra q-power keeps track of certain equalities among the triples [3].

Secondly, the bijections of Theorem 1 (and those indicated above for the modified Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams [8, 4]. Figure 4 shows the lattice path representation of a CSF *F*; inv(F) is just the total number of intersections of the form \Box in the grid, and refining this further to each box of the grid produces the partition overlay as well [3]. Likewise quinv(*F*) counts

non-intersections of the above form. The dsplice map of §4.2 translates into deletion of the last row of the grid followed by appropriate rectifications $\longrightarrow \longrightarrow$

References

- [1] A. Ayyer, O. Mandelshtam, and J. B. Martin. "Modified Macdonald polynomials and the multispecies zero-range process. I". *Algebr. Comb.* **6**.1 (2023), pp. 243–284.
- [2] F. Bergeron. "A Survey of *q*-Whittaker polynomials". 2020. arXiv:2006.12591.
- [3] A. Bhattacharya, T. V. Ratheesh, and S. Viswanath. "On *q*-Whittaker and modified Hall-Littlewood polynomials". In preparation.
- [4] A. Borodin and M. Wheeler. "Nonsymmetric Macdonald polynomials via integrable vertex models". *Trans. Amer. Math. Soc.* **375**.12 (2022), pp. 8353–8397.
- [5] V. Chari and B. Ion. "BGG reciprocity for current algebras". Compos. Math. 151.7 (2015), pp. 1265–1287.
- [6] V. Chari and S. Loktev. "Weyl, Demazure and fusion modules for the current algebra of \mathfrak{sl}_{r+1} ". *Adv. Math.* **207**.2 (2006), pp. 928–960.
- [7] G. Fourier and P. Littelmann. "Weyl modules, Demazure modules, KR-modules, crystals, fusion products, limit constructions". *Advances in Mathematics* 211.2 (2007), pp. 566–593.
- [8] A. Garbali and M. Wheeler. "Modified Macdonald polynomials and integrability". *Commun. Math. Phys.* 374.3 (2020), pp. 1809–1876.
- [9] J. Haglund, M. Haiman, and N. Loehr. "A combinatorial formula for Macdonald polynomials". J. Amer. Math. Soc. 18.3 (2005), pp. 735–761.
- [10] G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, and T. Takagi. "Character formulae of sl_n-modules and inhomogeneous paths". *Nucl. Phys.*, B 536.3 (1999), pp. 575–616.
- [11] V. G. Kac. *Infinite-dimensional Lie algebras*. 3rd edition. Cambridge University Press, 1990.
- [12] S. N. Karp and H. Thomas. "q-Whittaker functions, finite fields, and Jordan forms". Sémin. Lothar. Comb. 85B (2021). Id/No 57, p. 12.
- [13] A. N. Kirillov. "New combinatorial formula for modified Hall-Littlewood polynomials". *q-series from a contemporary perspective*. American Mathematical Society, 2000, pp. 283–333.
- [14] I. G. Macdonald. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford University Press, New York, 1995, pp. x+475.
- [15] K. N. Raghavan, B. Ravinder, and S. Viswanath. "On Chari-Loktev bases for local Weyl modules in type A". J. Comb. Theory, Ser. A 154 (2018), pp. 77–113.
- [16] B. Ravinder. "Stability of the Chari-Loktev bases for local Weyl modules of $\mathfrak{sl}_{r+1}[t]$ ". 2018. arXiv:1612.01484.