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Abstract. Given a building set B and an oriented matroid M on the same ground
set, we define the acyclic nested complex as the simplicial complex of nested sets on B
which are in some sense acyclic with respect to M. We prove that this complex is
always the face lattice of an oriented matroid, obtained as a stellar subdivision of the
positive tope of the oriented matroid M. When the oriented matroid M is the ori-
ented matroid of a vector configuration A, we moreover prove that this complex is the
boundary complex of an acyclonestohedron, a polytope obtained as the section of a
nestohedron for B by the evaluation space of A. Our work specializes to explicit poly-
topal realizations of the poset associahedra and affine poset cyclohedra of Galashin.

Résumé. Étant donné un ensemble de construction B et un matroïde orienté M
sur le même ensemble, nous définissons le complexe imbriqué acyclique comme le
complexe simplicial des ensembles imbriqués de B qui sont acycliques pour M en un
certain sens. Nous montrons que ce complexe est toujours le treillis des faces d’un
matroïde orienté, obtenu par subdivisions stellaires du tope positif du matroïde ori-
enté M. Quand le matroïde orienté M est le matroïde orienté d’une configuration de
vecteurs A, nous montrons que ce complexe est le complexe de bord d’un acyclonestoè-
dre, un polytope obtenu comme la section du nestoèdre de B par l’espace vectoriel des
évaluations linéaires sur A. Notre travail se spécialise à des réalisations polytopales
explicites des associaèdres d’ordres et des cycloèdres d’ordres affines de Galashin.
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Introduction

Motivated by the recent work of Galashin on poset associahedra and affine poset cyclo-
hedra [8], we introduce the acyclic nested complexes and the acyclonestohedra, some
simplicial complexes and polytopes at the interface between nestohedra [10, 4, 6, 12]
(Section 1.1) and oriented matroids [1] (Section 1.2).
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The input data is an oriented building set (B,M) (Section 2.1), that is, a building
set B and an oriented matroid M on the same ground set so that any circuit of M is a
block of B. The acyclic nested complex A(B,M) is the simplicial complex of nested sets
on B which are in some sense acyclic with respect to M (Section 2.2).

Prototypical examples are graphical oriented building sets. The graphical oriented
building set of a directed graph D is formed by the graphical building set of the line
graph L(D) together with the graphical oriented matroid of D. The graphical acyclic
nested complex is then given by all tubings T on L(D) such that for each tube t ∈ T, the
contraction in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t yields
an acyclic directed graph. It is not difficult to see that this definition actually only de-
pends upon the transitive closure of D and coincides with the poset associahedron of [8].
A similar (but slightly more intricate) construction shows that the affine poset cyclohedra
of [8] are also acyclic nested complexes of specific oriented building sets.

Our main results are geometric realizations of acyclic nested complexes (Sections 2.3
and 2.4). We show that the acyclic nested complex of an oriented building set (B,M) is

(i) the face lattice of an oriented matroid obtained by stellar subdivisions of M,
(ii) the boundary complex of a convex polytope, obtained by stellar subdivisions of the

positive tope of M when the latter is realizable,
(iii) the boundary complex of the polar of the acyclonestohedron, a polytope obtained

as the section of a nestohedron for B with the evaluation space of A, when M is
realized by the vector configuration A.

Note that (i) is valid for all oriented matroids (realizable or not), while (ii) and (iii) only
apply to realizable oriented matroids. The advantage of (iii) over (ii) is that it leads to ex-
plicit realizations with controlled integer coordinates. For poset associahedra and affine
poset cyclohedra, (ii) recovers the construction of [8] using stellar subdivisions of order
polytopes, and (iii) answers a question left open in [8], and independently settled in [11].

In fact, the oriented building sets and their acyclic nested complexes are closely re-
lated to the lattice building sets and their lattice nested complexes of [4, 6]. Namely, we
show that the building sets on the Las Vergnas face lattice of M are obtained from the
oriented building sets (B,M) by keeping only the blocks of B which are faces of M, and
that the two notions of nested complexes coincide (Section 3). We exploit this correspon-
dence in both directions: we recover our results on stellar subdivisions as reformulations
of [5, 4], and we use our acyclonestohedra to get explicit polytopal realizations with in-
teger coordinates for the all nested complexes over face lattices of realizable matroids.

Finally, Galashin’s main motivation for poset associahedra was that they model com-
pactifications of the space of order preserving maps P → R, which can be identified
with the interior of an order polytope. We observe that results of [7] imply that acyclon-
estohedra are associated to nice compactifications of interiors of polytopes (Section 4).

Many details and all proofs are omitted in this extended abstract due to space limi-
tations. We refer to the long version of this work which should soon become available.
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1 Preliminaries

1.1 Building sets, nested complexes, and nestohedra

We start with the classical definitions of building sets, nested sets, nested complexes,
and nestohedra from [10, 4, 6, 12] and their specializations to the graphical case [2].

Definition 1.1 ([10, 4, 6]). A building set on S is a set B of non-empty subsets of S such that
• B contains all singletons {s} for s ∈ S, and
• if B, B′ ∈ B and B ∩ B′ ̸= ∅, then B ∪ B′ ∈ B.

We denote by κ(B) its set of B-connected components, i.e., its inclusion maximal elements.

Example 1.2 ([2]). Consider a graph G on S. A tube of G is a non-empty subset of S
which induces a connected subgraph of G. The set B(G) of all tubes of G is a graphical
building set. Moreover, the blocks of κ(B(G)) are the connected components of G.

Remark 1.3 ([3]). More generally, a hypergraph H on S defines a building set B(H) on S
given by all non-empty subsets of S which induce connected subhypergraphs of H. Any
building set B on S is the building set of a hypergraph, but not always of a graph.

Definition 1.4 ([10, 4, 6]). A nested set is a subset N of B containing κ(B) such that
• for any B, B′ ∈ N , either B ⊆ B′ or B′ ⊆ B or B ∩ B′ = ∅,
• for any k ≥ 2 pairwise disjoint B1, . . . , Bk ∈ N , the union B1 ∪ · · · ∪ Bk is not in B.

The nested complex of B is the simplicial complex N(B) whose faces are N ∖ κ(B) for all
nested sets N on B.

Example 1.5 ([2]). Consider a graph G on S. Two tubes t, t′ of G are compatible if they are
either nested (i.e., t ⊆ t′ or t′ ⊆ t), or disjoint and non-adjacent (i.e., t ∪ t′ /∈ B(G)). A
tubing on G is a set T of pairwise compatible tubes of G containing all connected com-
ponents κ(G). Tubings are precisely the nested sets of the graphical building set B(G).
The nested complex N(B(G)) is a graphical nested complex.

We now introduce restrictions and contractions of building sets. These operations
are used to describe links of nested complexes [12, Prop. 3.2], and will be crucial here to
define acyclic nested complexes.

Definition 1.6. For any R ⊆ S, define
• the restriction of B to R as the building set B|R := {B ∈ B | B ⊆ R} on R,
• the contraction of R in B as the building set B/R := {B ∖ R | B ∈ B, B ̸⊆ R} on S ∖ R.

Example 1.7. For a graph G on S and R ⊆ S,
• B(G)|R = B(G|R) where G|R is the subgraph of G induced by R,
• B(G)/R = B(G/R) where G/R is the reconnected complement of R in G, i.e., the graph

on S ∖ R with an edge {r, s} if there is a path between r and s in G with vertices
in R ∪ {r, s}, see [2].
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Finally, we recall the definition of the nestohedron which realizes the nested complex.
See for instance Figure 1. We denote by (es)s∈S the standard basis of RS. For a building
set B, we denote by RB

+ :=
{

λ ∈ RB ∣∣ λB > 0 for all B ∈ B with |B| ≥ 2
}

.

Definition 1.8 ([10, 6]). For a building set B and a positive vector λ = (λB)B∈B ∈ RB
+, the

nestohedron Nest(B, λ) is the Minkowski sum ∑B∈B λB△B, where △B := conv {eb | b ∈ B}
denotes the face of the standard simplex △S corresponding to B.

Figure 1: A nestohedron whose vertices are labeled by the corresponding maximal
nested sets (left), and a graph associahedron whose vertices are labeled by the corre-
sponding maximal tubings (right). The maximal block or tubing is always omitted.

Theorem 1.9 ([10, 6, 12]). For a building set B and any λ ∈ RB
+, the nested complex N(B) is

isomorphic to the boundary complex of the polar of the nestohedron Nest(B, λ).

Proposition 1.10. For λ ∈ RB
+, the vertex of the nestohedron Nest(B, λ) corresponding to a

maximal nested set N is

v(N , λ) = ∑
s∈S

∑
B∈B, s∈B⊆B(v,N )

λBes,

where B(s,N ) denotes the inclusion minimal block of N containing s.

Proposition 1.11. For λ ∈ RB
+, the nestohedron Nest(B, λ) is given by the equalities gB(x) = 0

for all B ∈ κ(B) and the inequalities gB(x) ≥ 0 for all B ∈ B, where

gB(x) :=
〈

∑
b∈B

eb
∣∣ x

〉
− ∑

B′∈B, B′⊆B
λB′ .

Example 1.12. For a graph G on S, the nestohedra of B(G) are the graph associahedra of G,
introduced in [2]. For instance, the associahedron of the complete graph is a permutahe-
dron, the associahedron of a path graph is an associahedron, and the associahedron of a
cycle graph is a cyclohedron.
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1.2 Vector configurations and oriented matroids

We now recall some aspects of oriented matroids. We only give the precise definition for
those associated to vector configurations and refer to [1] for the general definition.

Definition 1.13. For a finite vector configuration A := (as)s∈S ∈ (Rd)S, we denote by
• D(A) :=

{
δ ∈ RS

∣∣ ∑s∈S δsas = 0
}

the space of linear dependences on A,
• D∗(A) :=

{
( f (as))s∈S∈RS

∣∣ f ∈ (Rd)∗
}

the space of evaluations of linear forms on A.
Note that, D∗(A) and D(A) are orthogonal spaces whose dimensions are the rank rk(A)
and the he corank rk∗(A) := |S| − rk(A) of A respectively.

Notation 1.14. Define σ(S) := {(x+, x−) | x+, x− ⊆ S and x+ ∩ x− = ∅}. The signature
of δ ∈ RS is σ(δ) := ({s ∈ S | δs > 0} , {s ∈ S | δs < 0}) in σ(S). For x = (x+, x−) ∈ σ(S),
we define the support of x by x := x+ ∪ x−, and the opposite of x by −x := (x−, x+).

Definition 1.15. The oriented matroid M(A) of a finite vector configuration A ⊂ Rd is the
combinatorial data given equivalently by

• the vectors V(A) of A, i.e., signatures of linear dependences of A,
• the covectors V∗(A) of A, i.e., signatures of linear evaluations on A,
• the circuits C(A) of A, i.e., support minimal signatures of linear dependences of A,
• the cocircuits C∗(A) of A, i.e., support minimal signatures of linear evaluations

on A.

Example 1.16. Consider a directed graph D with vertex set V and arc set S (loops and
multiple arcs are allowed). Let (bv)v∈V denote the standard basis of RV . The incidence
configuration AD of D has a vector a(u,v) := bu − bv ∈ RV for each arc (u, v) of D. Its
oriented matroid, whose ground set is the set S of arcs of D, is the graphical oriented
matroid M(D) of D. See [9, Prop. 1.1.7 & Chap. 5] and [1, Sect. 1.1].

In this paper, we will consider abstract oriented matroids, which are combinatorial
abstractions for the dependences and evaluations of vector configurations considered in
Definitions 1.13 and 1.15. We rest on [1] to avoid the detailed axioms.

Definition 1.17. An oriented matroid on S is the combinatorial data M given by four
subsets of σ(S), the vectors V(M), covectors V∗(M), circuits C(M) and cocircuits C∗(M),
which satisfy the axioms of [1, Sect. 3].

Definition 1.18. An oriented matroid M is realizable if there exists a vector configuration
A := (as)s∈S ∈ (Rd)S such that V(M) = V(A), V∗(M) = V∗(A), C(M) = C(A),
and C∗(M) = C∗(A) (these four conditions are actually equivalent).

Definition 1.19. An oriented matroid M is acyclic if it has no positive circuit.

Example 1.20. A realizable oriented matroid M(A) is acyclic if and only if A has no pos-
itive dependence, i.e., if and only if A is contained in a positive linear half-space of Rd. A
graphical oriented matroid M(D) is acyclic if and only if D is acyclic (no directed cycle).
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Definition 1.21. Let M be an acyclic oriented matroid. A set F ⊆ S is a face of M if it
is the complement of a non-negative covector, i.e., (S ∖ F,∅) ∈ V∗(M). The Las Vergnas
face lattice F (M) is the poset of faces of M ordered by inclusion.

We conclude with restrictions and contractions in oriented matroids.

Definition 1.22. For any R ⊆ S, define
• the restriction M|R as the oriented matroid on R with circuits {c ∈ C(M) | c ⊆ R},
• the contraction M/R as the oriented matroid on S∖R with vectors {v∖R |v∈V(M)},

where v ∖ R := (v+ ∖ R, v− ∖ R).

Example 1.23. For a vector configuration A := (as)s ∈ S and R ⊆ S,
• M(A)|R = M(A|R) where A|R is the vector subconfiguration (ar)r∈R,
• M(A)/R = M(A/R) where A/R is the vector configuration obtained by projecting

the vectors as with s /∈ R on the space orthogonal to all vectors ar with r ∈ R.
For a directed graph D and a subset R of arcs of D,

• M(D)|R = M(D|R) where D|R is the subgraph of D formed by the arcs in R,
• M(D)/R = M(D/R) where D/R is the contraction of the arcs of R in D.

2 Acyclic nested complexes and acyclonestohedra

2.1 Oriented building sets

Definition 2.1. An oriented building set is a pair (B,M) where B is a building set and M
is an oriented matroid on the same ground set S such that c ∈ B for any c ∈ C(M). We
say that (B,M) is realizable if M is realizable.

Example 2.2. Consider a directed graph D with vertex set V and arc set S. The line graph
of D is the graph L(D) on S with an edge between two arcs of D if and only if they share
an endpoint. The graphical oriented building set of D is the pair (B(L(D)),M(D)). Note
that it is indeed an oriented building set: S is the ground set of both B(L(D)) and MD,
and the circuits in M(D) are cycles in D, hence of L(D), thus belong to B(L(D)).

Lemma 2.3. If (B,M) is an oriented building set on S and R ⊆ S, then both (B|R,M|R)
and (B/R,M/R) are oriented building sets on R and S ∖ R respectively.

Definition 2.4. Given an oriented building set (B,M), a nested set N on B and B ∈ N ,
we consider the oriented buiding set (B,M)B∈N := (BB∈N ,MB∈N ) on SB∈N := B ∖ R
defined by BB∈N := (B|B)/R and MB∈N := (M|B)/R, where R = RB∈N :=

⋃
B′∈N , B′⊊B C.

Example 2.5. Consider the graphical oriented building set of a directed graph D of Exam-
ple 2.2, and a tube t in a tubing T of L(D). The oriented building set (B(L(D)),M(D))t∈T
is the graphical oriented building set of the directed graph obtained as the contraction
in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t.
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2.2 Acyclic nested complexes

Definition 2.6. The acyclic nested complex of an oriented building set (B,M) is the sim-
plicial complex A(B,M) whose faces are N ∖ κ(B) for all nested sets N of B such that
MB∈N is acyclic for every B ∈ N .

Remark 2.7. Observe that:
• For any building set B on S, the nested complex N(B) is the acyclic nested com-

plex A(B, I), where I is the independent (i.e., no circuit) oriented matroid on S.
• If M is not acyclic, then the acyclic nested complex A(B,M) is empty.
• If M contains a circuit c = (c+, c−) with |c−| = 1, then A(B,M) is isomorphic

to A(B|S∖{s},M|S∖{s}).

Example 2.8. From Example 2.2, consider a directed graph D and its graphical oriented
building set (B(L(D)),M(D)). The graphical acyclic nested complex A(B(L(D)),M(D))
is then given by all tubings T on L(D) such that for each tube t ∈ T, the contraction
in the restriction D|t of all arcs contained in some tube s ∈ T with s ⊊ t yields an
acyclic directed graph. Figure 2 illustrates two graphical acyclic nested complexes. Note
that these two directed graphs have the same line graph, but distinct graphical oriented
matroids, and thus distinct graphical acyclic nested complexes.

31
4 2

d b

a cD

1 2

4 3

a

c

d bL(D)

3

1

4

2
d b

a

c

D

1 2

4 3

d b

a

c

L(D)

Figure 2: Two graphical acyclic nested complexes. For each one, we have drawn the
directed graph D, its line graph L(D) with vertices colored black and white according
to the sign of the corresponding arcs in the only circuit of D, and all tubings of L(D)

labeling the faces of the graph associahedron, colored green if acyclic and red if cyclic.
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Remark 2.9. It follows from Remark 2.7 that the graphical acyclic nested complex of D is
• isomorphic to the classical nested complex of the line graph L(D) when D is an

oriented forest (for instance, it is isomorphic to the simplicial permutahedron if D
is a star, and to the simplicial associahedron if D is a path),

• empty if D is cyclic (i.e., has an oriented cycle),
• isomorphic to the graphical acyclic nested complex of the Hasse diagram of the

transitive closure of D if D is acyclic.
Hence, graphical acyclic nested complexes are in fact intrinsically associated to posets.
The graphical case of Examples 2.2 and 2.8 actually motivated Definitions 2.1 and 2.6,
and was inspired from the poset associahedra defined in [8]. The following statement
can serve as definition of poset associahedra, which we omit here for space reason.

Proposition 2.10. The poset associahedron of a finite poset P defined in [8] is isomorphic to the
graphical acyclic nested set of the Hasse diagram of P.

We note that affine poset associahedra of [8] are also acyclic nested complexes of
certain specific oriented building sets, although their definition is slightly more intricate.

2.3 Stellar subdivisions

We now show that the acyclic nested complex of any oriented building set (realizable
or not) is always the face lattice of an oriented matroid, hence a topological sphere [1,
Thm. 4.3.5]. The main tool here is that of stellar subdivisions.

Definition 2.11. For a cell σ in a regular cell complex ∆, the stellar subdivision sd(∆, σ) is
the cell complex obtained by gluing the cone s ∗ (star(σ, ∆)∖ star(σ, ∆)) to ∆ ∖ star(σ, ∆)
along star(σ, ∆)∖ star(σ, ∆), where s is a new vertex, and star(σ, ∆) := {τ ∈ ∆ | σ ⊆ τ}
is the star of σ and star(σ, ∆) := {ρ ∈ ∆ | ρ ⊆ τ for some τ ∈ star(σ, ∆)} is its closure.

Proposition 2.12 ([1, Prop. 9.2.3 & Sect. 7.2]). Let M be an acyclic oriented matroid with
ground set S, and F be one of its proper faces. Then the face lattice of the stellar subdivi-
sion sd(∆(M), F) is isomorphic to the face lattice of an oriented matroid on S ∪ {F} (this
oriented matroid is not unique, but its face lattice is). Moreover, this oriented matroid can be
chosen to be realizable when M is realizable.

Theorem 2.13. For any oriented building set (B,M) (realizable or not), the acyclic nested
complex A(B,M) is the face lattice of an oriented matroid, obtained by stellar subdivisions of M.

Corollary 2.14. For any realizable oriented building set (B,M(A)), the acyclic nested complex
A(B,M(A)) is isomorphic to the boundary complex of a convex polytope, obtained by stellar
subdivisions of the positive tope of A.

Example 2.15. In the graphical situation discussed in Examples 2.2 and 2.8, Remark 2.9,
and Proposition 2.10, we obtain that the poset associahedron of a poset P can be realized
as a stellar subdivision of the order polytope of P, thus recovering the construction of [8].
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2.4 Acyclonestohedra

We now consider a realizable oriented building set (B,M(A)). From Corollary 2.14, we
know that the acyclic nested complex A(B,M(A)) is realizable as a polytope by stellar
subdivisions of the positive tope of A. However, this non-explicit approach does not
allow any control on the coordinates of the realizations. In this section, we obtain explicit
polytopal realizations with controlled integer coordinates, using sections of nestohedra.

Definition 2.16. As each c ∈ C(A) is the signature of a unique (up to rescaling) linear de-
pendence δ ∈ D(A), we define rc := max δ ̸=0/ min δ ̸=0 where δ ̸=0 := {|δs| | s ∈ S}∖ {0}
and R := |B| · maxc∈C(A) rc. We then define ρ := (ρB)B∈B ∈ RB

+ by ρB := 0 if |B| = 1
and ρB := R|B| if |B| ≥ 2.

We use these coefficients ρ ∈ RB
+ to define two polytopes Acyc(B, A) and Acyc(B, A)

that we both call acyclonestohedra. While these two polytopes are affinely equivalent, the
first is more natural for our construction, but the second has the advantage to live in the
right dimensional space.

Definition 2.17. The acyclonestohedron Acyc(B, A) is the polytope in RS defined as the
intersection of the nestohedron Nest(B, ρ) with the evaluation space D∗(A) of A.

Definition 2.18. The acyclonestohedron Acyc(B, A) is the polytope of RA defined by the
equalities gB(y) = 0 for all B ∈ κ(B) and the inequalities gB(y) ≥ 0 for all B ∈ B, where

gB(y) :=
〈

∑
b∈B

ab
∣∣ y

〉
− ∑

B′∈B, B′⊆B
ρB′ .

Proposition 2.19. The acyclonestohedron Acyc(B, A) ⊂ RS of Definition 2.17 and the acyclon-
estohedron Acyc(B, A) ⊂ RA of Definition 2.18 are affinely equivalent.

Theorem 2.20. For any realizable oriented building set (B,M(A)), the acyclic nested com-
plex A(B,M(A)) is isomorphic to the boundary complex of the polar of the acyclonestohe-
dron Acyc(B, A) (or equivalently of Acyc(B, A)).

Remark 2.21. Following Remark 2.7, note that if A is linearly independent, then its eval-
uation space D∗(A) is RS, and the acyclonestohedra Acyc(B, A) and Acyc(B, A) both
coincide with the classical nestohedron Nest(B, ρ). For instance, the acyclonestohe-
dron of the graphical oriented building set of an oriented forest D is the graph asso-
ciahedron of L(D) (for instance, a permutahedron if D is a star, and an associahedron
if D is a path).

Example 2.22. Specializing Definitions 2.17 and 2.18 and Theorem 2.20 to the graphical
situation discussed in Examples 2.2 and 2.8, Remark 2.9, and Proposition 2.10, we obtain
that the poset associahedron of a poset P with Hasse diagram D is explicitly realized as
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Figure 3: The graphical acyclonestohedra (green polygons) realizing the graphical
acyclic nested complexes of Figure 2, obtained as the section of the line graph of L(D)

by the evaluation space of the graphical oriented matroid of D.

• the section of a graph associahedron of the line graph of D with the linear hyper-
planes normal to 1c+ − 1c− for all circuits c = (c+, c−) of D, see Figure 3,

• the polytope in RP defined by the equality gP(y) = 0 and the inequalities gt(y) ≥ 0
for all t ∈ B(P), where

gt(y) :=
〈

∑
p,q∈t
p≺·q

bp − bq
∣∣ y

〉
− ∑

t′∈B(P)
t′⊆t

|B(P)||t|.

This answers an open question of [8]. During the completion of this paper, we became
aware that this question was independently solved in [11]. The approach of [11] is quite
different but leads essentially to the same realization of poset associahedra. We actually
want to acknowledge that we originally only worked with the acyclonestohedron of
Definition 2.17, and that the affinely equivalent acyclonestohedron of Definition 2.18
was motivated by the approach of [11].

Remark 2.23. To conclude this section, we want to give a vague idea of the proof of
Theorem 2.20. As illustrated in Figures 2 and 3, the main point is that our choice of
coefficients ρ guaranties that a face of Nest(B, ρ) intersects the evaluation space D∗(A)
if and only if the corresponding nested set on B is acyclic for M(A). Note that the coef-
ficients could sometimes be chosen smaller, our exponential choice is just a convenient
hammer to kill all small contributions. For instance, for graphical oriented building sets,
the coefficient ρt of a tube t can in fact be chosen of order 4|t|.
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3 Nested complexes of building sets of the face lattice

Although less popular in the combinatorics community, the original definition of [4] for
building sets and their nested complexes depends upon an underlying lattice.

Definition 3.1 ([4, 6]). A subset B of a finite lattice L is a L-building set if the lower
interval of any element x ∈ L is the direct product of the lower intervals of the maximal
elements of B below x. We denote by κ(B) := max(B) the set of B-connected components.

Definition 3.2 ([4, 6]). Let B be an L-building set. An L-nested set N on B is a subset
of B containing κ(B) and such that for any k ≥ 2 pairwise incomparable elements
B1, . . . , Bk ∈ N , the join B1 ∨ · · · ∨ Bk does not belong to B. The L-nested complex of B is
the simplicial complex NL(B) whose faces are N ∖ κ(B) for all L-nested sets N on B.

Example 3.3. If L is the boolean lattice on S, then the L-building sets are the building
sets on S of Definition 1.1 and the L-nested sets are the nested sets of Definition 1.4.

We will use these definitions over the Las Vergnas face lattice F (M) of the oriented
matroid M, see Definition 1.21. We first select the facial part of an oriented building set.

Definition 3.4. The facial building set B̂ of an oriented building set (B,M) is the set of
blocks B ∈ B that are also faces of M.

Theorem 3.5. The facial building sets of M coincide with the F (M)-building sets.

Definition 3.6. The facial nested complex NF (M)(B̂) is the F (M)-nested complex of B̂.

Theorem 3.7. Let B̂ be the facial building set of an oriented building set (B,M). Then the
acyclic nested complex A(B,M) and the facial nested complex NF (M)(B̂) coincide.

Example 3.8. If M is independent (i.e., no circuit), then its positive tope is a simplex, its
Las Vergnas face lattice is boolean, so that we are in the classical situation of Example 3.3.

We conclude with a few remarks in light of Theorems 3.5 and 3.7. First, we observe
that this interpretation actually recovers the results of Section 2.3. Namely,

• [5, Cor. 4.3] proved that the nested complex of a finite atomic meet-semilattice is
homeomorphic to its order complex. Since the face lattices of oriented matroids en-
code face lattices of regular cell decompositions of spheres [1, Thm. 4.3.5], their or-
der complexes are the face lattices of the barycentric subdivisions of these spheres.

• The stellar subdivisions of Theorem 2.13 are actually oriented matroid realizations
of the combinatorial blowups of [4, Thm. 3.4] on face lattices of oriented matroids.

In turn, our acyclonestohedra of Section 2.4 provide explicit polytopal realizations with
integer coordinates for the F (M)-nested complexes over realizable matroids. To sum up:

Corollary 3.9. AnyF (M)-nested complex of anyF (M)-building set over the face lattice F (M)
of an acyclic oriented matroid M is the face lattice of an oriented matroid obtained by stellar sub-
divisions of the positive tope of M. When M is realizable, it can be realized as a polytope either
by realizing these stellar subdivisions polytopaly, or as the polar of a section of a nestohedron.
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4 Compactifications

Galashin’s main motivation for defining poset associahedra was that they model com-
pactifications of the space of order preserving maps P → R, which can be identified
with the interior of an order polytope. In fact, the connection above reveals that all acy-
clonestohedra are associated to nice compactifications of interiors of polytopes, via [7].

Theorem 4.1 ([7]). Consider a realizable oriented building set (B,M(A)), and let P be the
polytope associated to the positive tope. Then there is a compactification PB of the interior of P
that is a stratified C∞ manifold with corners such that

(i) except for the open dense stratum, all the strata lie in the boundary,
(ii) the codimension 1 strata are in correspondence with the facial blocs of B̂,

(iii) the intersection of the closures of the strata indexed by a subset N ⊆ B̂ is non empty if and
only if N is a F (M)-nested set,

(iv) the strata of PB can be indexed by the faces of the acyclic nested complex A(B,M(A)).
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