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Abstract. Given a finite poset P, we study the whirling action on vertex-labelings of
P with the elements {0, 1, 2, . . . , k}. When such labelings are (weakly) order-reversing,
we call them k-bounded P-partitions. We give a general equivariant bijection between
k-bounded P-partitions and order ideals of the poset P × [k] which conveys whirling
to the well-studied rowmotion operator. As an application, we derive periodicity and
homomesy results for rowmotion acting on the chain of V’s poset V× [k]. We are able
to generalize some of these results to the more complicated dynamics of rowmotion
on Cn × [k], where Cn is the claw poset with n unrelated elements each covering 0̂.

Keywords: posets, chain of V’s, dynamical algebraic combinatorics, homomesy, P-
partitions, rowmotion, whirling.

1 Introduction

We connect the well-studied operation of rowmotion on the order ideals of a finite poset
with the less familiar whirling action on P-partitions with bounded labels. One of our
main results is an equivariant bijection that carries one to the other for any finite poset
P. We then leverage this to study the rowmotion action on the “chain of V’s” poset
Vk := V× [k] (a 3-element V-shaped poset cross a finite chain, see Figure 2), which has
surprisingly good dynamical properties. We also generalize this to the case where we
replace V with a n-claw, a poset with a single minimal element covered by exactly n
incomparable elements. In both cases we obtain both periodicity results and homomesy.

Let P be a finite poset, and J (P) be the set of order ideals of P. (For basic poset
definitions, we refer the reader to Stanley [9, Ch. 3].) Combinatorial rowmotion is an
invertible map ρ : J (P) → J (P) which takes each ideal I ∈ J (P) to the order ideal
generated by the minimal elements of the complement of I in P. The periodicity of this
map on products of chains was first studied by Brouwer and Schrijver [2], and Cameron
and Fon-der-Flaass [3]. Later Striker and Williams [10] considered it as one element of
the “toggle group” of a poset and related it to a kind of “promotion” operator on order
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ideals. Around the same time, Armstrong, Stump, and Thomas [1] studied rowmotion
on root posets, relating it to “Kreweras complementation” on noncrossing partitions, and
used this to prove a conjecture of Panyushev about the equality of the average cardinality
of antichains for each rowmotion orbit.

Propp and Roby [7] noticed that this conjecture was merely one instance of a much
broader phenomenon which they dubbed homomesy. Given a finite set S, a “statistic”
f : S → C, and an invertible map φ on S, we call f homomesic if the average value of f is

the same for every φ-orbit R, i.e.,
1

#R ∑
x∈R

f (x) = c, where c is a constant not dependent

on the choice of orbit R. The confluence of all this work was the beginning of dynamical
algebraic combinatorics as a distinct area within algebraic combinatorics (with antecedents
going back to the Robinson–Schensted–Knuth correspondence and related operations
on Young tableaux such as promotion, evacuation, and cyclage). In the past decade, the
subfield has grown in a number of directions, and the study of rowmotion has been
of continuing interest. For more background information, see the survey articles of
Hopkins [4], Roby [8], and Striker [11].

Cameron and Fon-der-Flaass [3] were the first to describe rowmotion as a product of
involutions called toggles, as detailed in Section 1.1. A natural generalization of toggling
at a poset element x is “whirling at x,” which cycles the label at x among j possible
values. (Toggles are the case when j = 2.) Joseph, Propp, and Roby defined these
and the operation of whirling on sets of functions between finite sets, obtaining various
homomesy results for various classes of functions (injective, surjective, etc.) [6]. This is
described in Section 2.

A bijective function f : P → [p] (with #P = p) such that f (x) < f (y) whenever
x <P y is called a linear extension. We denote by L(P) the set of all linear extensions of P;
its cardinality, e(P), is an important numerical invariant of a poset. Its refinement, the
order polynomial ΩP(k), counts the number of k-bounded P-partitions. For some special
posets P, mainly ones connected with Lie theory (root and minuscule posets) and those
of partition or shifted shapes, product formulae for ΩP(k) are known. Hopkins surveys
these posets, the formulae, and gives the heuristic: Posets with order-polynomial product
formulae are the same as the posets with good dynamical behavior. The one poset in his list
whose rowmotion dynamics were relatively unexplored is V× [k], a gap this paper fills.
In separate work Hopkins and Rubey study the dynamics of Schützenberger promotion
on linear extensions of V× [k], which also exhibit unusually good behavior [5].

This paper is organized as follows. In Section 1 after the introduction, we review the
toggling definition of rowmotion. Section 2 describes whirling, and includes the equiv-
ariant bijection which allows us to study rowmotion on Vk as whirling on k-bounded
P-partitions. Section 3 contains our main periodicity and homomesy results for rowmo-
tion on Vk, which use decompositions of the “orbit board” of the corresponding whirling
action into “whorms”. Finally, Section 4 contains the periodicity and homomesy results
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which generalize to rowmotion on the “chain of claws” graph, Cn × [k]. A version of this
paper with full proofs will appear soon on the arXiv.

1.1 Rowmotion as a product of toggles

Definition 1.1. We define the (order-ideal) rowmotion map, ρ : J (P) → J (P) as follows:
For any I ∈ J (P), ρ(I) is the order ideal generated by the minimal elements of the
complement of I, as in the example below.

Example 1.2. Here is one iteration of ρ on an order ideal with the action broken down
into its three steps: (1) complement, (2) take minimal elements, (3) saturate down.

(1)−→ (2)−→ (3)−→

Rowmotion has an alternate definition as a composition of toggling involutions,
which has proven useful for understanding and generalizing many of its properties.
Cameron and Fon-der-Flaass [3] showed that for any finite poset P, rowmotion can be
realized as “toggling once at each element of P along any linear extension (from top to
bottom)”. Other toggling orders also lead to interesting maps, such as Striker–Williams
“promotion” (of order ideals) of a poset, which is toggling from left-to-right along “files”
of a poset [10].

Definition 1.3. For each fixed x ∈ P define the (order-ideal) toggle τx : J (P) → J (P) by

τx(I) =


I ∖ {x} if x ∈ I and I ∖ {x} ∈ J (P)
I ∪ {x} if x ̸∈ I and I ∪ {x} ∈ J (P)
I otherwise.

It is an easy exercise to show that order-ideal toggles [3, §2] are involutions, and that
toggles at incomparable elements commute (a special case of Prop 2.7).

Example 1.4. We will toggle each node down the following fixed linear extension: at

each step we consider whether or not to toggle the red node in or out.
2

5 4
7

1
3

6
.

For this linear extension we toggle the elements from top-to-bottom, then left-to-right.

τ7−→ τ6−→ τ5−→
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τ4−→ τ3−→ τ2−→ τ1−→

Proposition 1.5 ([3, Lemma 1]). Let x1, x2, . . . , xp be any linear extension (i.e., any order-
preserving listing of the elements) of a finite poset P with p elements. Then the composite map
τx1τx2 · · · τxp coincides with the rowmotion operation ρ.

2 Whirling

2.1 Whirling function between finite sets

Let F ⊆ [k][n] be a family of functions f : [n] → [k]. For the rest of section 2.1, we use
{1, . . . , k} = [k] to represent the congruence classes of Z/kZ, as opposed to the usual
{0, 1, . . . , k − 1}. For fixed values of k and n, we represent such functions in one-line
notation, e.g., f = 21344 represents the function f ∈ [4][5] with f (1) = 2, f (2) = 1,
f (3) = 3, f (4) = 4, and f (5) = 4.

Definition 2.1 ( [6, Definition 2.3] ). For f ∈ F we define the whirl wi : F → F at index i
as follows: repeatedly add 1 (modulo k) to the value of f (i) until we get a function in F .

Example 2.2. Let F = { f ∈ [4][5] : f (1) ̸= f (2)}. If we apply w2 to f = 21344, adding 1
in the second position gives 22344, but this is not in F . Adding 1 again in this position
gives the result: w2( f ) = 23344.

4 1 5
6 2 1
3 4 2
5 6 3
1 2 4
3 5 6
4 1 2
5 3 4
6 5 1
2 6 3

Figure 1

We will now highlight some specific results from the paper where
whirling was first introduced. Let Injm(n, k) be the set of m-injective
functions, that is, functions f : [n] → [k] such that # f−1(t) ≤ m for all
t ∈ [k]. Similarly, let Surm(n, k) be the set of m-surjective functions,
that is, f : [n] → [k] such that # f−1(t) ≥ m for all t ∈ [k]. Note
that injective functions are 1-injections and surjective functions are
1-surjections. We also define the statistic ηj( f ) = # f−1({j}).

Theorem 2.3. [6, Theorem 2.11] Fix F to be either Injm(n, k) or
Sur1(n, k) for given n, k, m ∈ P. Then under the action of w =
wn ◦ wn−1 ◦ · · · ◦ w1 on F , ηj is n

k -mesic for any j ∈ [k]

This result is conjectured to hold for Surm(n, k), but is still open for
m > 1. Proof details can be found in Sections 2.2–2.4 of [6].

Example 2.4. Here is the orbit of w on Inj1(3, 6) containing f = 415.
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415 w−→ 621 w−→ 342 w−→ 563 w−→ 124 w−→ 356 w−→ 412 w−→ 534 w−→ 651 w−→ 263 w

Figure 1 shows the corresponding orbit board (a matrix whose rows are the successive
orbit elements) partitioned into chunks. Notice that each value 1, 2, . . . , 6 appear exactly
5 times in this orbit of size 10, in accordance with the 1/2-mesy of Theorem 2.3.

2.2 k-bounded P-partitions

Now we extend the definition of whirling to k-bounded P-partitions. Throughout the
rest of the paper, P will denote a finite poset. Define [0, k] := {0, 1, 2, . . . , k}.

A P-partition is a map σ from P to N such that if x <P y, then σ(x) ≥ σ(y) [9, Ch. 3].

Definition 2.5. A k-bounded P-partition is a function f : P → [0, k] such that if x ≤P y,
then f (x) ≥ f (y). Let Fk(P) be the set of all such functions.

Throughout the rest of the paper we use {0, 1, . . . , k} to represent the congruence classes
of Z/(k + 1)Z, as usual.

Definition 2.6. For f ∈ Fk(P) and x ∈ P, define wx : Fk(P) → Fk(P), called the whirl at
x, as follows: repeatedly add 1 (mod k + 1) to the value of f (x) until we get a function
in Fk(P). This new function is wx( f ).

The case k = 1 of the above definition recovers toggling of order ideals (Def. 1.3).

Proposition 2.7. If x, y ∈ P are incomparable, then wxwy( f ) = wywx( f ).

Definition 2.8. Let (x1, x2, . . . xp) be a linear extension of P. Define w : Fk(P) → Fk(P)
by w := wx1wx2 . . . wxp . The above proposition shows that this is well-defined, since
one can get from any linear extension to any other by a sequence of interchanges of
incomparable elements.

Example 2.9. Let P be the V poset with labels
ℓ

c
r

, k = 2, and w = wcwrwℓ.

0

2

2
wℓ−→

1

2

2
wr−→

1

2

0
wc−→

1

1

0

There is a natural bijection between order ideals of a poset P and 1-bounded P-
partitions in F1(P). Specifically, a 1-bounded P-partition in F1(P) is simply the indicator
function of an order ideal I ∈ J(P). We extend this to an equivariant bijection Fk(P) →
J (P × [k]) which sends w to ρ, meaning the following diagram commutes.
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Fk(P)

J (P × [k])

Fk(P)

J (P × [k])
ρ

w

We will call the chains {(x, 1), (x, 2), . . . , (x, k)} ⊆ P × [k], for x ∈ P, the fibers of
P × [k], and construct an equivariant bijection that first sends wx to order-ideal toggling
down the fiber {(x, 1), (x, 2), . . . , (x, k)}.

Lemma 2.10. There is an equivariant bijection between Fk (P) and J (P × [k]) which sends wx
to the toggle product τ(x,1)τ(x,2) . . . τ(x,k).

Theorem 2.11. Fix any linear extension (x1, x2, . . . , xp) ∈ L(P). There is an equivariant bijec-
tion between Fk (P) and J (P × [k]) which sends whirling, w = wx1wx2 · · ·wxp , to rowmotion
on J (P × [k]).

The following definitions will allow us to partition orbit boards of whirling into
subsets called whorms.

Definition 2.12. For any x ∈ P and f ∈ Fk(P), define (x, f ) to be a whirl element. The
whirl element (y, g) is whirl successive of (x, f ) if either:

1. y = x and g(y) = w( f )(x) = f (x) + 1, or

2. x covers y, f = g, and f (x) = g(y).

We consider whirl-successive elements to be whirl elements which are one step away
from each other, either by moving one covering relation down the poset or by whirling
the function at the element, and ending one label greater. While we must consider the entire
P-partitions f and g to check whether two whirl elements are whorm connected, we think of whirl
elements as being simply (x, f (x)), the location and its label, and indicate them in this way in
the examples that follow.

Definition 2.13. Two whirl elements (x, f ) and (y, g) are whorm-connected if there exists
a sequence of whirl-successive elements {(x, f ) = (x0, f0), (x1, f1), . . . , (xp, fp) = (y, g)}.
A whorm is a maximal set of whorm-connected whirl elements, that is, if (x, f ) is in a
whorm and (x, f ) is whorm-connected to (y, g), then (y, g) is in the whorm.

Example 2.14. An orbit of whirling P-partitions (for P = [2]× [2]) with its four whorms
indicated by the same color and (redundantly) node-shape.

2

2 1

0

w−→

2

1 2

1

w−→

2

2 0

0

w−→

1

0 1

0

w−→

2

1 0

0

w
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3 Periodicity and homomesy for rowmotion on V× [k]

In this section we consider the dynamics of rowmotion acting on the order ideals of the
chain of V’s poset Vk, establishing its periodicity and finding interesting examples of
homomesy.

Definition 3.1. Let V be the 3-element poset with Hasse diagram , and define
Vk = V× [k], where [k] is the chain poset. We call Vk the chain of V’s poset.

Example 3.2. Figure 2 shows the Hasse diagram of Vk with our vertex-labeling conven-
tion.

ℓ1

c1

r1

ℓ2

c2

r2

ℓ3

c3

r3

ℓk

ck

rk

...

...

...

Figure 2

Our main goals for this section are the following theorems. We will
leverage the equivariant bijection and the notion of whorms from the
last section.

Theorem 3.3. The order of rowmotion on J (Vk) is 2(k + 2).

Theorem 3.4. Let χs be the indicator function for s ∈ Vk. We have the
following homomesies for the action of ρ on J (Vk)

1. The statistic χℓi − χri is 0-mesic for all i ∈ [k].

2. The statistic χℓ1 + χr1 − χck is 2(k−1)
k+2 -mesic.

Example 3.5. This ρ-orbit on J (V4) has size 4, which divides 2(4+ 2) =
12. The homomesies are also easily checked, e.g., across the orbit the
total number of elements at rank 1 in the side fibers is 6, minus the
two at the top of the center fiber, for an average of 6−2

4 = 1 = 2(4−1)
4+2 ,

agreeing with Theorem 3.4(2).

ρ−→ ρ−→ ρ−→ ρ

To prove these theorems we utilize our equivariant bijection (Theorem 2.11) from
J (Vk) to Fk(V), then represent the latter by triples f = (ℓ, c, r) with ℓ ≤ c and r ≤ c.
This bijection ϕ sends an order ideal I to a triple (ℓ, c, r), counting the number of elements
of the order ideal in the left, center, and right fibers respectively.
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Example 3.6. Here is the orbit of F4(V) corresponding to Example 3.5.

(1, 3, 3) w−→ (2, 4, 0) w−→ (3, 3, 1) w−→ (0, 4, 2) w

Proposition 3.7. The number of order ideals of Vk is given by |J (Vk)| = k(k+1)(2k+1)
6 .

3.1 Center-seeking whorms

1
2
3
4 4

0
1
2
3
440

1 1
2
3
4

0
1
2
3
44

0
1
2
3
4 4 0

11

2
3
4

0

0 2 0
1 3 1
2 4 2
3 3 3
0 4 0
1 4 11 1 1

Figure 3

To show that the order of ρ on J (Vk) is 2(k + 2) we end up
proving something stronger, namely that ρk+2(I) is the reflec-
tion of I across the the center chain. Our method is to in-
vestigate the whorms that arise from repeatedly whirling a
k-bounded P-partition.

Recall from Definition 2.13 that, given a whirling orbit
board, O = { f , w( f ), w2( f ), . . . } of w on Fk(V), a whorm ς is
a maximal set of whorm-connected elements. Figure 3 shows
two orbit boards of F4(V), one with six whorms and one with
two whorms. Notice that each whorm in the second orbit has
two “starting" positions.

Each whorm in an orbit board of V × [k] starts on the
left, or the right, or both left and right; we call the former
one-tailed and the later two-tailed. Since these whorms move

down the orbit board at every step, except for one move to the center, we consider
them as a sequence of function values in the orbit board which start at 0 and end
at k, where one value is repeated when moving into the center. We call these center-
seeking whorms. (Since an orbit board is actually a cylinder, we have a “can of worms”
to deal with.) In the left orbit of Figure 4 we isolate one example of a left whorm:
ς = {(ℓ, (0, 3, 3)), (ℓ, (1, 4, 0)), (ℓ, (2, 2, 1)), (c, (2, 2, 1)), (c, (0, 3, 2)), (c, (1, 4, 3))}, visual-
ized within an orbit board of F4(V). It is easy to see that an orbit board is tiled either
entirely by one-tailed whorms or entirely by two-tailed whorms. (See the discussion at
the start of Section 4.)

We first observe that all whorms have k + 2 elements, since each contains the k + 1
elements 0, ..., k, exactly one of which is doubled.

Define b(ς) := 1 + min{ f (c) : (c, f ) ∈ ς}, the number of elements in the outer
columns and e(ς) := k + 2 − b(ς), the number of elements in the center column. For the
red whorm in the orbit on the left of Figure 4, b(ς) = 3 and e(ς) = 3.

Example 3.8. The right orbit board in Figure 4 is the previous example with all the
whorms colored. The number of elements in the left column of the yellow, red, and
orange whorms are 5, 3, 4 respectively, and the orbit board is of length 12.
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1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

Figure 4

It follows that the order of whirling divides the sum of b(ς)
over all whorms ς ∈ S. In the setting of Fk(V), as long as we
know b(ς) and whether f (ℓ) = 0, f (r) = 0, or both, then we
can recover the entire whorm.

Definition 3.9. We place a circular order on the whorms. Let
ς1 and ς2 be whorms in an orbit board of Fk(V). If there ex-
ists (c, f ) ∈ ς1 with f (c) = k such that (c, w( f )) ∈ ς2, then we
say ς2 is in front of ς1. We call a sequence of whorms consecu-
tive if each is in front of the next. In a one-tailed orbit board,
consecutive whorms alternate starting from the left and right.

Example 3.10. In Figure 4 the blue (horizontal lines) whorm is
in front of the red (crosshatch) whorm, which is in front of the
green (northwest lines) whorm.

Lemma 3.11. Assume an orbit board O of w on Fk(V) has all one-
tailed whorms. Let ς1, ς2, and ς3 be three consecutive whorms, that is, ς3 is in front of ς2 which
is in front of ς1 in O. Then, b(ς1) + b(ς2) + b(ς3) = 2(k+ 2). Otherwise, if there are two-tailed
whorms, then b(ς1) + b(ς2) = k + 2.

In fact, the entire orbit board can be reconstructed simply from knowing the values of
b(ς1) and b(ς2) for two consecutive whorms in the one-tailed case, and from a single
b(ς1) in the two-tailed case.

Example 3.12. In Figure 4 we have k = 4, b(green) = 4, b(red) = 3, and b(blue) = 5,
which sum to 12 = 2(4 + 2).

Lemma 3.13. Given an orbit board with one-tailed whorms, let ς1, ς2, ς3, ς4 be consecutive, then
b(ς4) = b(ς1). Furthermore, if the orbit board contains two-tailed whorms, then b(ς1) = b(ς3).

...

...

...

...

...

...

Figure 5

Notice that for orbits with one-tailed whorms, we are not claiming
the board starts to repeat; since whorms alternate sides, ς4 will start on
the opposite side from ς1. If we keep applying the previous Lemma to
even more consecutive whorms, we see b(ς5) = b(ς2) and b(ς6) = b(ς3).
Finally we get b(ς7) = b(ς1) and the pattern repeats. Therefore there are
at most six unique whorms in a one-tailed orbit board.

Lemma 3.14. Given an orbit board with one-tailed whorms, there are at most
six distinct whorms.

Theorem 3.15. Let (x, y, z) ∈ Fk(V), then wk+2(x, y, z) = (z, y, x).

Corollary 3.16. The order of w on Fk(V) divides 2(k + 2).
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Lemma 3.17. Under the action of rowmotion on order ideals of J (Vk), the
difference of successive flux-capacitor indicator functions, Fi − Fi+1 is 3

k+2 -mesic for i ∈ [2, k− 1].

This lemma can be generalized to the following theorem.

Theorem 3.18. For k > 1. Let Fi = χℓi + χri + χci−1 . Under the action of rowmotion on order
ideals of J (Vk), the difference of arbitrary flux- capacitors is Fi − Fj is 3(j−i)

k+2 -mesic.

4 Periodicity and homomesy for rowmotion on Cn × [k]

We define the claw poset Cn = {b1, . . . , bn, 0̂} where each bi covers 0̂. For example, the

Hasse diagram of C4 would be .
Using the established equivariant bijection between J (Cn × [k]) and k-bounded P-

partitions Fk(Cn) that sends rowmotion to whirling, we can prove similar homomesies
and periodicity to that of C2 = V. Now instead of triples of numbers, we will consider
orbit boards of (n + 1)-tuples on [0, k],

(
f (b1), f (b2), . . . , f (bn), f (0̂)

)
, satisfying f (bi) ≤

f (0̂) for each i ∈ [n].

31 0 1 2
32 1 2 3
33 2 3 0
30 3 0 1
21 0 1 2
32 1 2 0
33 2 3 1
30 3 0 2
31 0 1 3
22 1 2 0
30 2 0 1
31 3 1 2
32 0 2 3
33 1 3 0
20 2 0 1

Figure 6

In Figure 6, note that if two entries are the same among the first n in
a given row, then those positions (columns) remain the same through-
out the entire orbit board. This is because the entries b1, . . . , bn rep-
resent the result of whirling at incomporable elements of the poset Cn.
Furthermore, these two entries must belong to the same whorm, be-
cause each will be whorm-connected via 0̂ exactly when their value
matches the value of the last entry. These observations will allow us to
generalize our peridocity and homomesy results from V to Cn.

Definition 4.1. For A ⊆ [0, k], define the family of order-reversing
maps FA

k (Cn) = { f : f ∈ Fk(Cn) and f (bj) ∈ A for all j ∈ [n]}. For
any fixed A we denote w to be whirling on the non-0̂ elements of order-
reversing maps f ∈ FA

k (Cn). Which is equivalent to incrementing each
non-0̂ value, but only allowing values within A.

Given f ∈ Fk(Cn), set A( f ) = {a : f (bj) = a for some j ∈ [n]}, the
set of values that the P-partition f attains on the non-0̂ elements of Cn.
Set α = #A and α( f ) = #A( f ). For any f , g ∈ Fk(Cn), if g = wj( f )

for some j ∈ N, then α( f ) = α(g). So we may sometimes write just α when an orbit is
fixed. For this section, we impose A = A( f ) when computing w : Fk(Cn) → Fk(Cn) of
an order-reversing map f .

Example 4.2. Consider f = (1, 3, 3, 0, 4, 1, 6) ∈ F9(C6). We see A( f ) = {0, 1, 3, 4} so

w(1, 3, 3, 0, 4, 1, 6) = (3, 4, 4, 1, 0, 3, 6).
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The last entry remains unchanged and the earlier entries are increasing cyclically
within the set A( f ) = {0, 1, 3, 4}. In the special case where V (= C2) are set within
any orbit A will have at most two elements, hence w will just toggle between those two
values at the left and the right. This means that w is the same as reflecting values across
the center of V, which we already saw was the effect of wk+2. Our next result generalizes
this to the case Cn.

Lemma 4.3. Let f ∈ Fk(Cn) and α = α( f ). If ς1, . . . , ςα+1 are α + 1 consecutive whorms, then

b(ς1) + · · ·+ b(ςα+1) = α(k + 2).

Proposition 4.4. Let w be whirling k-bounded P-partitions on Fk(Cn). For any f ∈ Fk(Cn)
and A = A( f ), we have wk+2( f ) = w( f ).

The proof of this theorem can be approached with whorms. Define b(ς) = 1 +
min{ f (0̂) : (0̂, f ) ∈ ς}. If there exists (0̂, f ) ∈ ς1 with f (0̂) = k such that (0̂, w( f )) ∈ ς2,
then we say ς2 is in front of ς1. In Figure 6, the pink snake is in front of the red snake.

Corollary 4.5. Let f ∈ Fk(Cn) and α = α( f ). If ς1, . . . , ςα+2 are consecutive whorms, then
b(ς1) = b(ςα+2).

0 1 2 3 3
1 2 3 0 3
2 3 0 1 3
3 0 1 2 3

Figure 7

If f ∈ F k(Cn) satisfies f (0̂) ̸∈ A( f ), then f will contain entries
from α + 1 distinct whorms. From Proposition 4.4, we will have at
most α(α + 1) whirls in an orbit board (each action of ŵ resulting in
α + 1 whorms potentially distinct from those previous, as in Figure 6).
On the other hands, consider the orbit board of F3(C4) in Figure 7
with α = 4. Here w( f ) = w5( f ) so the orbit is only 4 rows long with 4
distinct whorms. In general, we can extend this to a super orbit board
with α(α + 1) whorms.

Theorem 4.6. Let m = min(k, n). The order of rowmotion on J (Cn × [k]) divides m!(k + 2).

Only the analogue of the first homomesy in Theorem 3.4 holds.

Theorem 4.7. Let χ(i,j) be the indicator function for (i, j) ∈ Cn × [k]. Then for the action of
rowmotion on J (Cn × [k]), the statistic χ(i,a) − χ(j,a) is 0-mesic for all i, j ∈ [n] and a ∈ [k].

Remark 4.8. The average of the statistic
(

∑n
i=1 χ(i,1)

)
−χ(0̂,k) (analogous to Theorem 3.4(2))

turns out to be dependent on α( f ) (for any f ∈ O) and can be computed as

n(α)(k + 2)− (n + α)(α + 1)
(α)(k + 2)

.

Consider the super-orbit with nα(k + 2) entries among the non-minimal elements.
We know χ(i,1)(I) = 0 if and only if for corresponding f , f (i) = 0. But this is counted by
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the number of whorm beginnings, that is n(α+ 1). Furthermore, χ(0̂,k)(I) = 1 if and only

if for corresponding f , f (0̂) = k, which is counted by the number of whorm endings,
that is α(α + 1). Therefore the average is obtained.

The “flux-capacitor” homomesy of Theorem 3.18 also generalizes to the claw-graph
setting, and has a similar proof.

Theorem 4.9. Let Bi = χ(i−1,0̂)+∑n
j=1 χ(i,j). Then for the action of rowmotion on J (Cn × [k]),

Bi − Bj is (j−i)(n+1)
k+2 -mesic for all i, j ∈ [n].
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