# Monomial expansions for $q$-Whittaker and modified Hall-Littlewood polynomials 

Aritra Bhattacharya*1, T V Ratheesh ${ }^{\dagger 1}$, and Sankaran Viswanath ${ }^{\ddagger 1}$<br>${ }^{1}$ The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India


#### Abstract

We consider the monomial expansion of the $q$-Whittaker polynomials given by the fermionic formula and via the inv and quinv statistics. We construct bijections between the parametrizing sets of these three models which preserve the $x$ - and $q$ weights, and which are compatible with natural projection and branching maps. We apply this to the limit construction of local Weyl modules and obtain a new character formula for the basic representation of $\widehat{\mathfrak{s r}}$. Finally, we indicate how our main results generalize to the modified Hall-Littlewood case.


Keywords: $q$-Whittaker polynomial, modified Hall-Littlewood polynomial, local Weyl modules

## 1 Introduction

Let $\lambda$ be a partition. For $n \geq 1$, let $X_{n}$ denote the tuple of indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. The $q$-Whittaker polynomial $W_{\lambda}\left(X_{n} ; q\right)$ and the modified Hall-Littlewood polynomial $Q_{\lambda}^{\prime}\left(X_{n} ; q\right)$ are well-studied specializations of the modified Macdonald polynomial. Several different monomial expansions for these polynomials are known. In this article, our focus will be on three of these: the so-called fermionic formulas $[13,(0.2),(0.3)]$ and the inv- and quinv-expansions arising from specializations of the formulas of Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1].

We recall that the Schur expansion of the $W_{\lambda}\left(X_{n} ; q\right)$ (resp. $Q_{\lambda}^{\prime}\left(X_{n} ; q\right)$ ) has certain $q$-Kostka polynomials as coefficients [13]. In turn, this implies yet another monomial expansion, with the underlying indexing set involving pairs of semistandard Young tableaux of conjugate (resp. equal) shapes. This relates to the inv-expansion via the RSK correspondence [9].

The fermionic formula, expressed as a sum of products of $q$-binomials, is seemingly of a very different nature from all the other monomial expansions, and should probably viewed as a kind of compression of these formulas. Recently, Garbali-Wheeler [8]

[^0]obtained a general formula of the fermionic kind for the full modified Macdonald polynomial $\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)$.

The purpose of this article is to bijectively reconcile the fermionic formula with both the inv- and quinv-expansions. We construct bijections between the underlying sets of these three models which (i) preserve the $x$ - and $q$-weights, and (ii) are compatible with natural projection and branching maps.

As a corollary, we obtain bijections between the inv- and quinv-models in the $q$ Whittaker and modified Hall-Littlewood specializations, partially answering a question of [1]. We find that the inv- and quinv-models are related by the simple boxcomplementation map of the fermionic model and that inv + quinv is a constant on fibers of the natural projection. We also apply this to the limit construction for Weyl modules [7,15] and obtain an apparently new character formula for the basic representation of the affine Lie algeba $\widehat{\mathfrak{s l}}$.

In this extended abstract, we describe the $q$-Whittaker polynomials in greater detail, contenting ourselves with brief remarks about the modified Hall-Littlewood case in §8 due to space limitations. Complete proofs will appear in [3].

## 2 Specializations of $\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)$

Given a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$, we will draw its Young diagram $\operatorname{dg}(\lambda)$ following the English convention, as a left-up justified array of boxes, with $\lambda_{i}$ boxes in the $i$ th row from the top. The boxes are called the cells of $\operatorname{dg}(\lambda)$. We let $|\lambda|:=\sum_{i} \lambda_{i}$. Fix $n \geq 1$ and let $\mathcal{F}(\lambda)$ denote the set of all maps ("fillings") $F: \operatorname{dg}(\lambda) \rightarrow[n]$ where $[n]=\{1,2, \cdots, n\}$. If the values of $F$ strictly increase (resp. weakly decrease) as we move down a column, we say $F$ is a column strict filling (CSF) (resp. weakly decreasing filling (WDF) ${ }^{1}$ ), and denote the set of such fillings by $\operatorname{CSF}(\lambda)$ (resp. $\operatorname{WDF}(\lambda)$ ). The $x$-weight of a filling $F$ is the monomial $x^{F}:=\prod_{c \in \operatorname{dg}(\lambda)} x_{F(c)}$.

We recall that the modified Macdonald polynomial $\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)$ is a symmetric polynomial in the $x_{i}$ with $\mathbb{N}[q, t]$ coefficients. We expand this in powers of $t$; our interest lies in the coefficients of the lowest and highest powers [2, (3.1)]:

$$
\begin{equation*}
\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)=\mathcal{H}_{\lambda}\left(X_{n} ; q\right) t^{0}+\cdots+W_{\lambda}\left(X_{n} ; q\right) t^{\eta(\lambda)} \tag{2.1}
\end{equation*}
$$

where $\eta(\lambda)=\sum_{j \geq 1}\binom{\lambda_{j}^{\prime}}{2}$ where $\lambda_{j}^{\prime}$ denote the parts of the partition conjugate to $\lambda$. The $W_{\lambda}\left(X_{n} ; q\right)$ is the $q$-Whittaker polynomial. The $q$-reversal (or reciprocal) polynomial of $\mathcal{H}_{\lambda}\left(X_{n} ; q\right)$ coincides with the modified Hall-Littlewood polynomial $Q_{\lambda^{\prime}}^{\prime}\left(X_{n} ; q\right)$ where $\lambda^{\prime}$

[^1]is the partition conjugate to $\lambda$, i.e., $q^{\eta\left(\lambda^{\prime}\right)} \mathcal{H}_{\lambda}\left(X_{n} ; q^{-1}\right)=Q_{\lambda^{\prime}}^{\prime}\left(X_{n} ; q\right)$. These are further related to each other by $\omega W_{\lambda}\left(X_{n} ; q\right)=Q_{\lambda^{\prime}}^{\prime}\left(X_{n} ; q\right)$ where $\omega$ is the classical involution on the ring of symmetric polynomials.

Following Haglund-Haiman-Loehr [9] and Ayyer-Mandelshtam-Martin [1], there are statistics inv, quinv and maj on $\mathcal{F}(\lambda)$ such that

$$
\begin{equation*}
\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)=\sum_{F \in \mathcal{F}(\lambda)} x^{F} q^{v(F)} t^{\operatorname{maj}(F)} \tag{2.2}
\end{equation*}
$$

where $v \in\{$ inv, quinv $\}$. The next lemma follows directly from the definition of maj [9]:
Lemma 1. Let $F \in \mathcal{F}(\lambda)$. Then (i) $\operatorname{maj}(F)=\eta(\lambda)$ iff $F \in \operatorname{CSF}(\lambda)$, and (ii) $\operatorname{maj}(F)=0$ iff $F \in \operatorname{WDF}(\lambda)$.
Putting together (2.1), (2.2) and Lemma 1, we obtain for $v \in\{$ inv, quinv $\}$ :

$$
\begin{align*}
& W_{\lambda}\left(X_{n} ; q\right)=\sum_{F \in \operatorname{CSF}(\lambda)} x^{F} q^{v(F)}  \tag{2.3}\\
& Q_{\lambda^{\prime}}^{\prime}\left(X_{n} ; q\right)=\sum_{F \in \operatorname{WDF}(\lambda)} x^{F} q^{\eta\left(\lambda^{\prime}\right)-v(F)} \tag{2.4}
\end{align*}
$$

These are in fact symmetric in the $x$-variables and can be viewed as expansions in terms of the monomial symmetric functions in $x_{1}, x_{2}, \cdots, x_{n}$.

## 3 Fermionic formula for $W_{\lambda}\left(X_{n} ; q\right)$

Let $n \geq 1$ and $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right)$ be a partition with at most $n$ nonzero parts. Let $\mathrm{GT}(\lambda)$ denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row $\lambda$. Given $T \in \operatorname{GT}(\lambda)$, we denote its entries by $T_{i}^{j}$ for $1 \leq i \leq j \leq n$ as in Figure 1 . It will also be convenient to define $T_{j+1}^{j}=0$ for all $1 \leq j \leq n$. We define the North-East and South-East differences of $T$ by: $\mathrm{NE}_{i j}(T)=T_{i}^{j+1}-T_{i}^{j}$ and $\mathrm{SE}_{i j}(T)=T_{i}^{j}-T_{i+1}^{j+1}$ for $1 \leq i \leq(j+1) \leq n$. The GT inequalities ensure that these differences are non-negative.

We will interchangeably think of a GT pattern as a semistandard Young tableau (SSYT). In this perspective, $\left(T_{1}^{j}, T_{2}^{j}, \cdots, T_{j}^{j}\right)$ is the partition formed by the cells of the tableau which contain entries $\leq j$. It follows that $\mathrm{NE}_{i j}(T)$ is the number of cells in the $i^{\text {th }}$ row of the tableau which contain the entry $j+1$. We let $x^{T}$ denote the $x$-weight of the corresponding tableau. The following fermionic formula for the $q$-Whittaker polynomial appears in $[10,13]$ and follows readily from Macdonald's more general formula [14, Chap VI, (7.13)']:

$$
W_{\lambda}\left(X_{n} ; q\right)=\sum_{T \in \operatorname{GT}(\lambda)} x^{T} \prod_{1 \leq i \leq j<n}\left[\begin{array}{c}
N E_{i j}(T)+S E_{i j}(T)  \tag{3.1}\\
N E_{i j}(T)
\end{array}\right]_{q}
$$



Figure 1: A GT pattern for $n=4$. The NE and SE differences are those along the red and blue lines. On the right is a partition overlay compatible with this GT pattern.

Following [12], we define $\mathrm{wt}_{q}(T)=\prod_{1 \leq i \leq j<n}\left[\begin{array}{c}N E_{i j}(T)+S E_{i j}(T) \\ N E_{i j}(T)\end{array}\right]_{q}$.

### 3.1 Partition overlaid patterns

We recall that the $q$-binomial $\left[\begin{array}{c}k+\ell \\ k\end{array}\right]_{q}$ is the generating function of partitions that fit into a $k \times \ell$ rectangle, i.e., $\left[\begin{array}{c}k+\ell \\ k\end{array}\right]_{q}=\sum q|\gamma|$ where $\gamma=\left(\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0\right)$ with $\ell \geq \gamma_{1}$. We also identify partitions of the above form with strictly decreasing $k$-tuples of integers between 0 and $k+\ell-1$ via the bijection $\gamma \mapsto \bar{\gamma}=\gamma+\delta$ where $\delta=(k-1, k-2, \cdots, 0)$.

As shown in [15], the right-hand side of (3.1) can be interpreted in terms of the so-called partition overlaid patterns (POPs). A POP of shape $\lambda$ is a pair $(T, \Lambda)$ where $T \in \mathrm{GT}(\lambda)$ and $\Lambda=\left(\Lambda_{i j}: 1 \leq i \leq j<n\right)$ is a tuple of partitions such that each $\Lambda_{i j}$ fits into a rectangle of size $N E_{i j}(T) \times S E_{i j}(T)$. For example, if $T$ is the GT pattern of Figure 1, we could take $\Lambda_{11}=(2,1,0), \Lambda_{12}=(2), \Lambda_{13}=(1,1), \Lambda_{22}=(0,0,0), \Lambda_{23}=(1), \Lambda_{33}=$ $(2,2)$. We imagine the $\Lambda_{i j}$ as being placed in a triangular array as in Figure 1. We let $\operatorname{POP}(\lambda)$ denote the set of POPs of shape $\lambda$. It is now clear from (3.1) that

$$
\begin{equation*}
W_{\lambda}\left(X_{n} ; q\right)=\sum_{(T, \Lambda) \in \operatorname{POP}(\lambda)} x^{T} q^{|\Lambda|} \tag{3.2}
\end{equation*}
$$

where $|\Lambda|=\sum_{i, j}\left|\Lambda_{i j}\right|$. We remark that $W_{\lambda}\left(X_{n} ; q\right)$ is the character of the local Weyl module $W_{\text {loc }}(\lambda)$ - a module for the current algebra $\mathfrak{s l}_{n}[t][6,5]$. Further, POPs of shape $\lambda$ index a special basis of this module with Gelfand-Tsetlin like properties $[6,15]$.

### 3.2 Projection and Branching for Partition overlaid patterns

Given $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right)$, we say that $\mu=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n-1}\right)$ interlaces $\lambda$ (and write $\mu \prec \lambda$ ) if $\lambda_{i} \geq \mu_{i} \geq \lambda_{i+1}$ for $1 \leq i<n$. The $q$-Whittaker polynomials have the following important properties which readily follow from (3.2): (projection) $W_{\lambda}\left(X_{n} ; q=0\right)=s_{\lambda}\left(X_{n}\right)$, the Schur polynomial, and

$$
\text { (branching) } W_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}=1 ; q\right)=\sum_{\mu \prec \lambda} \prod_{1 \leq i<n}\left[\begin{array}{c}
\lambda_{i}-\lambda_{i+1}  \tag{3.3}\\
\lambda_{i}-\mu_{i}
\end{array}\right]_{q} \cdot W_{\mu}\left(X_{n-1} ; q\right)
$$

In fact, Chari-Loktev [6] lift (3.3) to the level of modules, showing that the local Weyl module $W_{\text {loc }}(\lambda)$ when restricted to $\mathfrak{s l}_{n-1}[t]$ admits a filtration whose successive quotients are of the form $W_{\text {loc }}(\mu)$ for $\mu \prec \lambda$; further their graded multiplicities are precisely given by the product of $q$-binomial coefficients that appear in (3.3).

The combinatorial shadow of projection is the map pr: $\operatorname{POP}(\lambda) \rightarrow \mathrm{GT}(\lambda)$ given by $\operatorname{pr}(T, \Lambda)=T$. Likewise, we define combinatorial branching to be the map br : $\operatorname{POP}(\lambda) \rightarrow$ $\bigsqcup_{\mu \prec \lambda} \operatorname{POP}(\mu)$ defined by $\operatorname{br}(T, \Lambda)=\left(T^{\dagger}, \Lambda^{\dagger}\right)$ where $T^{\dagger}$ is obtained from $T$ by deleting its bottom row, and $\Lambda^{+}$is obtained from $\Lambda$ by deleting the overlays $\Lambda_{i j}$ with $j=n-1$.

### 3.3 Box complementation

In addition to pr and $\mathrm{br}, \operatorname{POP}(\lambda)$ is endowed with another important map, which we term box complementation. Observe that given a partition $\pi=\left(\pi_{1} \geq \pi_{2} \geq \cdots \geq \pi_{k} \geq 0\right)$ fitting into a $k \times \ell$ rectangle, i.e., with $\pi_{1} \leq \ell$, we may consider its complement in this rectangle, defined by $\pi^{c}=\left(\ell-\pi_{k} \geq \ell-\pi_{k-1} \geq \cdots \geq \ell-\pi_{1}\right)$. Now, for $(T, \Lambda) \in$ $\operatorname{POP}(\lambda)$, define boxcomp $(T, \Lambda)=\left(T, \Lambda^{c}\right)$ where for each $i, j,\left(\Lambda^{c}\right)_{i j}$ is defined to be the complement of $\Lambda_{i j}$ in its bounding rectangle of size $\mathrm{NE}_{i j}(T) \times \mathrm{SE}_{i j}(T)$.

We note that since $|\Lambda| \neq\left|\Lambda^{c}\right|$ in general, boxcomp preserves $x$-weights, but not $q$ weights. However $|\Lambda|+\left|\Lambda^{c}\right|=\sum_{i, j} \mathrm{NE}_{i j}(T) \mathrm{SE}_{i j}(T)=$ : area $(T)$ (in the terminology of [15]), which depends only on $T$.

## 4 Projection and branching for Column strict fillings

Our goal is to construct natural bijections between $\operatorname{CSF}(\lambda)$ and $\operatorname{POP}(\lambda)$ which explain the equality of (2.3) and (3.2) for $v=$ inv, quinv. In addition to preserving $x$ - and $q$ weights, we would like our bijections to be compatible with projection and branching. Towards this end, we first define these latter maps in the setting of $\operatorname{CSF}(\lambda)$.

### 4.1 Projection: rowsort

Given $F \in \operatorname{CSF}(\lambda)$, let $\operatorname{rsort}(F)$ denote the filling obtained from $F$ by sorting entries of each row in ascending order. In light of the following easy lemma, we think of rsort as the projection map in the CSF setting.

Lemma 2. If $F \in \operatorname{CSF}(\lambda)$, then $\operatorname{rsort}(F) \in \operatorname{SSYT}(\lambda) \cong \mathrm{GT}(\lambda)$.

### 4.2 Branching: delete-and-splice

A strictly increasing sequence $a=\left(a_{1}<a_{2}<\cdots<a_{m}\right)$ of positive integers will also be termed a column tuple with len $(a)=m \geq 0$. Let $\ell \geq 1$ and suppose $\sigma=\left(\sigma_{1}<\sigma_{2}<\right.$
$\left.\cdots<\sigma_{\ell-1}\right)$ and $\tau=\left(\tau_{1}<\tau_{2}<\cdots<\tau_{\ell}\right)$ are column tuples of length $\ell-1$ and $\ell$ respectively. We set $\sigma_{0}=0$ and let $k$ denote the maximum element of the (non-empty) set $\left\{1 \leq i \leq \ell: \sigma_{i-1}<\tau_{i}\right\}$. Define splice $(\sigma, \tau)=(\bar{\sigma}, \bar{\tau})$ where

$$
\bar{\sigma}_{i}=\left\{\begin{array}{ll}
\sigma_{i} & 1 \leq i<k \\
\tau_{i} & k \leq i \leq \ell
\end{array} \quad \text { and } \quad \bar{\tau}_{i}= \begin{cases}\tau_{i} & 1 \leq i<k \\
\sigma_{i} & k \leq i<\ell\end{cases}\right.
$$

i.e., $\bar{\sigma}, \bar{\tau}$ are obtained by swapping certain suffix portions of $\sigma, \tau$. The choice of $k$ ensures that $\bar{\sigma}, \bar{\tau}$ are also column tuples; we also have len $(\bar{\sigma})=\operatorname{len}(\tau)$ and len $(\bar{\tau})=\operatorname{len}(\sigma)$. For instance, when $(\sigma, \tau)=\left(\begin{array}{|c}\frac{1}{5} \\ \hline\end{array}, \frac{2}{\frac{2}{3}} \begin{array}{|c}4 \\ \hline\end{array}\right)$, we get $(\bar{\sigma}, \bar{\tau})=\left(\begin{array}{|c}\frac{1}{3} \\ \frac{3}{4}\end{array}, \frac{2}{\frac{2}{5}}\right)$.

We now define the delete-and-splice rectification ("dsplice") map on $F \in \operatorname{CSF}(\lambda)$ as follows: (1) delete all cells in $F$ containing the entry $n$ and let $F^{\dagger}$ denote the resulting filling. While its column entries remain strictly increasing, $F^{\dagger}$ may no longer be of partition shape. (2) Let $\sigma^{(j)}(j \geq 1)$ denote the column tuple obtained by reading the $j^{\text {th }}$ column of $F^{\dagger}$ from top to bottom. If $F^{\dagger}$ is not of partition shape, there exists $j \geq 1$ such that len $\left(\sigma^{(j+1)}\right)=\operatorname{len}\left(\sigma^{(j)}\right)+1$. Choose any such $j$ and modify $F^{\dagger}$ by replacing the pair of columns $\left(\sigma^{(j)}, \sigma^{(j+1)}\right)$ in $F^{\dagger}$ by splice $\left(\sigma^{(j)}, \sigma^{(j+1)}\right)$. This swaps the column lengths and brings the shape of $F^{\dagger}$ one step closer to being a partition. (3) If the shape of $F^{\dagger}$ is a partition, STOP. Else go back to step 2.

It is clear that this process terminates and finally produces a CSF of partition shape (filled by numbers between 1 and $n-1$ ), which we denote dsplice $(F)$. The following properties hold:

Proposition 1. With notation as above: (i) $D:=\operatorname{dsplice}(F)$ is independent of the intermediate choices of $j$ made in step 2 of the procedure. (ii) $\operatorname{rsort}(D)$ is obtained from $\operatorname{rsort}(F)$ by deleting the cells containing the entry $n$. (iii) If $\mu$ and $\lambda$ are the shapes of $D$ and $F$ respectively, then $\mu \prec \lambda$.

We consider dsplice to be the combinatorial branching map in the CSF context. Its key property is its compatibility with the natural branching map br of the POP setting.

## 5 The main theorem

Theorem 1. For any $n \geq 1$ and any partition $\lambda: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ with at most $n$ nonzero parts, there exist two bijections $\psi_{\text {inv }}$ and $\psi_{\text {quinv }}$ from $\operatorname{CSF}(\lambda)$ to $\operatorname{POP}(\lambda)$ with the following properties:

1. If $\psi_{v}(F)=(T, \Lambda)$, then $x^{F}=x^{T}$ and $v(F)=|\Lambda|$, for $v=$ inv or quinv.
2. The following diagrams commute ( $v=$ inv or quinv):
(A)

(B)

3. The two bijections are related via the commutative diagram:


To summarize, $\psi_{\mathrm{inv}}$ and $\psi_{\text {quinv }}$ acting on a CSF produce POPs with the same underlying GT pattern, but with complementary overlays. These bijections are compatible with the natural projection and branching maps, and preserve $x$ - and appropriate $q$-weights (inv or quinv). Note the slight abuse of notation in part 2(B) above: for $\mu \prec \lambda, \operatorname{CSF}(\mu)$ denotes the set of column strict fillings $F: \operatorname{dg}(\mu) \rightarrow[n-1]$ (rather than $[n]$ ). Theorem 1, with the exception of part 2(B), can also be formulated in the setting of $q$-Whittaker functions in infinitely many variables. Next, we obtain the following corollaries:
Corollary 1. Let $T \in \mathrm{GT}(\lambda)$ and let $\operatorname{rsort}^{-1}(T)=\{F \in \operatorname{CSF}(\lambda): \operatorname{rsort}(F)=T\}$ be the fiber of rsort over $T$.

1. $\sum_{F \in \operatorname{rsort}^{-1}(T)} q^{\operatorname{inv}(F)}=\sum_{F \in \operatorname{rsort}^{-1}(T)} q^{\text {quinv( } F)}=\mathrm{wt}_{q}(T)$.
2. $\operatorname{inv}(F)+$ quinv $(F)=\operatorname{area}(T)$ is constant for $F \in \operatorname{rsort}^{-1}(T)$.

An interpretation of $\mathrm{wt}_{q}(T)$ in terms of flags of subspaces compatible with nilpotent operators appears in [12, Theorem 5.8(i)]. In [1], the authors asked for an explicit bijection on $\mathcal{F}(\lambda)$ which interchanges the inv and quinv statistics. We describe this bijection on $\operatorname{CSF}(\lambda)$, thereby partially answering their question.


$$
\left.\operatorname{zcount}(\cdot, F)=\begin{array}{|l|l|l|ll|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 1
\end{array} \right\rvert\,
$$

Figure 2: Here $F \in \operatorname{CSF}(\lambda)$ for $\lambda=(10,6,4,0)$ and $n=4$. Cells of $F$ are coloured according to their entries. The gray cells are the extra cells in the augmented diagram $\widehat{\mathrm{dg}}(\lambda)$. On the right are cellwise zcount values. Here quinv $(F)=12$.

Corollary 2. The map $\Omega: \psi_{i n v}^{-1} \circ \psi_{\text {quinv }}=\psi_{i n v}^{-1} \circ \operatorname{boxcomp} \circ \psi_{\mathrm{inv}}: \operatorname{CSF}(\lambda) \rightarrow \operatorname{CSF}(\lambda)$ is an involution satisfying $\operatorname{inv}(\Omega(F))=$ quinv $(F)$ for all $F \in \operatorname{CSF}(\lambda)$.

The explicit construction of the $\psi_{v}$ and their inverses in the next section makes $\Omega$ effectively computable.

## 6 Proof sketch

For a partition $\lambda$, the augmented diagram $\widehat{\operatorname{dg}}(\lambda)$ is $\operatorname{dg}(\lambda)$ together with one additional cell below the last cell in each column (see Figure 2). Given $F \in \operatorname{CSF}(\lambda)$, a quinv-triple in $F$ is a triple of cells $(x, y, z)$ in $\widehat{\operatorname{dg}}(\lambda)$ such that (i) $x, z \in \operatorname{dg}(\lambda)$ and $z$ is to the right of $x$ in the same row, (ii) $y$ is the cell immediately below $x$ in its column, (iii) $F(x)<F(z)<F(y)$, where we set $F(y)=\infty$ if $y$ lies outside $\operatorname{dg}(\lambda)$. It is easy to see that the quinv-triples considered in [1] for $F \in \mathcal{F}(\lambda)$ reduce to this description when $F$ is a CSF rather than a general filling. Thus, quinv $(F)$ as defined in [1] equals the number of quinv-triples in $F$ (as defined above) for a CSF F.

Given $F \in \operatorname{CSF}(\lambda)$, we define a function zcount which tracks the contributions of individual cells of $\operatorname{dg}(\lambda)$ to quinv $(F)$ as follows: for each cell $c \in \operatorname{dg}(\lambda)$, let $\operatorname{zcount}(c, F)=$ the number of quinv-triples $(x, y, z)$ in $F$ with $z=c$. Clearly

$$
\begin{equation*}
\sum_{c \in \operatorname{dg}(\lambda)} \operatorname{zcount}(c, F)=\operatorname{quinv}(F) \tag{6.1}
\end{equation*}
$$

We next group cells of the filling $F$ row-wise according to the entries they contain. More precisely, let cells $(i, j, F)=\left\{c \in \operatorname{dg}(\lambda): c\right.$ is in the $i^{\text {th }}$ row and $\left.F(c)=j+1\right\}$ for $1 \leq i \leq$ $j+1 \leq n$. Figure 2 shows an example, with these groups colour-coded in each row. It readily follows from $\S 3$ that

$$
\begin{equation*}
|\operatorname{cells}(i, j, F)|=N E_{i j}(T), \text { where } T=\operatorname{rsort}(F) \tag{6.2}
\end{equation*}
$$

The next proposition brings the SE differences also into play [3]:
Proposition 2. Let $F \in \operatorname{CSF}(\lambda)$ and $T=\operatorname{rsort}(F)$. Fix $1 \leq i \leq j+1 \leq n$. (1) If $c \in$ cells $(i, j, F)$, then $\operatorname{zcount}(c, F) \leq \mathrm{SE}_{i j}(T)$. (2) If $c, d \in \operatorname{cells}(i, j, F)$ with $c$ lying to the right of $d$, then $\operatorname{zcount}(c, F) \geq \operatorname{zcount}(d, F)$. (3) Further, equality holds in (1) for all $i, j$ and all cells $c \in \operatorname{cells}(i, j, F)$ iff $F=T$.


Figure 3: (left to right) Configuration of quinv, inv and refinv triples.

### 6.1 Definition of $\psi_{\text {quinv }}$

We now have all the ingredients in place to define $\psi_{\text {quinv }}$. Let $F \in \operatorname{CSF}(\lambda)$ and $T=$ $\operatorname{rsort}(F)$. For each $1 \leq i \leq j+1 \leq n$, consider the sequence

$$
\begin{equation*}
\Lambda_{i j}=(\operatorname{zcount}(c, F): c \in \operatorname{cells}(i, j, F) \text { traversed right to left in row } i) \tag{6.3}
\end{equation*}
$$

In Figure 2, this amounts to reading the entries of a fixed colour from right to left in a given row of $\operatorname{zcount}(\cdot, F)$. By Proposition 2, this is a weakly decreasing sequence bounded above by $\mathrm{SE}_{i j}(T)$. Together with (6.2), this implies that $\Lambda_{i j}$ may be viewed as a partition fitting into the $\mathrm{NE}_{i j}(T) \times \mathrm{SE}_{i j}(T)$ rectangle. Since $\mathrm{SE}_{i j}=0$ for $i=j+1$, $\Lambda_{i j}$ is the zero sequence in this case. We drop the pairs $(j+1, j)$ to conclude that if $\Lambda=\left(\Lambda_{i j}: 1 \leq i \leq j<n\right)$, then $(T, \Lambda) \in \operatorname{POP}(\lambda)$. We define $\psi_{q u i n v}(F)=(T, \Lambda)$. Clearly, $x^{F}=x^{T}$ and (6.1) implies quinv $(F)=|\Lambda|$, establishing (1) of Theorem 1 for $v=$ quinv.

## 6.2 refinv triples

We now turn to the definition of $\psi_{\text {inv }}$. While we may anticipate doing this via a modification of the foregoing arguments, replacing quinv-triples with Haglund-Haiman-Loehr's inv-triples, that turns out not to work out-of-the-box. In place of the latter (see Figure 3), we consider triples $(x, y, z)$ in $\widehat{\operatorname{dg}}(\lambda)$ where (i) $x, z \in \operatorname{dg}(\lambda)$ with $z$ to the left of $x$ in the same row, (ii) $y$ is the cell immediately below $x$ in its column. Given $F \in \operatorname{CSF}(\lambda)$, we call $(x, y, z)$ a refinv-triple (or "reflected inv-triple") for $F$ if in addition to (i) and (ii), we also have (iii) $F(x)<F(z)<F(y)$, where $F(y):=\infty$ if $y \notin \operatorname{dg}(\lambda)$. We have [3]:

Proposition 3. For $F \in \operatorname{CSF}(\lambda), \operatorname{inv}(F)$ equals the number of refinv-triples of $F$.
Remarks. 1. We may in fact define a new statistic ${ }^{2}$ refinv on all fillings $F \in \mathcal{F}(\lambda)$ as follows: $\operatorname{refinv}(F)=\operatorname{Inv}(F)-\sum_{u \in \operatorname{Des} F} \operatorname{coarm}(u)$, borrowing notation of [9, §2]. This replaces arm in HHL's definition by coarm. The content of Proposition 3 is that refinv $(F)=$ $\operatorname{inv}(F)$ for $F \in \operatorname{CSF}(\lambda)$. In fact, this equality holds more generally for all fillings $F$ whose descent set is a union of rows of $\operatorname{dg}(\lambda)$.
2. The refinv triples for $F \in \operatorname{CSF}(\lambda)$ actually make an appearance in $[13, \$ 2.2$ ], where they are attributed to Zelevinsky (and their total number denoted $\widetilde{Z E L}$ ). From this perspective, the content of Proposition 3 is that $\widetilde{Z E L}(F)=\operatorname{inv}(F)$.

[^2]
## 6.3 $\overline{\text { zcount, }}$ zcount and the proof of the main theorem

Given $F \in \operatorname{CSF}(\lambda)$ and $c \in \operatorname{dg}(\lambda)$, define $\overline{\operatorname{zcount}}(c, F)=$ the number of refinv-triples $(x, y, z)$ in $F$ with $z=c$. In light of Proposition 3, it is clear that

$$
\begin{equation*}
\sum_{c \in \operatorname{dg}(\lambda)} \overline{\operatorname{zcount}}(c, F)=\operatorname{inv}(F) \tag{6.4}
\end{equation*}
$$

We have the following relation between $\overline{\text { zcount }}$ and zcount [3]:
Proposition 4. Let $F \in \operatorname{CSF}(\lambda)$ and $T=\operatorname{rsort}(F)$. Let $1 \leq i \leq j+1 \leq n$ and $c \in$ $\operatorname{cells}(i, j, F)$. Then $\operatorname{zcount}(c, F)+\overline{\operatorname{zcount}}(c, F)=\operatorname{SE}_{i j}(T)$.

We may now define $\psi_{\text {inv }}$ following the template of $\psi_{\text {quinv }}$. Given $F \in \operatorname{CSF}(\lambda)$, let $T=\operatorname{rsort}(F)$. For each $1 \leq i \leq j<n$, consider the sequence:

$$
\bar{\Lambda}_{i j}=(\overline{\operatorname{zcount}}(c, F): c \in \operatorname{cells}(i, j, F) \text { traversed left to right in row } i)
$$

Recall also the definition of the partition $\Lambda_{i j}$ from (6.3). It follows from Propositions 2 and 4 that $\bar{\Lambda}_{i j}$ is the box-complement of $\Lambda_{i j}$ in the $\mathrm{NE}_{i j}(T) \times \mathrm{SE}_{i j}(T)$ rectangle. Letting $\bar{\Lambda}=\left(\bar{\Lambda}_{i j}: 1 \leq i \leq j<n\right)$, we define $\psi_{\text {inv }}(F)=(T, \bar{\Lambda})$. As in the case of quinv, we have $x^{F}=x^{T}$, and $\operatorname{inv}(F)=|\bar{\Lambda}|$ by (6.4). This proves part (1) of Theorem 1 for $v=$ inv.

Since by definition $\operatorname{pr}\left(\psi_{v}(F)\right)=T$ for $v=$ inv, quinv, Part (2A) of Theorem 1 follows. Part (3) of Theorem 1 follows from the fact that $\Lambda$ and $\bar{\Lambda}$ are box complements of each other in the appropriate rectangles. That the diagrams in part (2B) of Theorem 1 are commutative follows from an analysis of each elementary splice step of the dsplice map.

Finally, this leaves us with proving that the $\psi_{v}$ are bijections. We sketch the construction of $\psi_{\text {inv }}^{-1}$. Given $(T, \Lambda) \in \operatorname{POP}(\lambda)$, construct the filling $F:=\psi_{\text {inv }}^{-1}(T, \Lambda) \in \operatorname{CSF}(\lambda)$ inductively row-by-row, from the bottom ( $n^{\text {th }}$ ) row to the top as follows: (a) fill all cells of the $n^{\text {th }}$ row (if nonempty) with $n$, (b) let $1 \leq i \leq j<n$; assuming that all rows of $F$ strictly below row $i$ have been completely determined and that the locations of entries $>(j+1)$ in row $i$ have been determined, we now need to fill $\mathrm{NE}_{i j}(T)$ many cells of row $i$ with the entry $j+1$. It turns out that the number of cells in row $i$ in which we can potentially put a $j+1$ without violating the CSF condition thus far is exactly $k+\ell$ where $k=\mathrm{NE}_{i j}(T)$ and $\ell=\mathrm{SE}_{i j}(T)$. We label these cells $0,1, \cdots, k+\ell-1$ from right to left (left-to-right when defining $\psi_{\text {quinv }}^{-1}$ ). We now use the identification from $\S 3.1$ of partitions fitting inside a $(k \times \ell)$-box with $k$-tuples of distinct integers in $0,1, \cdots, k+\ell-1$. Via this, the partition $\Lambda_{i j}$ can be viewed as a $k$-tuple of candidate cells in row $i$; we put the entry $j+1$ into these, (c) fill the remaining cells of row $i$ with the entry $i$. The rest of the argument is straightforward [3].

For example, let $n=4, \lambda=(10,6,4,0)$ and let $T, \Lambda$ be the GT pattern and overlay depicted in Figure 1. Then $\psi_{\text {quinv }}^{-1}(\mathcal{T}, \Lambda)$ is precisely the CSF $F$ of Figure 2, while



Figure 4: A CSF $F$ with columns colour-coded to match its lattice path representation. The three marked intersections show that $\operatorname{inv}(F)=3$.

## 7 Local Weyl modules and limit constructions

Finally, we can apply these ideas to the study of local Weyl modules, in particular to the limit constructions of $[7,15,16]$. Let $L\left(\Lambda_{0}\right)$ denote the basic representation of the affine Lie algebra $\widehat{\mathfrak{s l}_{n}}$ [11, Prop. 12.13]. Using Theorem 1 to replace POPs with CSFs as our model in [15, Corollary 5.13], we deduce [3]:

Proposition 5. Fix $n \geq 2$ and consider the partition $\theta=(2,1,1, \cdots, 1,0)$ with $n-1$ nonzero parts and $|\theta|=n$. For $k \geq 0$, let $\mathcal{C}_{k}$ denote the set of CSFs $F$ of shape $k \theta$ and entries in $[n]$, with the property that either 1 occurs in the first column of $F$ or 1 does not occur in its last column. Then $\sum_{k \geq 0} \sum_{F \in \mathcal{C}_{k}} x^{F} q^{k^{2}-\operatorname{inv}(F)}$ equals the character of $L\left(\Lambda_{0}\right)$.

There is also a more general version with $\lambda+k \theta$ in place of $k \theta$ (for appropriate $\lambda$ ), mirroring [15, Corollary 5.13].

## 8 Concluding Remarks

For the modified Hall-Littlewood polynomials $Q_{\lambda^{\prime}}^{\prime}\left(X_{n} ; q\right)$ of (2.4), the fermionic formula appears in $[13,(0.2)]$. Analogous to (3.2), this can now be recast as a weighted sum over partition overlaid plane-partitions (POPP) of shape $\lambda$. Theorem 1 takes the form of bijections from $\operatorname{WDF}(\lambda)$ to $\operatorname{POPP}(\lambda)$ (or equivalently, from tabloids to partition overlaid reverse-plane-partitions). The subtlety here is that POPPs need to be weighted with an additional power of $q$ (which depends only on the underlying plane-partition, cf [13, (0.2)]). The refinv- or quinv-triples in this case also involve $\leq$ relations (rather than just $<)$ and this extra $q$-power keeps track of certain equalities among the triples [3].

Secondly, the bijections of Theorem 1 (and those indicated above for the modified Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams $[8,4]$. Figure 4 shows the lattice path representation of a CSF $F$; $\operatorname{inv}(F)$ is just the total number of intersections of the form $\square$ in the grid, and refining this further to each box of the grid produces the partition overlay as well [3]. Likewise quinv $(F)$ counts
non-intersections of the above form. The dsplice map of $\S 4.2$ translates into deletion of the last row of the grid followed by appropriate rectifications


## References

[1] A. Ayyer, O. Mandelshtam, and J. B. Martin. "Modified Macdonald polynomials and the multispecies zero-range process. I". Algebr. Comb. 6.1 (2023), pp. 243-284.
[2] F. Bergeron. "A Survey of $q$-Whittaker polynomials". 2020. arXiv:2006.12591.
[3] A. Bhattacharya, T. V. Ratheesh, and S. Viswanath. "On $q$-Whittaker and modified HallLittlewood polynomials". In preparation.
[4] A. Borodin and M. Wheeler. "Nonsymmetric Macdonald polynomials via integrable vertex models". Trans. Amer. Math. Soc. 375.12 (2022), pp. 8353-8397.
[5] V. Chari and B. Ion. "BGG reciprocity for current algebras". Compos. Math. 151.7 (2015), pp. 1265-1287.
[6] V. Chari and S. Loktev. "Weyl, Demazure and fusion modules for the current algebra of $\mathfrak{s l}_{r+1}{ }^{\prime \prime}$. Adv. Math. 207.2 (2006), pp. 928-960.
[7] G. Fourier and P. Littelmann. "Weyl modules, Demazure modules, KR-modules, crystals, fusion products, limit constructions". Advances in Mathematics 211.2 (2007), pp. 566-593.
[8] A. Garbali and M. Wheeler. "Modified Macdonald polynomials and integrability". Comтип. Math. Phys. 374.3 (2020), pp. 1809-1876.
[9] J. Haglund, M. Haiman, and N. Loehr. "A combinatorial formula for Macdonald polynomials". J. Amer. Math. Soc. 18.3 (2005), pp. 735-761.
[10] G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, and T. Takagi. "Character formulae of $\widehat{\mathrm{sl}}_{n}$-modules and inhomogeneous paths". Nucl. Phys., B 536.3 (1999), pp. 575-616.
[11] V. G. Kac. Infinite-dimensional Lie algebras. 3rd edition. Cambridge University Press, 1990.
[12] S. N. Karp and H. Thomas. " $q$-Whittaker functions, finite fields, and Jordan forms". Sémin. Lothar. Comb. 85B (2021). Id/No 57, p. 12.
[13] A. N. Kirillov. "New combinatorial formula for modified Hall-Littlewood polynomials". $q$-series from a contemporary perspective. American Mathematical Society, 2000, pp. 283-333.
[14] I. G. Macdonald. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford University Press, New York, 1995, pp. x+475.
[15] K. N. Raghavan, B. Ravinder, and S. Viswanath. "On Chari-Loktev bases for local Weyl modules in type $A^{\prime \prime}$. J. Comb. Theory, Ser. A 154 (2018), pp. 77-113.
[16] B. Ravinder. "Stability of the Chari-Loktev bases for local Weyl modules of $\mathfrak{s l}_{r+1}[t]$ ". 2018. arXiv:1612.01484.


[^0]:    *baritra@imsc.res.in. The authors acknowledge partial support under a DAE Apex Grant to the Institute of Mathematical Sciences.
    ${ }^{\dagger}$ ratheeshtv@imsc.res.in
    $\ddagger_{\text {Svis@imsc.res.in }}$

[^1]:    ${ }^{1}$ These latter ones may be easily transformed into the familiar tabloids by transposing rows and columns and replacing $i \mapsto n-i+1$

[^2]:    ${ }^{2}$ In fact, refquinv can also be likewise defined on all fillings, and agrees with quinv on CSFs. But rephrased in terms of refquinv-triples, this involves counting such triples with signs [3].

