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Abstract. We consider the monomial expansion of the q-Whittaker polynomials given
by the fermionic formula and via the inv and quinv statistics. We construct bijections
between the parametrizing sets of these three models which preserve the x- and q-
weights, and which are compatible with natural projection and branching maps. We
apply this to the limit construction of local Weyl modules and obtain a new character
formula for the basic representation of ŝln. Finally, we indicate how our main results
generalize to the modified Hall-Littlewood case.
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1 Introduction

Let λ be a partition. For n ≥ 1, let Xn denote the tuple of indeterminates x1, x2, · · · , xn.
The q-Whittaker polynomial Wλ(Xn; q) and the modified Hall-Littlewood polynomial
Q′

λ(Xn; q) are well-studied specializations of the modified Macdonald polynomial. Sev-
eral different monomial expansions for these polynomials are known. In this article,
our focus will be on three of these: the so-called fermionic formulas [13, (0.2), (0.3)] and
the inv- and quinv-expansions arising from specializations of the formulas of Haglund-
Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1].

We recall that the Schur expansion of the Wλ(Xn; q) (resp. Q′
λ(Xn; q)) has certain

q-Kostka polynomials as coefficients [13]. In turn, this implies yet another monomial
expansion, with the underlying indexing set involving pairs of semistandard Young
tableaux of conjugate (resp. equal) shapes. This relates to the inv-expansion via the RSK
correspondence [9].

The fermionic formula, expressed as a sum of products of q-binomials, is seemingly
of a very different nature from all the other monomial expansions, and should proba-
bly viewed as a kind of compression of these formulas. Recently, Garbali-Wheeler [8]
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obtained a general formula of the fermionic kind for the full modified Macdonald poly-
nomial H̃λ(Xn; q, t).

The purpose of this article is to bijectively reconcile the fermionic formula with both
the inv- and quinv-expansions. We construct bijections between the underlying sets of
these three models which (i) preserve the x- and q-weights, and (ii) are compatible with
natural projection and branching maps.

As a corollary, we obtain bijections between the inv- and quinv-models in the q-
Whittaker and modified Hall-Littlewood specializations, partially answering a ques-
tion of [1]. We find that the inv- and quinv-models are related by the simple box-
complementation map of the fermionic model and that inv + quinv is a constant on fibers
of the natural projection. We also apply this to the limit construction for Weyl modules
[7, 15] and obtain an apparently new character formula for the basic representation of
the affine Lie algeba ŝln.

In this extended abstract, we describe the q-Whittaker polynomials in greater detail,
contenting ourselves with brief remarks about the modified Hall-Littlewood case in §8
due to space limitations. Complete proofs will appear in [3].

2 Specializations of H̃λ(Xn; q, t)

Given a partition λ = (λ1 ≥ λ2 ≥ · · · ), we will draw its Young diagram dg(λ) following
the English convention, as a left-up justified array of boxes, with λi boxes in the ith row
from the top. The boxes are called the cells of dg(λ). We let |λ| := ∑i λi. Fix n ≥ 1 and
let F (λ) denote the set of all maps (“fillings”) F : dg(λ) → [n] where [n] = {1, 2, · · · , n}.
If the values of F strictly increase (resp. weakly decrease) as we move down a column,
we say F is a column strict filling (CSF) (resp. weakly decreasing filling (WDF)1), and denote
the set of such fillings by CSF(λ) (resp. WDF(λ)). The x-weight of a filling F is the
monomial xF := ∏

c∈dg(λ)
xF(c).

We recall that the modified Macdonald polynomial H̃λ(Xn; q, t) is a symmetric poly-
nomial in the xi with N[q, t] coefficients. We expand this in powers of t; our interest lies
in the coefficients of the lowest and highest powers [2, (3.1)]:

H̃λ(Xn; q, t) = Hλ(Xn; q)t0 + · · ·+ Wλ(Xn; q)tη(λ) (2.1)

where η(λ) = ∑j≥1 (
λ′

j
2
) where λ′

j denote the parts of the partition conjugate to λ. The
Wλ(Xn; q) is the q-Whittaker polynomial. The q-reversal (or reciprocal) polynomial of
Hλ(Xn; q) coincides with the modified Hall-Littlewood polynomial Q′

λ′(Xn; q) where λ′

1These latter ones may be easily transformed into the familiar tabloids by transposing rows and columns
and replacing i 7→ n − i + 1
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is the partition conjugate to λ, i.e., qη(λ′)Hλ(Xn; q−1) = Q′
λ′(Xn; q). These are further

related to each other by ωWλ(Xn; q) = Q′
λ′(Xn; q) where ω is the classical involution on

the ring of symmetric polynomials.
Following Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1], there are

statistics inv, quinv and maj on F (λ) such that

H̃λ(Xn; q, t) = ∑
F∈F (λ)

xFqv(F)tmaj(F) (2.2)

where v ∈ {inv, quinv}. The next lemma follows directly from the definition of maj [9]:

Lemma 1. Let F ∈ F (λ). Then (i) maj(F) = η(λ) iff F ∈ CSF(λ), and (ii) maj(F) = 0 iff
F ∈ WDF(λ).

Putting together (2.1), (2.2) and Lemma 1, we obtain for v ∈ {inv, quinv}:

Wλ(Xn; q) = ∑
F∈CSF(λ)

xFqv(F) (2.3)

Q′
λ′(Xn; q) = ∑

F∈WDF(λ)
xFqη(λ′)−v(F) (2.4)

These are in fact symmetric in the x-variables and can be viewed as expansions in terms
of the monomial symmetric functions in x1, x2, · · · , xn.

3 Fermionic formula for Wλ(Xn; q)

Let n ≥ 1 and λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with at most n nonzero
parts. Let GT(λ) denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding
row λ. Given T ∈ GT(λ), we denote its entries by T j

i for 1 ≤ i ≤ j ≤ n as in Figure 1.
It will also be convenient to define T j

j+1 = 0 for all 1 ≤ j ≤ n. We define the North-East

and South-East differences of T by: NEij(T) = T j+1
i − T j

i and SEij(T) = T j
i − T j+1

i+1 for
1 ≤ i ≤ (j + 1) ≤ n. The GT inequalities ensure that these differences are non-negative.

We will interchangeably think of a GT pattern as a semistandard Young tableau
(SSYT). In this perspective, (T j

1, T j
2, · · · , T j

j ) is the partition formed by the cells of the
tableau which contain entries ≤ j. It follows that NEij(T) is the number of cells in the
i th row of the tableau which contain the entry j + 1. We let xT denote the x-weight of
the corresponding tableau. The following fermionic formula for the q-Whittaker poly-
nomial appears in [10, 13] and follows readily from Macdonald’s more general formula
[14, Chap VI, (7.13)’]:

Wλ(Xn; q) = ∑
T∈GT(λ)

xT ∏
1≤i≤j<n

[
NEij(T) + SEij(T)

NEij(T)

]
q

(3.1)
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Figure 1: A GT pattern for n = 4. The NE and SE differences are those along the red
and blue lines. On the right is a partition overlay compatible with this GT pattern.

Following [12], we define wtq(T) = ∏
1≤i≤j<n

[
NEij(T) + SEij(T)

NEij(T)

]
q

.

3.1 Partition overlaid patterns

We recall that the q-binomial [k+ℓ
k ]q is the generating function of partitions that fit into a

k × ℓ rectangle, i.e., [k+ℓ
k ]q = ∑ q|γ| where γ = (γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0) with ℓ ≥ γ1.

We also identify partitions of the above form with strictly decreasing k-tuples of integers
between 0 and k + ℓ− 1 via the bijection γ 7→ γ = γ + δ where δ = (k − 1, k − 2, · · · , 0).

As shown in [15], the right-hand side of (3.1) can be interpreted in terms of the
so-called partition overlaid patterns (POPs). A POP of shape λ is a pair (T, Λ) where
T ∈ GT(λ) and Λ = (Λij : 1 ≤ i ≤ j < n) is a tuple of partitions such that each Λij fits
into a rectangle of size NEij(T)× SEij(T). For example, if T is the GT pattern of Figure 1,
we could take Λ11 = (2, 1, 0), Λ12 = (2), Λ13 = (1, 1), Λ22 = (0, 0, 0), Λ23 = (1), Λ33 =
(2, 2). We imagine the Λij as being placed in a triangular array as in Figure 1. We let
POP(λ) denote the set of POPs of shape λ. It is now clear from (3.1) that

Wλ(Xn; q) = ∑
(T,Λ)∈POP(λ)

xTq|Λ| (3.2)

where |Λ| = ∑i,j |Λij|. We remark that Wλ(Xn; q) is the character of the local Weyl module
Wloc(λ) - a module for the current algebra sln[t] [6, 5]. Further, POPs of shape λ index a
special basis of this module with Gelfand-Tsetlin like properties [6, 15].

3.2 Projection and Branching for Partition overlaid patterns

Given λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), we say that µ = (µ1, µ2, · · · , µn−1) interlaces λ

(and write µ ≺ λ) if λi ≥ µi ≥ λi+1 for 1 ≤ i < n. The q-Whittaker polynomials have the
following important properties which readily follow from (3.2):
(projection) Wλ(Xn; q = 0) = sλ(Xn), the Schur polynomial, and

(branching) Wλ(x1, x2, · · · , xn−1, xn = 1; q) = ∑
µ≺λ

∏
1≤i<n

[
λi − λi+1

λi − µi

]
q
· Wµ(Xn−1; q) (3.3)
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In fact, Chari-Loktev [6] lift (3.3) to the level of modules, showing that the local Weyl
module Wloc(λ) when restricted to sln−1[t] admits a filtration whose successive quotients
are of the form Wloc(µ) for µ ≺ λ; further their graded multiplicities are precisely given
by the product of q-binomial coefficients that appear in (3.3).

The combinatorial shadow of projection is the map pr : POP(λ) → GT(λ) given by
pr(T, Λ) = T. Likewise, we define combinatorial branching to be the map br : POP(λ) →⊔

µ≺λ POP(µ) defined by br(T, Λ) = (T†, Λ†) where T† is obtained from T by deleting
its bottom row, and Λ† is obtained from Λ by deleting the overlays Λij with j = n − 1.

3.3 Box complementation

In addition to pr and br, POP(λ) is endowed with another important map, which we
term box complementation. Observe that given a partition π = (π1 ≥ π2 ≥ · · · ≥ πk ≥ 0)
fitting into a k × ℓ rectangle, i.e., with π1 ≤ ℓ, we may consider its complement in this
rectangle, defined by πc = (ℓ − πk ≥ ℓ − πk−1 ≥ · · · ≥ ℓ − π1). Now, for (T, Λ) ∈
POP(λ), define boxcomp(T, Λ) = (T, Λc) where for each i, j, (Λc)ij is defined to be the
complement of Λij in its bounding rectangle of size NEij(T)× SEij(T).

We note that since |Λ| ̸= |Λc| in general, boxcomp preserves x-weights, but not q-
weights. However |Λ| + |Λc| = ∑i,j NEij(T) SEij(T) =: area(T) (in the terminology of
[15]), which depends only on T.

4 Projection and branching for Column strict fillings

Our goal is to construct natural bijections between CSF(λ) and POP(λ) which explain
the equality of (2.3) and (3.2) for v = inv, quinv. In addition to preserving x- and q-
weights, we would like our bijections to be compatible with projection and branching.
Towards this end, we first define these latter maps in the setting of CSF(λ).

4.1 Projection: rowsort

Given F ∈ CSF(λ), let rsort(F) denote the filling obtained from F by sorting entries of
each row in ascending order. In light of the following easy lemma, we think of rsort as
the projection map in the CSF setting.

Lemma 2. If F ∈ CSF(λ), then rsort(F) ∈ SSYT(λ) ∼= GT(λ).

4.2 Branching: delete-and-splice

A strictly increasing sequence a = (a1 < a2 < · · · < am) of positive integers will also
be termed a column tuple with len(a) = m ≥ 0. Let ℓ ≥ 1 and suppose σ = (σ1 < σ2 <
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· · · < σℓ−1) and τ = (τ1 < τ2 < · · · < τℓ) are column tuples of length ℓ − 1 and ℓ
respectively. We set σ0 = 0 and let k denote the maximum element of the (non-empty)
set {1 ≤ i ≤ ℓ : σi−1 < τi}. Define splice(σ, τ) = (σ, τ) where

σi =

{
σi 1 ≤ i < k
τi k ≤ i ≤ ℓ

and τi =

{
τi 1 ≤ i < k
σi k ≤ i < ℓ

i.e., σ, τ are obtained by swapping certain suffix portions of σ, τ. The choice of k ensures
that σ, τ are also column tuples; we also have len(σ) = len(τ) and len(τ) = len(σ). For
instance, when (σ, τ) = ( 1

5
, 2

3
4

), we get (σ, τ) = ( 1
3
4

, 2
5
).

We now define the delete-and-splice rectification (“dsplice") map on F ∈ CSF(λ) as
follows: (1) delete all cells in F containing the entry n and let F† denote the resulting
filling. While its column entries remain strictly increasing, F† may no longer be of
partition shape. (2) Let σ(j) (j ≥ 1) denote the column tuple obtained by reading the j th

column of F† from top to bottom. If F† is not of partition shape, there exists j ≥ 1 such
that len(σ(j+1)) = len(σ(j)) + 1. Choose any such j and modify F† by replacing the pair
of columns (σ(j), σ(j+1)) in F† by splice(σ(j), σ(j+1)). This swaps the column lengths and
brings the shape of F† one step closer to being a partition. (3) If the shape of F† is a
partition, STOP. Else go back to step 2.

It is clear that this process terminates and finally produces a CSF of partition shape
(filled by numbers between 1 and n − 1), which we denote dsplice(F). The following
properties hold:

Proposition 1. With notation as above: (i) D := dsplice(F) is independent of the intermediate
choices of j made in step 2 of the procedure. (ii) rsort(D) is obtained from rsort(F) by deleting
the cells containing the entry n. (iii) If µ and λ are the shapes of D and F respectively, then
µ ≺ λ.

We consider dsplice to be the combinatorial branching map in the CSF context. Its
key property is its compatibility with the natural branching map br of the POP setting.

5 The main theorem

Theorem 1. For any n ≥ 1 and any partition λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with at most
n nonzero parts, there exist two bijections ψinv and ψquinv from CSF(λ) to POP(λ) with the
following properties:

1. If ψv(F) = (T, Λ), then xF = xT and v(F) = |Λ|, for v = inv or quinv.

2. The following diagrams commute (v = inv or quinv):
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(A)

CSF(λ) POP(λ)

GT(λ)

ψv

rsort pr

(B)

CSF(λ) POP(λ)

⊔
µ≺λ

CSF(µ)
⊔

µ≺λ

POP(µ)

ψv

dsplice

ψv

br

3. The two bijections are related via the commutative diagram:

CSF(λ)

POP(λ) POP(λ)

ψinv ψquinv

boxcomp

To summarize, ψinv and ψquinv acting on a CSF produce POPs with the same underly-
ing GT pattern, but with complementary overlays. These bijections are compatible with
the natural projection and branching maps, and preserve x- and appropriate q-weights
(inv or quinv). Note the slight abuse of notation in part 2(B) above: for µ ≺ λ, CSF(µ)
denotes the set of column strict fillings F : dg(µ) → [n − 1] (rather than [n]). Theorem 1,
with the exception of part 2(B), can also be formulated in the setting of q-Whittaker
functions in infinitely many variables. Next, we obtain the following corollaries:

Corollary 1. Let T ∈ GT(λ) and let rsort−1(T) = {F ∈ CSF(λ) : rsort(F) = T} be the fiber
of rsort over T.

1. ∑
F∈rsort−1(T)

qinv(F) = ∑
F∈rsort−1(T)

qquinv(F) = wtq(T).

2. inv(F) + quinv(F) = area(T) is constant for F ∈ rsort−1(T).

An interpretation of wtq(T) in terms of flags of subspaces compatible with nilpotent
operators appears in [12, Theorem 5.8(i)]. In [1], the authors asked for an explicit bijec-
tion on F (λ) which interchanges the inv and quinv statistics. We describe this bijection
on CSF(λ), thereby partially answering their question.
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F = 1 1 2 1 2 1 2 4 4 3

2 2 3 3 3 4
3 3 4 4

zcount(·, F) = 0 0 0 0 1 0 2 1 1 2
0 0 0 0 0 1
0 0 2 2

Figure 2: Here F ∈ CSF(λ) for λ = (10, 6, 4, 0) and n = 4. Cells of F are coloured
according to their entries. The gray cells are the extra cells in the augmented diagram
d̂g(λ). On the right are cellwise zcount values. Here quinv(F) = 12.

Corollary 2. The map Ω : ψ−1
inv ◦ ψquinv = ψ−1

inv ◦ boxcomp ◦ψinv : CSF(λ) → CSF(λ) is an
involution satisfying inv(Ω(F)) = quinv(F) for all F ∈ CSF(λ).

The explicit construction of the ψv and their inverses in the next section makes Ω
effectively computable.

6 Proof sketch

For a partition λ, the augmented diagram d̂g(λ) is dg(λ) together with one additional
cell below the last cell in each column (see Figure 2). Given F ∈ CSF(λ), a quinv-triple in F
is a triple of cells (x, y, z) in d̂g(λ) such that (i) x, z ∈ dg(λ) and z is to the right of x in the
same row, (ii) y is the cell immediately below x in its column, (iii) F(x) < F(z) < F(y),
where we set F(y) = ∞ if y lies outside dg(λ). It is easy to see that the quinv-triples
considered in [1] for F ∈ F (λ) reduce to this description when F is a CSF rather than a
general filling. Thus, quinv(F) as defined in [1] equals the number of quinv-triples in F
(as defined above) for a CSF F.

Given F ∈ CSF(λ), we define a function zcount which tracks the contributions of in-
dividual cells of dg(λ) to quinv(F) as follows: for each cell c ∈ dg(λ), let zcount(c, F) =
the number of quinv-triples (x, y, z) in F with z = c. Clearly

∑
c∈dg(λ)

zcount(c, F) = quinv(F) (6.1)

We next group cells of the filling F row-wise according to the entries they contain. More
precisely, let cells(i, j, F) = {c ∈ dg(λ) : c is in the ith row and F(c) = j + 1} for 1 ≤ i ≤
j + 1 ≤ n. Figure 2 shows an example, with these groups colour-coded in each row. It
readily follows from §3 that

| cells(i, j, F)| = NEij(T), where T = rsort(F). (6.2)

The next proposition brings the SE differences also into play [3]:

Proposition 2. Let F ∈ CSF(λ) and T = rsort(F). Fix 1 ≤ i ≤ j + 1 ≤ n. (1) If c ∈
cells(i, j, F), then zcount(c, F) ≤ SEij(T). (2) If c, d ∈ cells(i, j, F) with c lying to the right of
d, then zcount(c, F) ≥ zcount(d, F). (3) Further, equality holds in (1) for all i, j and all cells
c ∈ cells(i, j, F) iff F = T.
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Figure 3: (left to right) Configuration of quinv, inv and refinv triples.

6.1 Definition of ψquinv

We now have all the ingredients in place to define ψquinv. Let F ∈ CSF(λ) and T =
rsort(F). For each 1 ≤ i ≤ j + 1 ≤ n, consider the sequence

Λij = (zcount(c, F) : c ∈ cells(i, j, F) traversed right to left in row i). (6.3)

In Figure 2, this amounts to reading the entries of a fixed colour from right to left in
a given row of zcount(·, F). By Proposition 2, this is a weakly decreasing sequence
bounded above by SEij(T). Together with (6.2), this implies that Λij may be viewed as
a partition fitting into the NEij(T) × SEij(T) rectangle. Since SEij = 0 for i = j + 1,
Λij is the zero sequence in this case. We drop the pairs (j + 1, j) to conclude that if
Λ = (Λij : 1 ≤ i ≤ j < n), then (T, Λ) ∈ POP(λ). We define ψquinv(F) = (T, Λ). Clearly,
xF = xT and (6.1) implies quinv(F) = |Λ|, establishing (1) of Theorem 1 for v = quinv.

6.2 refinv triples

We now turn to the definition of ψinv. While we may anticipate doing this via a modifica-
tion of the foregoing arguments, replacing quinv-triples with Haglund-Haiman-Loehr’s
inv-triples, that turns out not to work out-of-the-box. In place of the latter (see Figure 3),
we consider triples (x, y, z) in d̂g(λ) where (i) x, z ∈ dg(λ) with z to the left of x in the
same row, (ii) y is the cell immediately below x in its column. Given F ∈ CSF(λ), we call
(x, y, z) a refinv-triple (or “reflected inv-triple”) for F if in addition to (i) and (ii), we also
have (iii) F(x) < F(z) < F(y), where F(y) := ∞ if y ̸∈ dg(λ). We have [3]:

Proposition 3. For F ∈ CSF(λ), inv(F) equals the number of refinv-triples of F.

Remarks. 1. We may in fact define a new statistic2 refinv on all fillings F ∈ F (λ) as
follows: refinv(F) = Inv(F)− ∑u∈Des F coarm(u), borrowing notation of [9, §2]. This re-
places arm in HHL’s definition by coarm. The content of Proposition 3 is that refinv(F) =
inv(F) for F ∈ CSF(λ). In fact, this equality holds more generally for all fillings F whose
descent set is a union of rows of dg(λ).

2. The refinv triples for F ∈ CSF(λ) actually make an appearance in [13, §2.2], where
they are attributed to Zelevinsky (and their total number denoted Z̃EL). From this
perspective, the content of Proposition 3 is that Z̃EL(F) = inv(F).

2In fact, refquinv can also be likewise defined on all fillings, and agrees with quinv on CSFs. But
rephrased in terms of refquinv-triples, this involves counting such triples with signs [3].
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6.3 zcount, zcount and the proof of the main theorem

Given F ∈ CSF(λ) and c ∈ dg(λ), define zcount(c, F) = the number of refinv-triples
(x, y, z) in F with z = c. In light of Proposition 3, it is clear that

∑
c∈dg(λ)

zcount(c, F) = inv(F) (6.4)

We have the following relation between zcount and zcount [3]:

Proposition 4. Let F ∈ CSF(λ) and T = rsort(F). Let 1 ≤ i ≤ j + 1 ≤ n and c ∈
cells(i, j, F). Then zcount(c, F) + zcount(c, F) = SEij(T).

We may now define ψinv following the template of ψquinv. Given F ∈ CSF(λ), let
T = rsort(F). For each 1 ≤ i ≤ j < n, consider the sequence:

Λij = (zcount(c, F) : c ∈ cells(i, j, F) traversed left to right in row i)

Recall also the definition of the partition Λij from (6.3). It follows from Propositions 2
and 4 that Λij is the box-complement of Λij in the NEij(T)× SEij(T) rectangle. Letting
Λ = (Λij : 1 ≤ i ≤ j < n), we define ψinv(F) = (T, Λ). As in the case of quinv, we have
xF = xT, and inv(F) = |Λ| by (6.4). This proves part (1) of Theorem 1 for v = inv.

Since by definition pr(ψv(F)) = T for v = inv, quinv, Part (2A) of Theorem 1 follows.
Part (3) of Theorem 1 follows from the fact that Λ and Λ are box complements of each
other in the appropriate rectangles. That the diagrams in part (2B) of Theorem 1 are
commutative follows from an analysis of each elementary splice step of the dsplice map.

Finally, this leaves us with proving that the ψv are bijections. We sketch the construc-
tion of ψ−1

inv. Given (T, Λ) ∈ POP(λ), construct the filling F := ψ−1
inv(T, Λ) ∈ CSF(λ)

inductively row-by-row, from the bottom (nth) row to the top as follows: (a) fill all cells
of the nth row (if nonempty) with n, (b) let 1 ≤ i ≤ j < n; assuming that all rows of F
strictly below row i have been completely determined and that the locations of entries
> (j + 1) in row i have been determined, we now need to fill NEij(T) many cells of row
i with the entry j + 1. It turns out that the number of cells in row i in which we can
potentially put a j + 1 without violating the CSF condition thus far is exactly k + ℓ where
k = NEij(T) and ℓ = SEij(T). We label these cells 0, 1, · · · , k + ℓ− 1 from right to left
(left-to-right when defining ψ−1

quinv). We now use the identification from §3.1 of partitions
fitting inside a (k× ℓ)-box with k-tuples of distinct integers in 0, 1, · · · , k+ ℓ− 1. Via this,
the partition Λij can be viewed as a k-tuple of candidate cells in row i; we put the entry
j + 1 into these, (c) fill the remaining cells of row i with the entry i. The rest of the
argument is straightforward [3].

For example, let n = 4, λ = (10, 6, 4, 0) and let T, Λ be the GT pattern and overlay
depicted in Figure 1. Then ψ−1

quinv(T , Λ) is precisely the CSF F of Figure 2, while

ψ−1
inv(T , Λ) = 2 1 1 1 3 2 1 4 4 2

3 3 2 2 4 3
4 4 3 3
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2 1 1 2
4 3 4

3

2

1

Figure 4: A CSF F with columns colour-coded to match its lattice path representation.
The three marked intersections show that inv(F) = 3.

7 Local Weyl modules and limit constructions

Finally, we can apply these ideas to the study of local Weyl modules, in particular to the
limit constructions of [7, 15, 16]. Let L(Λ0) denote the basic representation of the affine
Lie algebra ŝln [11, Prop. 12.13]. Using Theorem 1 to replace POPs with CSFs as our
model in [15, Corollary 5.13], we deduce [3]:

Proposition 5. Fix n ≥ 2 and consider the partition θ = (2, 1, 1, · · · , 1, 0) with n − 1 nonzero
parts and |θ| = n. For k ≥ 0, let Ck denote the set of CSFs F of shape kθ and entries in [n], with
the property that either 1 occurs in the first column of F or 1 does not occur in its last column.
Then ∑k≥0 ∑F∈Ck

xF qk2−inv(F) equals the character of L(Λ0).

There is also a more general version with λ + kθ in place of kθ (for appropriate λ),
mirroring [15, Corollary 5.13].

8 Concluding Remarks

For the modified Hall-Littlewood polynomials Q′
λ′(Xn; q) of (2.4), the fermionic formula

appears in [13, (0.2)]. Analogous to (3.2), this can now be recast as a weighted sum
over partition overlaid plane-partitions (POPP) of shape λ. Theorem 1 takes the form of
bijections from WDF(λ) to POPP(λ) (or equivalently, from tabloids to partition overlaid
reverse-plane-partitions). The subtlety here is that POPPs need to be weighted with an
additional power of q (which depends only on the underlying plane-partition, cf [13,
(0.2)]). The refinv- or quinv-triples in this case also involve ≤ relations (rather than just
<) and this extra q-power keeps track of certain equalities among the triples [3].

Secondly, the bijections of Theorem 1 (and those indicated above for the modified
Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams
[8, 4]. Figure 4 shows the lattice path representation of a CSF F; inv(F) is just the total

number of intersections of the form in the grid, and refining this further to each
box of the grid produces the partition overlay as well [3]. Likewise quinv(F) counts
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non-intersections of the above form. The dsplice map of §4.2 translates into deletion of

the last row of the grid followed by appropriate rectifications
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