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Abstract. In 2019, Ceballos and Pons introduced the s-weak order on s-decreasing
trees, for any weak composition s. They proved its lattice structure and conjectured
that it could be realized as the 1-skeleton of a polyhedral subdivision of a zonotope of
dimension n − 1. We answer their conjecture in the case where s is a (strict) composi-
tion by providing three geometric realizations of the s-permutahedron. The first one
is the dual graph of a triangulation of a flow polytope of high dimension. The second,
obtained using the Cayley trick, is the dual graph of a fine mixed subdivision of a sum
of hypercubes that has the conjectured dimension. The third, obtained using tropical
geometry, is the 1-skeleton of a polyhedral complex for which we can provide explicit
coordinates of the vertices and whose support is a permutahedron as conjectured.

Keywords: s-decreasing tree, s-weak order, flow polytope, geometric realization, poly-
hedral subdivision, Cayley trick, tropical hypersurface.

1 Introduction

In [3, 4, 5], Ceballos and Pons introduced and studied the s-weak order, a lattice structure
on s-decreasing trees parameterized by a weak composition s = (s1, . . . , sn). It general-
izes the classical weak order on permutations of [n] := {1, . . . , n}, that is recovered
with s = (1, . . . , 1). Figure 1 shows the Hasse diagram of the (1, 2, 1)-weak order.

In the same way that the weak order on permutations is related to the Tamari order
on Catalan objects, the s-weak order is related to the s-Tamari lattice which has received
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a lot of attention under various guises. It was first introduced by Préville–Ratelle and
Viennot [14] on grid paths weakly above the path ν = NEsn . . . NEs1 . The Hasse dia-
gram of the s-Tamari lattice was realized as the edge graph of a polyhedral complex by
Ceballos et al. [2]. This complex is dual to a subdivision of a subpolytope of a product
of simplices called UI,J and to a fine mixed subdivision of a generalized permutahe-
dron. Bell et al. [1] showed that the s-Tamari lattice can also be realized as the graph
dual to a triangulation of a flow polytope, by using a method of Danilov, Karzanov, and
Koshevoy [6] for obtaining regular unimodular triangulations.
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Figure 1: The s-permutahedron for s = (1, 2, 1). The vertices are indexed by the
following combinatorial objects: s-decreasing trees, Stirling s-permutations, maximal
cliques of routes (omitting the all bumps or dips routes), and integer flows (in red on
the topmost graph). The edges are oriented according to the s-weak order.

As notation for the rest of this article, let s = (s1, . . . , sn) be a composition (i.e. a vec-
tor with positive integer entries). An s-decreasing tree is a planar rooted tree on n internal
vertices (called nodes), labeled by [n], such that the node labeled i has si + 1 children and
any descendant j of i satisfies j < i. We denote by Ti

0, . . . , Ti
si

the subtrees of node i from
left to right. The collection of s-decreasing trees is in bijection with 121-avoiding permu-
tations of the word 1s12s2 . . . nsn , called Stirling s-permutations. The bijection consists of
reading labels along the in-order traversal of s-decreasing trees.

Let T be an s-decreasing tree and 1 ≤ x < y ≤ n. We denote by inv(T) the multi-set
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of tree-inversions of T formed by pairs (y, x) with multiplicity (also called cardinality)

#(y, x)T =


0, if x is left of y,
i, if x ∈ Ty

i ,
sy, if x is right of y.

An ascent on an s-decreasing tree T is a pair (a, c) satisfying

• a ∈ Tc
i for some 0 ≤ i < sc,

• if a < b < c and a ∈ Tb
i , then i = sb, and

• if sa > 0, then Ta
sa consists of only one leaf.

In [3] Ceballos and Pons introduced the s-weak order ⊴ on s-decreasing trees as fol-
lows. For s-decreasing trees R and T, we say that R ⊴ T if inv(R) ⊆ inv(T).

If A is a subset of ascents of T, we denote by T + A the s-decreasing tree whose
inversion set is the smallest one that contains inv(T)∪ A. Ceballos and Pons conjectured
that the combinatorial complex whose faces are the intervals [T, T + A], which they call
the s-permutahedron Perms, has the following geometric structure.

Conjecture 1.1 ([3, Conj. 1], [5, Conj. 3.1.2]). Let s = (s1, . . . , sn) be a weak composition. The
s-permutahedron can be realized as a polyhedral subdivision of a polytope which is combinatorially
isomorphic to the zonotope ∑1≤i<j≤n sj∆ij, where (ei)1≤i≤n is the canonical basis of Rn and ∆ij
is the segment conv{ei, ej}.

2 Three geometric realizations of the s-permutahedron

In the following subsections we provide background on the techniques we use and
present our three realizations of the s-permutahedron, finally answering Conjecture 1.1
when s is a composition. The proofs are in the long version of this extended abstract [8].

Examples of the third realization are available on this webpage1 and code can be
found on this webpage2. Figure 1 shows the (1, 2, 1)-permutahedron together with the
corresponding combinatorial objects used throughout this work.

2.1 Triangulations of flow polytopes

Let G = (V, E) be a loopless connected oriented multigraph on vertices V = {v0, . . . , vn}
with edges oriented from vi to vj if i < j such that v0 (resp. vn) is the only source (resp.
sink) of G. For any vertex vi we denote by Ii its set of incoming edges and by Oi its set
of outgoing edges.

1https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
2https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations

https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations
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Given a vector a = (a0, a1 . . . , an−1, an) such that ∑i ai = 0, a flow of G with netflow a
is a vector ( fe)e∈E ∈ (R≥0)

E such that ∑e∈Ii
fe + ai = ∑e∈Oi

fe for all i ∈ [0, n]. A flow
( fe)e∈E of G is called an integer flow if all fe are integers. We denote by FZ

G (a) the set of
integer flows of G with netflow a. A route of G is a path from v0 to vn i.e. a sequence
of edges ((v0, vk1), (vk1 , vk2), . . . , (vkl

, vn)), with 0 < k1 < k2 < . . . < kl < n. The flow
polytope of G is

FG(a) =
{
( fe)e∈E flow of G with netflow a

}
⊂ RE.

It is a polytope of dimension |E| − |V| + 1. When it is not specified, the netflow is
assumed to be a = (1, 0, . . . , 0,−1). In this case, the vertices of FG correspond to the
routes of G.

Flow polytopes admit several nice subdivisions that can be understood via certain
combinatorial properties of the graph G with respect to a framing. Let P be a route of G
that contains vertices vi and vj. We denote by Pvi the prefix of P that ends at vi and viP
the suffix of P that starts at vi. A framing ⪯ of G is a choice of linear orders ⪯Ii and ⪯Oi

on the sets of incoming and outgoing edges for each inner vertex vi. This induces a total
order on the set of partial routes from v0 to vi (resp. from vi to vn) by taking Pvi ⪯ Qvi
if eP ⪯Ij eQ where vj is the first vertex after which the two partial routes coincide, and
eP, eQ are the edges of P and Q that end at vj. The definition of viP ⪯ viQ is similar
using ⪯Oj . When G is endowed with such a framing ⪯, we say that G is framed. See
Figure 2a for an example.
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Figure 2: (a) The graph oru(s) for s = (2, 3, 2, 2) with framing in red. (b) The graph
oru(s) for s = (1, 2, 1) with edge labels.

We say that routes P and Q of G are in conflict at a common path of inner vertices
[vi, vj] if the initial parts Pvi and Qvi are ordered differently than the final parts vjP, vjQ.
Otherwise we say that P and Q are coherent at [vi, vj]. We say that P and Q are coherent if
they are coherent at each common inner path.

Defining the sets of mutually coherent routes as the cliques of (G,⪯), we denote by
MaxCliques(G,⪯) the set of maximal collections of cliques under inclusion. Given a set
of routes C let ∆C be the convex hull of the vertices of FG corresponding to the routes
in C.

Theorem 2.1 ([6, Sec. 1]). The simplices {∆C |C ∈ MaxCliques(G,⪯)} are the maximal cells
of a regular triangulation of FG.
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The triangulation obtained this way is called the DKK triangulation of FG with respect
to the framing ⪯ and we denote it by TriangDKK(G,⪯).

Another scheme to subdivide flow polytopes is a recursive procedure by Postnikov
and Stanley (see [15]) based on subdividing FG into two polytopes that are integrally
equivalent to other flow polytopes. They used this to show that the volume of FG
equals the number of integer flows in FZ

G (d), where d = (0, d1, . . . , dn−1,−∑i di) and
di = indegG(vi) − 1. This recursive subdivision can be made compatible with DKK
triangulations in what are called framed Postnikov–Stanley triangulations [13]. This allows
for the following explicit bijection between the maximal cliques and the integer flows.

Theorem 2.2 ([13, Thm 7.8]). Given a framed graph (G,⪯), the map

ΩG,⪯ :

{
MaxCliques(G,⪯) → FZ

G (d)
C 7→ (nC(e)− 1)e∈E(G)

,

where nC(vi, vj) is the number of times the edge (vi, vj) appears in the prefixes {Pvj | P ∈ C},
is a bijection between the maximal cliques of (G,⪯) and the integer flows in FZ

G (d).

We define a framed graph associated to the composition s such that the corresponding
DKK triangulation encodes the combinatorial structure of the s-weak order.

Definition 2.3. Let s = (s1, . . . , sn) be a composition, and for convenience of notation set
sn+1 = 2. The framed graph (oru(s),⪯) consists of vertices {v−1, v0, . . . , vn} and

• for i ∈ [n + 1], there are si − 1 source-edges (v−1, vn+1−i) labeled ei
1, . . . , ei

si−1,
• for i ∈ [n], there are two edges (vn+1−i−1, vn+1−i) called bump and dip labeled ei

0
and ei

si
,

• the incoming edges of vn+1−i are ordered ei
j ≺In+1−i ei

k for 0 ≤ j < k ≤ si,

• the outgoing edges of vn+1−i are ordered ei−1
0 ≺On+1−i ei−1

si−1
.

We denote by oru(s) the s-oruga graph and orun the oruga graph of length n which is the
induced subgraph of oru(s) with vertices {v0, . . . , vn}. Figure 2a and Figure 2b show
examples of our construction. The corresponding flow polytope Foru(s) has dimension
|s| := ∑n

i=1 si.

We describe the routes of oru(s) intuitively as follows. Every route of oru(s) starts
from v−1, lands in a vertex vn+1−k via a source-edge labeled ek

t and follows k − 1 edges
that are either bumps or dips denoted by a 01-vector δ. Formally, for k ∈ [n + 1],
t ∈ [sk − 1], and δ = (δ1, . . . , δk−1) ∈ {0, 1}k−1, we denote by R(k, t, δ) the sequence
of edges (ek

tk
, ek−1

tk−1
, . . . , e1

t1
) where tk = t and tj = δjsj for all j ∈ [k − 1].

Theorem 2.4. The s-decreasing trees are in bijection with the maximal simplices of the DKK
triangulation of Foru(s) with respect to the framing ⪯.
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Proof. We describe a bijection between s-decreasing trees and integer flows of oru(s) with
netflow d = (0, sn, sn−1, . . . , s1,−∑n

i=1 si). The statement then follows from Theorems 2.2
and 2.1.

Given an integer d-flow ( fe)e of oru(s) (note that it is enough to know the values
fei

0
for i ∈ [n − 1] to determine the entire integer flow), we build an s-decreasing tree

inductively as follows. Start with the tree given by the node n and sn + 1 leaves. At step
i for i ∈ [n − 1], we have a partial s-decreasing tree with labeled nodes n to n + 1 − i,
and 1 + ∑n

k=n+1−i sk leaves that we momentarily label from 0 to ∑n
k=n+1−i sk along the

counterclockwise traversal of the partial tree. Attach the next node n − i, with sn−i + 1
pending leaves, to the leaf of the partial tree labeled fen−i

0
. This procedure produces

decreasing trees with the correct number of children at each node. Hence, after the n-
th step we obtain an s-decreasing tree. Reciprocally, any s-decreasing tree can be built
iteratively in this way, so it is associated to a choice of integers fei

0
∈ [0, ∑n

k=n+1−i sk] for
all i ∈ [n − 1].

We can now explicitly describe the DKK maximal cliques of coherent routes in terms
of Stirling s-permutations.

Definition 2.5. Let s be a composition, and u a (possibly empty) prefix of a Stirling
s-permutation. For all a ∈ [n], we denote by ta the number of occurrences of a in u,
and we denote by c the smallest value in [n] such that 0 < tc < sc. If there is no
such value, we set c = n + 1 and tn+1 = 1. The definition of c implies that for all
a < c, either ta = 0 or ta = sa. Then we define R[u] to be the route (ec

tc
, ec−1

tc−1
, . . . , e1

t1
).

For example, for the subword u = 3372545 of w = 33725455716 we have that c = 5,
t5 = 2, t4 = 1, t3 = 2, t2 = 1, t1 = 0 so R[u] = (e5

2, e4
1, e3

2, e2
1, e1

0) = R(5, 2, (1, 1, 1, 0)).
Let w be a Stirling s-permutation. For i ∈ [|s|], we denote by wi the i-th letter of w,

and for i ∈ [0, |s|] we denote by w[i] the prefix of w of length i, with w[0] := ∅. Let ∆w be
the set of routes {R[w[i]] | i ∈ [0, |s|]} and identify it with the simplex whose vertices are
the indicator vectors of these routes.

Note that each maximal clique always contains the routes R[w[0]] = (en+1
1 , en

0 , . . . , e1
0) =

R(n + 1, 1, (0)n) and R[w[|s|]] = (en+1
1 , en

sn , . . . , e1
s1
) = R(n + 1, 1, (1)n). See Figure 3 for the

example of ∆w corresponding to the Stirling (1, 2, 1)-permutation w = 3221.

Lemma 2.6 ([8, Thm. 3.9]). The maximal simplices of TriangDKK(oru(s),⪯) are exactly the
simplices ∆w where w ranges over all Stirling s-permutations.

The next theorem shows that the triangulation TriangDKK(oru(s),⪯) encodes the
combinatorics of the s-permutahedron.

Theorem 2.7 ([8, Thm. 3.18]). The face poset of the s-permutahedron Perms is isomorphic (as a
poset) to the set of interior simplices of TriangDKK(oru(s),⪯) ordered by reverse inclusion.
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Figure 1 shows the graph dual to the DKK triangulation for s = (1, 2, 1), which
corresponds to the Hasse diagram of the (1, 2, 1)-weak order.

R[w[0]] = , R[w[1]] = , R[w[2]] = ,

R[w[3]] = , R[w[4]] = .

Figure 3: The maximal clique ∆w = {R[w[0]], . . . , R[w[|s|]]} corresponding to the Stirling
(1, 2, 1)-permutation w = 3221.

2.2 Cayley trick and mixed subdivisions

The Cayley trick allows us to give another geometric realization of the s-permutahedron
as the dual of a fine mixed subdivision of an (n − 1)-dimensional polytope. This dimen-
sion coincides with the dimension of the polyhedral complex conjectured in 1.1.

For more details on the Cayley trick, see [7, Sec. 9.2] for a general introduction
and [12, Sec. 7] for its application on flow polytopes. We slightly adapt the work of
Mészáros–Morales for our special case of Foru(s).

Definition 2.8. For the polytopes P1, . . . , Pk in Rn their Minkowski sum is the polytope
P1 + . . . + Pk := {∑ xi | xi ∈ Pi}. For the Minkowski sum of k copies of a polytope P we
simply write kP. A Minkowski cell is a sum ∑ Bi where Bi is the convex hull of a subset
of vertices of Pi. A mixed subdivision of a Minkowski sum is a subdivision of their convex
hull such that all the cells of the subdivision are Minkowski cells (see [7, Def. 9.2.5]). A
fine mixed subdivision is a minimal mixed subdivision via containment of its summands.

Let e1, . . . , ek be a basis of Rk. We call the polytope C(P1, . . . , Pk) := conv({e1} ×
P1, . . . , {ek} × Pk) ⊂ Rk × Rn the Cayley embedding of P1, . . . , Pk.

Proposition 2.9 (The Cayley trick [9]). Let P1, . . . , Pk be polytopes in Rn. The polytopal
subdivisions (resp. triangulations) of C(P1, . . . , Pk) are in bijection with the mixed subdivisions
(resp. fine mixed subdivisions) of P1 + . . . + Pk.

To apply the Cayley trick to our triangulation TriangDKK(oru(s),⪯) of the flow poly-
tope Foru(s), we need to describe it as the Cayley embedding of some lower-dimensional
polytopes. Recall that Foru(s) lives in the space of edges of the graph oru(s). We pa-
rameterize this space as Rp × R2n, where p = 1 + ∑n

i=1(si − 1) and Rp corresponds to
the space of source-edges and R2n to the space of bumps and dips (edges of orun, see
Definition 2.3). Moreover, for all i ∈ [n] and for any point in Foru(s), (i.e. a flow of
oru(s)), we have that the sum of its coordinates along edges ei

0 and ei
si

is determined by
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the coordinates along the source-edges ek
t for k ∈ [i + 1, n + 1], t ∈ [sk − 1]. Thus, Foru(s)

is affinely equivalent to its projection on the space Rp ×Rn where Rn corresponds to the
space of edges ei

0 for i ∈ [n].
With this parametrization, the indicator vector of the route of oru(s) denoted R(k, t, δ)

(as in the discussion after Def. 2.3) with k ∈ [n + 1], t ∈ [sk − 1] and δ ∈ {0, 1}k−1 is

ek
t × ∑

i∈[k−1], δi=0
ei

0.

Thus, denoting by □k−1 these (k − 1)-dimensional hypercubes with the set of vertices
{0, 1}k−1 × 0n−k+1 embedded in Rn, we see that Foru(s) is the Cayley embedding of □n
and □k−1 repeated sk − 1 times for k ∈ [n]. We denote by Subdiv□(s) the fine mixed
subdivision of the Minkowski sum of hypercubes □n + ∑n

i=1(si − 1)□i−1 ⊆ Rn obtained

by intersecting the triangulation TriangDKK(oru(s),⪯) with the subspace
{

1
p

}p
× Rn.

The following theorem follows directly from the Cayley trick (Proposition 2.9), and
the isomorphism between the face poset of Perms and the interior simplices of the DKK
triangulation given in Theorem 2.7.

Theorem 2.10 ([8, Thm. 4.3]). The face poset of the s-permutahedron Perms is isomorphic to
the set of interior cells of Subdiv□(s) ordered by reverse inclusion. In particular, the s-decreasing
trees are in bijection with the maximal cells of Subdiv□(s).
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Figure 4: (a) Summands of the Minkowski cell corresponding to w = 3221 together
with their corresponding routes in ∆w. (b) Mixed subdivision of 2□2 +□1 correspond-
ing dually to the (1, 2, 1)-permutahedron. The cells are numbered according to Fig-
ure 1. The highlighted cell in blue corresponds to w = 3221 as obtained in Figure 4a.

Remark 2.11. We can use a different parameterization of the space where Foru(s) lives
by considering the cube □n as the Cayley embedding of two hypercubes □n−1, or
equivalently intersect Rn with the hyperplane xn = 1

2 . This allows us to lower the
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dimension and obtain a fine mixed subdivision of the Minkowski sum of hypercubes
(sn + 1)□n−1 + ∑n−1

i=1 (si − 1)□i−1. We use this representation in our figures.

Figure 4a shows the mixed cell corresponding to the Stirling (1, 2, 1)-permutation
w = 3221, obtained from the clique ∆w with the Cayley trick. Figure 4b shows the
entire mixed subdivision for the case s = (1, 2, 1). Both figures are represented in the
coordinate system (e2

0, e1
0).

2.3 Intersection of tropical hypersurfaces

In this section, we explain how to dualize our previous realizations in order to obtain
our desired polytopal realization and fully answer the conjecture for strict compositions.
Tropical geometry offers a convenient setting to dualize regular polyhedral subdivisions
that interacts nicely with the Cayley trick.

This section is based on the work of Joswig in [10] and [11, Chap. 1]. Let A =
{a1, . . . , am} be a point configuration in Rd with integer coordinates, and S a subdivision
of A. The subdivision S is said to be regular if there is a function h : [m] → R, i 7→ hi

such that the faces of S are the images of the lower faces of the lift of A (the polytope
with vertices (ai, hi) ∈ Rd+1 for i ∈ [m]) by the projection that omits the last coordinate.
In this case, the function h is called an admissible height function for S .

Such a point configuration together with a height function h is associated to the tropi-
cal polynomial F(x) =

⊕
i∈[m] hi ⊙ xai

= min
{

hi + ⟨ai, x⟩ | i ∈ [m]
}

in the min-plus algebra
where x ∈ Rd and ⟨·, ·⟩ is the usual scalar product in Rd. The tropical hypersurface defined
by F is T (F) :=

{
x ∈ Rd | the minimum of F(x) is attained at least twice

}
(see examples

on Figure 5). This tropical hypersurface is the image of the codimension-2-skeleton of
the dome D(F) =

{
(x, y) ∈ Rd+1 | x ∈ Rd, y ∈ R, y ≤ F(x)

}
under the orthogonal pro-

jection that omits the last coordinate. The cells of T (F) are the projections of the faces of
D(F) (here we include the regions of Rd delimited by T (F) as its d-dimensional cells).
We say that T (F) is the tropical dual of the subdivision S with admissible function h
since we have the following theorem.

Theorem 2.12 ([11, Thm. 1.13]). There is a bijection between the k-dimensional cells of S and
the (d − k)-dimensional cells of T (F) that reverses the inclusion order.

We showed in [8, Lem. 5.2] that this bijection restricts to a bijection between the
interior cells of S and the bounded cells of T (F).

In the case where A is a Cayley embedding, Joswig explains in [11, Cor. 4.9] how
the Cayley trick allows us to describe the tropical dual of a regular mixed subdivision
with an arrangement of tropical hypersurfaces. We consider A given by the vertices of
the Cayley embedding C(P1, . . . , Pk), with Pj = conv(aj,1, . . . , aj,mj) being a polytope in
Rd with integer coordinate vertices, and consider a regular subdivision S given by the
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height h = (h1,1, . . . , h1,m1 , . . . , hk,mk) ∈ R[m1]×...×[mk]. After the Cayley trick we obtain the
subdivision S̃ of the point configuration Ã given by the points ∑k

j=1 aj,ij for (i1, . . . , ik) ∈
[m1]× . . . × [mk] with height h(i1,...,ik) = ∑k

j=1 hj,ij .

Theorem 2.13 ([11, Cor. 4.9]). The tropical dual of the mixed subdivision S̃ obtained after apply-
ing the Cayley trick to S is the polyhedral complex of cells induced by the arrangement of tropical

hypersurfaces
{
T (Fj) | j ∈ [m]

}
where Fj is the tropical polynomial Fj(x) =

⊕
ij∈[mj]

hj,ij ⊙ xaj,ij .

For example, the arrangement on Figure 5 is dual to the mixed subdivision depicted
on Figure 4b.

0

1

2

4

5

3

0 1 2 3 4 5 6 7 8

F 3
1 = 2⊕ (−1� x)⊕ y ⊕ (−6� x� y)

F 3
0 = 1⊕ x⊕ y ⊕ (−4� x� y)

F 2
1 = 3⊕ y

6

Figure 5: Arrangement of three tropical hypersurfaces, associated to the tropical poly-
nomials on the right. The bounded cells of this arrangement give a realization of the
(1, 2, 1)-permutahedron.

Danilov et al. provided explicit constructions of admissible height functions for the
DKK triangulation ([6, Lem. 2 & 3]) that we can adapt to oru(s). We refined their results
in [8, Lem. 5.5] to prove that the following height function is admissible.

Lemma 2.14 ([8, Lem. 5.6 and Prop. 5.7]). Let s be a composition and 0 < ε < 1
n(1+∑n

j=2(2sj+1)) .

Consider hε to be the function that associates to a route R := R(k, tk, δ) of oru(s) the quan-
tity hε(R) = −∑k≥c>a≥1 εc−a(tc + δa)2, where tc = 0 if δc = 0 or tc = sc if δc = 1, for all
c ∈ [k − 1]. Then hε is an admissible height function for TriangDKK(oru(s),⪯).

Since we defined in Subsection 2.2 the mixed subdivision Subdiv□(s) from the regular
triangulation TriangDKK(oru(s),⪯) via the Cayley trick, the following theorem directly
follows from Theorem 2.13.

Theorem 2.15 ([8, Thm. 5.8]). The tropical dual of Subdiv□(s) is the polyhedral complex in-
duced by the arrangement of hypersurfaces Hs(h) :=

{
T (Fk

t ) | k ∈ [2, n + 1], t ∈ [sk − 1]
}

,
where h is an admissible height function for TriangDKK(oru(s),⪯) and

Fk
t (x) =

⊕
δ∈{0,1}k−1

h(R(k, t, δ))⊙ xδ = min

{
h(R(k, t, δ)) + ∑

i∈[k−1]
δixi | δ ∈ {0, 1}k−1

}
.
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Definition 2.16. We denote by Perms(h) the polyhedral complex of bounded cells in-
duced by the arrangement Hs(h).

Theorem 2.17 ([8, Thm. 5.10]). The face poset of the geometric polyhedral complex Perms(h) is
isomorphic to the face poset of the combinatorial s-permutahedron Perms.

Figure 6 shows some examples of such realizations of the s-permutahedron.

Figure 6: The (1, 1, 1, 2)-permutahedron (left) and the (1, 2, 2, 2)-permutahedron (right)
via their tropical realization.

Moreover, we can describe the explicit coordinates of the vertices of Perms(h). For
a Stirling s-permutation w, a ∈ [n] and t ∈ [sa], we denote i(at) the length of the prefix
of w that precedes the t-th occurrence of a. As explained in the argument leading to
Lemma 2.6, this prefix is associated to the route R[w[i(at)]] in the clique ∆w.

Theorem 2.18 ([8, Thm. 5.11]). The vertex v(w) = (v(w)a)a∈[n] of Perms(h) associated to a

Stirling s-permutation w has coordinates v(w)a = ∑sa
t=1

(
h(R[w[i(at)]])− h(R[w[i(at)+1]])

)
.

With these explicit coordinates, we obtain the directions of the edges of Perms(h) and
show that its support, i.e. the union of faces of Perms(h), is a polytope combinatorially
isomorphic to the (n − 1)-dimensional permutahedron. This completely answers Con-
jecture 1.1 in the case where s is a composition, as then the zonotope ∑1≤i<j≤n sj[ei, ej]
is combinatorially isomorphic to the (n − 1)-dimensional permutahedron.
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