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Abstract. We consider the monomial expansion of the g-Whittaker polynomials given
by the fermionic formula and via the inv and quinv statistics. We construct bijections
between the parametrizing sets of these three models which preserve the x- and g-
weights, and which are compatible with natural projection and branching maps. We
apply this to the limit construction of local Weyl modules and obtain a new character
formula for the basic representation of 5/[\,1 Finally, we indicate how our main results
generalize to the modified Hall-Littlewood case.
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1 Introduction

Let A be a partition. For n > 1, let X, denote the tuple of indeterminates xi, xo, - - - , xy.
The g-Whittaker polynomial W, (X,;q) and the modified Hall-Littlewood polynomial
Q) (Xy;q) are well-studied specializations of the modified Macdonald polynomial. Sev-
eral different monomial expansions for these polynomials are known. In this article,
our focus will be on three of these: the so-called fermionic formulas [15, (0.2), (0.3)] and
the inv- and quinv-expansions arising from specializations of the formulas of Haglund-
Haiman-Loehr [7] and Ayyer-Mandelshtam-Martin [!].

We recall that the Schur expansion of the W) (X,;q) (resp. Q) (Xy;q)) has certain
g-Kostka polynomials as coefficients [13]. In turn, this implies yet another monomial
expansion, with the underlying indexing set involving pairs of semistandard Young
tableaux of conjugate (resp. equal) shapes. This relates to the inv-expansion via the RSK
correspondence [7].

The fermionic formula, expressed as a sum of products of g-binomials, is seemingly
of a very different nature from all the other monomial expansions, and should proba-
bly viewed as a kind of compression of these formulas. Recently, Garbali-Wheeler [¢]
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obtained a general formula of the fermionic kind for the full modified Macdonald poly-
nomial ﬁA(Xn; q,t).

The purpose of this article is to bijectively reconcile the fermionic formula with both
the inv- and quinv-expansions. We construct bijections between the underlying sets of
these three models which (i) preserve the x- and g-weights, and (ii) are compatible with
natural projection and branching maps.

As a corollary, we obtain bijections between the inv- and quinv-models in the g-
Whittaker and modified Hall-Littlewood specializations, partially answering a ques-
tion of [I]. We find that the inv- and quinv-models are related by the simple box-
complementation map of the fermionic model and that inv 4 quinv is a constant on fibers
of the natural projection. We also apply this to the limit construction for Weyl modules
[/, 15] and obtain an apparently new character formula for the basic representation of
the affine Lie algeba sl

In this extended abstract, we describe the g-Whittaker polynomials in greater detail,
contenting ourselves with brief remarks about the modified Hall-Littlewood case in §8
due to space limitations. Complete proofs will appear in [3].

2 Specializations of H A( X g, t)

Given a partition A = (A > A, > - -+ ), we will draw its Young diagram dg(A) following
the English convention, as a left-up justified array of boxes, with A; boxes in the ith row
from the top. The boxes are called the cells of dg(A). We let |A| := }; A;. Fixn > 1 and
let 7(A) denote the set of all maps (“fillings”) F : dg(A) — [n] where [n] = {1,2,---,n}.
If the values of F strictly increase (resp. weakly decrease) as we move down a column,
we say F is a column strict filling (CSF) (resp. weakly decreasing filling (WDF)!), and denote
the set of such fillings by CSF(A) (resp. WDE(A)). The x-weight of a filling F is the
monomial x! := H XE(c)-
cedg(A)

We recall that the modified Macdonald polynomial H A(Xn;q,t) is a symmetric poly-
nomial in the x; with IN[g, t] coefficients. We expand this in powers of ¢; our interest lies
in the coefficients of the lowest and highest powers [2, (3.1)]:

HA(Xu;,t) = HA (X )0+ -+ W (X )7 (2.1)

where 17(A) = Y5y (Az;) where A} denote the parts of the partition conjugate to A. The

W) (Xy; q) is the g-Whittaker polynomial. The g-reversal (or reciprocal) polynomial of
Ha(Xu;q) coincides with the modified Hall-Littlewood polynomial Q',(Xy;q) where A/

IThese latter ones may be easily transformed into the familiar tabloids by transposing rows and columns
and replacing i — n —i+1
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is the partition conjugate to A, i.e., q”(A/)HA(Xn;q’l) = Q)/(Xu;q). These are further
related to each other by wW, (X,;q) = Q,(Xy;q) where w is the classical involution on
the ring of symmetric polynomials.

Following Haglund-Haiman-Loehr [7] and Ayyer-Mandelshtam-Martin [1], there are
statistics inv, quinv and maj on F(A) such that

ﬁA(Xn;q,t): Z xqu(F)tmaj(F) (2.2)
FEF(M)

where v € {inv, quinv}. The next lemma follows directly from the definition of maj [7]:

Lemma 1. Let F € F(A). Then (i) maj(F) = n(A) iff F € CSE(A), and (ii) maj(F) = 0 iff
F € WDF(A).

Putting together (2.1), (2.2) and Lemma 1, we obtain for v € {inv, quinv}:

Wa(Xuq) = Y. xFg"D (2.3)
FECSE(A)

Qu(Xwq)= Y, xfg?)® (2.4)
FEWDE(A)

These are in fact symmetric in the x-variables and can be viewed as expansions in terms
of the monomial symmetric functions in xy, x, - - - , xy.

3 Fermionic formula for W, (X,; q)

Letn >land A = (Ay > Ay > --- > A, > 0) be a partition with at most n nonzero
parts. Let GT(A) denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding

row A. Given T € GT(A), we denote its entries by Ti] for1 <i <j < n asin Figure 1.
It will also be convenient to define T]] = 0 for all 1 < j < n. We define the North-East

and South-East differences of T by: NE;;(T) = Tij e Tij and SE;;(T) = le - T{:ll for
1 <i<(j+1) < n. The GT inequalities ensure that these differences are non-negative.

We will interchangeably think of a GT pattern as a semistandard Young tableau
(SSYT). In this perspective, (T{, Té, cee, T]]) is the partition formed by the cells of the
tableau which contain entries < j. It follows that NE;;(T) is the number of cells in the
ith row of the tableau which contain the entry j + 1. We let xT denote the x-weight of
the corresponding tableau. The following fermionic formula for the g-Whittaker poly-
nomial appears in [10, 13] and follows readily from Macdonald’s more general formula

[14, Chap VI, (7.13)']:

WiXwg) = Y x" ]

TEGT(A) 1<i<j<n

NE;;(T) + SE;(T)

NE;(T) (3.1)
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Figure 1: A GT pattern for n = 4. The NE and SE differences are those along the red
and blue lines. On the right is a partition overlay compatible with this GT pattern.

NEIJ(T) + SEZ](T)

Following [17], we define wt,(T) = ] NE;:(T)
if

1<i<j<n

3.1 Partition overlaid patterns

We recall that the g-binomial [kM]q is the generating function of partitions that fit into a

k x ¢ rectangle, i.e., [k#]q = qu where v = (y1 > 72 > -+ > 9, > 0) with £ > 7.
We also identify partitions of the above form with strictly decreasing k-tuples of integers
between 0 and k + ¢ — 1 via the bijection v — 7 = v+ 6 where 6 = (k—1,k—2,---,0).

As shown in [15], the right-hand side of (3.1) can be interpreted in terms of the
so-called partition overlaid patterns (POPs). A POP of shape A is a pair (T, A) where
T € GT(A) and A = (A : 1 <i < j < n)is a tuple of partitions such that each A;; fits
into a rectangle of size NE;;(T) x SE;;(T). For example, if T is the GT pattern of Figure 1,
we could take A11 = (2, 1,0), A12 = (2), A13 = (1,1), A22 = (0,0,0), A23 = (1), A33 =
(2,2). We imagine the A;; as being placed in a triangular array as in Figure 1. We let
POP(A) denote the set of POPs of shape A. It is now clear from (3.1) that

Wi (Xn;q) = Z quW (3.2)
(T,A)€POP(A)

where |A] = }; i |Ajj|. We remark that W) (Xy; q) is the character of the local Weyl module
Wioe(A) - @a module for the current algebra s, [t] [0, 5]. Further, POPs of shape A index a
special basis of this module with Gelfand-Tsetlin like properties [0, 15].

3.2 Projection and Branching for Partition overlaid patterns

Given A = (A; > Ay > --- > A, > 0), we say that u = (g, po, - -+, n—1) interlaces A
(and write u < A)if A; > p; > Aj4q for 1 <i < n. The g-Whittaker polynomials have the
following important properties which readily follow from (3.2):

(projection) W) (Xn;q = 0) = s)(X,), the Schur polynomial, and

(branching) Wy (x1,X2, - -+, Xy—1,%n = 1,9) = 2 H [Ai B /\iﬂ} Wy (Xu-1;9) (3.3)
u=A1<i<n Ai —Hi q
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In fact, Chari-Loktev [0] lift (3.3) to the level of modules, showing that the local Weyl
module Wi,.(A) when restricted to sl,,_1[t] admits a filtration whose successive quotients
are of the form W, (u) for p < A; further their graded multiplicities are precisely given
by the product of g-binomial coefficients that appear in (3.3).

The combinatorial shadow of projection is the map pr : POP(A) — GT(A) given by
pr(T,A) = T. Likewise, we define combinatorial branching to be the map br : POP(A) —
Ll<1 POP(u) defined by br(T,A) = (TT, AT) where T is obtained from T by deleting

its bottom row, and A" is obtained from A by deleting the overlays Ajjwithj=n—-1.

3.3 Box complementation

In addition to pr and br, POP(A) is endowed with another important map, which we
term box complementation. Observe that given a partition 7 = (717 > 71 > --- > 1 > 0)
fitting into a k x ¢ rectangle, i.e., with 711 < ¢, we may consider its complement in this
rectangle, defined by n° = ({ —m > £ — 1 > --- > ¢ — ). Now, for (T,A) €
POP(A), define boxcomp(T, A) = (T, A°) where for each i,j, (A);; is defined to be the
complement of A;j in its bounding rectangle of size NE;;(T) x SE;;(T).

We note that since |A| # |A°| in general, boxcomp preserves x-weights, but not g-
weights. However |A| + [A] = }; iNE;(T) SE;;(T) =: area(T) (in the terminology of
[15]), which depends only on T.

4 Projection and branching for Column strict fillings

Our goal is to construct natural bijections between CSF(A) and POP(A) which explain
the equality of (2.3) and (3.2) for v = inv, quinv. In addition to preserving x- and g-
weights, we would like our bijections to be compatible with projection and branching.
Towards this end, we first define these latter maps in the setting of CSF(A).

4.1 Projection: rowsort

Given F € CSF(A), let rsort(F) denote the filling obtained from F by sorting entries of
each row in ascending order. In light of the following easy lemma, we think of rsort as
the projection map in the CSF setting.

Lemma 2. If F € CSF(A), then rsort(F) € SSYT(A) = GT(A).

4.2 Branching: delete-and-splice

A strictly increasing sequence a = (a1 < ay < --- < ay) of positive integers will also
be termed a column tuple with len(a) = m > 0. Let £ > 1 and suppose 0 = (07 < 02 <
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- <opq)and T = (4 < ©» < --- < 1) are column tuples of length ¢/ —1 and /¢
respectively. We set 0y = 0 and let k denote the maximum element of the (non-empty)
set {1 <i</{:0;_1 <T}. Define splice(c,T) = (7, T) where

_ 0; 1<i<k _ T 1<i<k
o, = . and T, = k<i</
. 0—1 <1

i.e.,, 7, T are obtained by swapping certain suffix portions of o, . The choice of k ensures
that o, T are also column tuples we also have 1en len ) and len(T) = len(c). For

instance, when (o, T) I I , we get (0,T) I

We now define the delete-and-splice rectification (”dsphce ") map on F € CSF(A) as
follows: (1) delete all cells in F containing the entry n and let FT denote the resulting
filling. While its column entries remain strictly increasing, F' may no longer be of
partition shape. (2) Let ¢/) (j > 1) denote the column tuple obtained by reading the j
column of F' from top to bottom. If F' is not of partition shape, there exists j > 1 such
that len(cU*1)) = len(c)) 4 1. Choose any such j and modify F! by replacing the pair
of columns (), c0+1)) in F* by splice(c/), li+1)). This swaps the column lengths and
brings the shape of F' one step closer to bemg a partition. (3) If the shape of F' is a
partition, STOP. Else go back to step 2.

It is clear that this process terminates and finally produces a CSF of partition shape
(filled by numbers between 1 and n — 1), which we denote dsplice(F). The following
properties hold:

Proposition 1. With notation as above: (i) D := dsplice(F) is independent of the intermediate
choices of j made in step 2 of the procedure. (ii) rsort(D) is obtained from rsort(F) by deleting
the cells containing the entry n. (iii) If u and A are the shapes of D and F respectively, then
<A

We consider dsplice to be the combinatorial branching map in the CSF context. Its
key property is its compatibility with the natural branching map br of the POP setting.

5 The main theorem

Theorem 1. For any n > 1 and any partition A : Ay > Ay > --- > Ay, > 0 with at most
n nonzero parts, there exist two bijections Piny and Pquiny from CSE(A) to POP(A) with the
following properties:

1. If y,(F) = (T, A), then x = xT and v(F) = |A|, for v = inv or quinv.

2. The following diagrams commute (v = inv or quinv):
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(A)
CSF(A) b , POP(A)
rsm A
GT(A)
(B)
CSF(A) po . POP(A)
dsplicek kbr
| | CSF(n) m » || POP(n)
U=<A U=<A

3. The two bijections are related via the commutative diagram:

CSF(A)

%1/ %nv

boxcom
oreomp » POP(A)

POP(A)

]

To summarize, Piny and Pquiny acting on a CSF produce POPs with the same underly-
ing GT pattern, but with complementary overlays. These bijections are compatible with
the natural projection and branching maps, and preserve x- and appropriate g-weights
(inv or quinv). Note the slight abuse of notation in part 2(B) above: for u < A, CSF(u)
denotes the set of column strict fillings F : dg(u) — [n — 1] (rather than [n]). Theorem 1,
with the exception of part 2(B), can also be formulated in the setting of g-Whittaker
functions in infinitely many variables. Next, we obtain the following corollaries:

Corollary 1. Let T € GT(A) and let rsort~'(T) = {F € CSF(A) : rsort(F) = T} be the fiber
of rsort over T.

1. Z qinV(F) _ Z qquinV(F) _ Wtq(T).

Fersort1(T) Fersort™1(T)
2. inv(F) + quinv(F) = area(T) is constant for F € rsort 1 (T).

An interpretation of wt,(T) in terms of flags of subspaces compatible with nilpotent
operators appears in [12, Theorem 5.8(i)]. In [!], the authors asked for an explicit bijec-
tion on F(A) which interchanges the inv and quinv statistics. We describe this bijection
on CSF(A), thereby partially answering their question.
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F= I EIENE zcount(-, F) = [HIOI0]
2(213(3(|34 0({0|0[0]|0 T
4

4 0(0]2]2

Figure 2: Here F € CSF(A) for A = (10,6,4,0) and n = 4. Cells of F are coloured
according to their entries. The gray cells are the extra cells in the augmented diagram
dg(A). On the right are cellwise zcount values. Here quinv(F) = 12.

Corollary 2. The map Q : ;! 0 Pquiny = ¥;,> © boxcomp o 9piny : CSF(A) — CSF(A) is an

inv
involution satisfying inv(Q(F)) = quinv(F) for all F € CSF(A).
The explicit construction of the ¢, and their inverses in the next section makes ()
effectively computable.

6 Proof sketch

For a partition A, the augmented diagram dg(A) is dg()) together with one additional
cell below the last cell in each column (see Figure 2). Given F € CSF(A), a quinv-triple in F
is a triple of cells (x,y,z) in dg(A) such that (i) x,z € dg(A) and z is to the right of x in the
same row, (ii) y is the cell immediately below x in its column, (iii) F(x) < F(z) < F(y),
where we set F(y) = oo if y lies outside dg(A). It is easy to see that the quinv-triples
considered in [1] for F € F(A) reduce to this description when F is a CSF rather than a
general filling. Thus, quinv(F) as defined in [1] equals the number of quinv-triples in F
(as defined above) for a CSF F.

Given F € CSF(A), we define a function zcount which tracks the contributions of in-
dividual cells of dg(A) to quinv(F) as follows: for each cell ¢ € dg(A), let zcount(c, F) =
the number of quinv-triples (x,y,z) in F with z = c. Clearly

Z zcount(c, F) = quinv(F) (6.1)
cedg(A)
We next group cells of the filling F row-wise according to the entries they contain. More
precisely, let cells(i, j, F) = {c € dg(A) : c is in the i’ row and F(c) = j+ 1} for 1 <i <
j +1 < n. Figure 2 shows an example, with these groups colour-coded in each row. It
readily follows from §3 that

| cells(i, j, F)| = NE;;(T), where T = rsort(F). (6.2)
The next proposition brings the SE differences also into play [*]:
Proposition 2. Let F € CSF(A) and T = rsort(F). Fix1 < i < j+1<n (1)Ifc €
cells(i, j, F), then zcount(c, F) < SE;;(T). (2)Ifc,d € cells(i, j, F) with c lying to the right of

d, then zcount(c, F) > zcount(d, F). (3) Further, equality holds in (1) for all i, j and all cells
cecells(i,j, F)iff F=T.
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Figure 3: (left to right) Configuration of quinv, inv and refinv triples.

6.1 Definition of quiny

We now have all the ingredients in place to define quiny. Let F € CSF(A) and T =
rsort(F). For each 1 <i < j+1 < n, consider the sequence

Ajj = (zcount(c, F) : ¢ € cells(i, ], F) traversed right to left in row i). (6.3)

In Figure 2, this amounts to reading the entries of a fixed colour from right to left in
a given row of zcount(:,F). By Proposition 2, this is a weakly decreasing sequence
bounded above by SE;;(T). Together with (6.2), this implies that A;; may be viewed as
a partition fitting into the NE;;(T) x SE;;(T) rectangle. Since SE;; = 0 for i = j+1,
A;j is the zero sequence in this case. We drop the pairs (j + 1,j) to conclude that if
A= (Aj:1<i<j<n), then (T,A) € POP(A). We define ¢pyino(F) = (T, A). Clearly,
xF = xT and (6.1) implies quinv(F) = |A|, establishing (1) of Theorem 1 for v = quinv.

6.2 refinv triples

We now turn to the definition of ¢;,,. While we may anticipate doing this via a modifica-
tion of the foregoing arguments, replacing quinv-triples with Haglund-Haiman-Loehr’s
inv-triples, that turns out not to work out-of-the-box. In place of the latter (see Figure 3),
we consider triples (x,1,z) in dg(A) where (i) x,z € dg(A) with z to the left of x in the
same row, (ii) vy is the cell immediately below x in its column. Given F € CSF(A), we call
(x,v,z) a refinv-triple (or “reflected inv-triple”) for F if in addition to (i) and (ii), we also
have (iii) F(x) < F(z) < F(y), where F(y) := o0 if y & dg(A). We have [7]:

Proposition 3. For F € CSF(A), inv(F) equals the number of refinv-triples of F.

Remarks. 1. We may in fact define a new statistic> refinv on all fillings F € F(A) as
follows: refinv(F) = Inv(F) — ¥_,,cpes r cOarm(u), borrowing notation of [9, §2]. This re-
places arm in HHL's definition by coarm. The content of Proposition 3 is that refinv(F) =
inv(F) for F € CSF(A). In fact, this equality holds more generally for all fillings F whose
descent set is a union of rows of dg(A).

2. The refinv triples for F € CSF(A) actually make an appearance in [13, §2.2], where

they are attributed to Zelevinsky (and their total number denoted ZEL). From this
perspective, the content of Proposition 3 is that ZEL(F) = inv(F).

%In fact, refquinv can also be likewise defined on all fillings, and agrees with quinv on CSFs. But
rephrased in terms of refquinv-triples, this involves counting such triples with signs [3].
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6.3 zcount, zcount and the proof of the main theorem

Given F € CSF(A) and ¢ € dg(A), define zcount(c, F) = the number of refinv-triples
(x,y,2z) in F with z = c. In light of Proposition 3, it is clear that

Y Zzcount(c, F) = inv(F) (6.4)
cedg(A)

We have the following relation between zcount and zcount [3]:

Proposition 4. Let F € CSF(A) and T = rsort(F). Let 1 < i < j+1 < nandc €
cells(i, j, F). Then zcount(c, F) + zcount(c, F) = SE;;(T).

We may now define ¢, following the template of Pquiny. Given F € CSF(A), let
T = rsort(F). For each 1 <i < j < n, consider the sequence:

Ajj = (zcount(c, F) : ¢ € cells(i, j, F) traversed left to right in row i)

Recall also the definition of the partition A;; from (6.3). It follows from Propositions 2
and 4 that A;; is the box-complement of A;j in the NE;;(T) x SE;;(T) rectangle. Letting
A = (Ajj:1<i<j<n), wedefine iy (F) = (T, A). As in the case of quinv, we have
xf = xT, and inv(F) = |A] by (6.4). This proves part (1) of Theorem 1 for v = inv.

Since by definition pr(y,(F)) = T for v = inv, quinv, Part (2A) of Theorem 1 follows.
Part (3) of Theorem 1 follows from the fact that A and A are box complements of each
other in the appropriate rectangles. That the diagrams in part (2B) of Theorem 1 are
commutative follows from an analysis of each elementary splice step of the dsplice map.

Finally, this leaves us with proving that the 1, are bijections. We sketch the construc-
tion of ,-!. Given (T,A) € POP(A), construct the filling F := ¢ 1(T,A) € CSF())
inductively row-by-row, from the bottom (n'") row to the top as follows: (a) fill all cells
of the n'" row (if nonempty) with n, (b) let 1 < i < j < n; assuming that all rows of F
strictly below row i have been completely determined and that the locations of entries
> (j +1) in row i have been determined, we now need to fill NE;;(T) many cells of row
i with the entry j + 1. It turns out that the number of cells in row i in which we can
potentially put a j 4 1 without violating the CSF condition thus far is exactly k + ¢ where
k = NE;;(T) and ¢ = SE;;(T). We label these cells 0,1, -,k + ¢ — 1 from right to left
(left-to-right when defining lp;ulinv)' We now use the identification from §3.1 of partitions
fitting inside a (k x ¢)-box with k-tuples of distinct integers in 0,1, - - - , k+ ¢ — 1. Via this,
the partition A;; can be viewed as a k-tuple of candidate cells in row i; we put the entry
j + 1 into these, (c) fill the remaining cells of row i with the entry i. The rest of the
argument is straightforward [°]. O

For example, let n = 4, A = (10,6,4,0) and let T, A be the GT pattern and overlay
depicted in Figure 1. Then _L (7, A) is precisely the CSF F of Figure 2, while

quinv
Lo A) =[2]1]1]1][3]2]1]4]4]2]
Yin (T 1) 3[3[2[2[4]3
4[4]3]3




Monomial expansions for g-Whittaker and modified Hall-Littlewood polynomials 11

1 —

2 o—9—

3

4]

4
|

Figure 4: A CSF F with columns colour-coded to match its lattice path representation.
The three marked intersections show that inv(F) = 3.

7 Local Weyl modules and limit constructions

Finally, we can apply these ideas to the study of local Weyl modules, in particular to the
limit constructions of [/, 15, 16]. Let L(Ag) denote the basic representation of the affine
Lie algebra sl, [11, Prop. 12.13]. Using Theorem 1 to replace POPs with CSFs as our
model in [15, Corollary 5.13], we deduce [3]:

Proposition 5. Fix n > 2 and consider the partition 6 = (2,1,1,---,1,0) with n — 1 nonzero
parts and |0| = n. For k > 0, let Cy denote the set of CSFs F of shape kf and entries in [n], with
the property that either 1 occurs in the first column of F or 1 does not occur in its last column.

Then Yyso Yree, X g ~™(F) equals the character of L(/o).

There is also a more general version with A 4 kf in place of k@ (for appropriate A),
mirroring [15, Corollary 5.13].

8 Concluding Remarks

For the modified Hall-Littlewood polynomials Q’,(Xy;q) of (2.4), the fermionic formula
appears in [15, (0.2)]. Analogous to (3.2), this can now be recast as a weighted sum
over partition overlaid plane-partitions (POPP) of shape A. Theorem 1 takes the form of
bijections from WDF(A) to POPP(A) (or equivalently, from tabloids to partition overlaid
reverse-plane-partitions). The subtlety here is that POPPs need to be weighted with an
additional power of g (which depends only on the underlying plane-partition, cf [13,
(0.2)]). The refinv- or quinv-triples in this case also involve < relations (rather than just
<) and this extra g-power keeps track of certain equalities among the triples [?].
Secondly, the bijections of Theorem 1 (and those indicated above for the modified
Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams
[¢, 4]. Figure 4 shows the lattice path representation of a CSF F; inv(F) is just the total

number of intersections of the form LII] in the grid, and refining this further to each
box of the grid produces the partition overlay as well [?]. Likewise quinv(F) counts
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non-intersections of the above form. The dsplice map of §4.2 translates into deletion of

the last row of the grid followed by appropriate rectifications

i N
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