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Abstract. The amplituhedron AZ
n,k,m is the image of the positive Grassmannian Gr≥0

k,n

under the map Z̃ : Gr≥0
k,n → Grk,k+m induced by a positive linear map Z : Rn → Rk+m.

It was originally introduced in physics in order to give a geometric interpretation of
scattering amplitudes. More specifically, one can compute scattering amplitudes in
N = 4 SYM by ‘tiling’ the m = 4 amplituhedron AZ

n,k,4 — that is, decomposing AZ
n,k,4

into ‘tiles’ (closures of images of 4k-dimensional cells of Gr≥0
k,n on which Z̃ is injective).

In this article we deepen both our understanding of tiles and tilings of the m = 4
amplituhedron and the connection with cluster algebras. Firstly, we prove the cluster
adjacency conjecture for BCFW tiles of AZ

n,k,4, which says that facets of tiles are cut out by
collections of compatible cluster variables for Gr4,n. Secondly, we describe each BCFW
tile as the semialgebraic set in Grk,k+4 where certain cluster variables have particular
signs. Finally, we prove the BCFW tiling conjecture, which says that any way of iterating
the BCFW recurrence gives rise to a tiling of the amplituhedron AZ

n,k,4. Along the way,
we introduce a method to construct seeds for Gr4,n comprised of high-degree cluster
variables, which may be of independent interest in the study of cluster algebras.
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1 Introduction

The (tree) amplituhedron AZ
n,k,m is the image of the positive Grassmannian Gr≥0

k,n under the
amplituhedron map Z̃ : Gr≥0

k,n → Grk,k+m. It was introduced by Arkani-Hamed and Trnka
[4] in order to give a geometric interpretation of scattering amplitudes inN = 4 super Yang
Mills theory (SYM): in particular, one can compute N = 4 SYM scattering amplitudes
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by ‘tiling’ the m = 4 amplituhedron AZ
n,k,4 — that is, by decomposing the amplituhedron

into smaller ‘tiles’ — and summing the ‘volumes’ of the tiles. While the case m = 4 is
most important for physics, the amplituhedron is defined for any positive n, k, m with
k + m ≤ n, and has a very rich geometric and combinatorial structure. It generalizes
cyclic polytopes (when k = 1), cyclic hyperplane arrangements [19] (when m = 1), and
the positive Grassmannian (when k = n− m), and it is connected to the hypersimplex
and the positive tropical Grassmanian [23, 26] (when m = 2). The amplituhedron is also
an example of a Grassmann polytope (‘Grasstope’) and conjectured to be a positive geometry
[1, 21]. The followings are two of the guiding problems about the amplituhedron.

The first is the cluster adjacency conjecture, which says that facets of tiles are cut out by
collections of compatible cluster variables. This was motivated by physics where cluster
algebras were shown to describe singularities of scattering amplitudes in N = 4 SYM
[16]. In particular, [7, 8] conjectured that the terms in tree-level amplitudes coming from
the BCFW recursions are rational functions whose poles correspond to compatible clus-
ter variables of the Grassmannian Gr4,n, see also [25]. The cluster adjacency conjecture,
formulated for the m = 2 and m = 4 amplituhedron in [22] and [17], was proved for all
tiles of the m = 2 amplituhedron in [26].

The second is the BCFW tiling conjecture, which says that any way of iterating the
BCFW recurrence gives rise to a collection of cells whose images tile the m = 4 ampli-
tuhedron AZ

n,k,4. This arose alongside the definition of the amplituhedron [4] in order
to give a geometric interpretation of the recurrence Britto–Cachazo–Feng–Witten [6] in-
troduced to compute scattering amplitudes. BCFW-like tilings of the m = 1 and m = 2
amplituhedron were proved in [19] and [5], building on [3] and [20]. Finally, extending
the work of [20], it was proved in [10] that the ‘standard’ way of performing the BCFW
recursion gives a tiling for the m = 4 amplituhedron.

Main results. In this paper we build on [26] and [10] to give a very complete picture
of the m = 4 amplituhedron. We show that arbitrary BCFW cells give tiles (Theorem 3.5)
and that they satisfy the cluster adjacency conjecture (Theorem 3.15). We strengthen
the connection with cluster algebras by associating to each BCFW tile a collection of
compatible cluster variables for Gr4,n (Definition 3.11), which we use to describe the tile
as a semialgebraic set in Grk,k+4 (Theorem 3.13). For ‘standard’ BCFW tiles, one can also
give a non-recursive description of these cluster variables and the underlying quiver,
and define an associated cluster algebra [9, Sections 8, 9]. Finally, we use these results to
prove the BCFW tiling conjecture for the m = 4 amplituhedron (Theorem 3.17).

Further motivation. From the point of view of cluster algebras, the study of tiles for
the amplituhedron An,k,m is useful because it is closely related to the cluster structure on
the Grassmannian Grm,n, as was shown for m = 2 in [26] and as this paper demonstrates
for m = 4. In particular, for m = 4, the BCFW product (Definition 3.2) used to recursively
build tiles (Definition 3.3) has a cluster quasi-homomorphism counterpart called product
promotion (Definition 3.6), that can be used to recursively construct cluster variables and
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seeds in Gr4,n (Theorem 3.7).
In the closely related field of total positivity, one prototypical problem is to give an

efficient characterization of the ‘positive part’ of a space as the subset where a certain
minimal collection of functions take on positive values [13] (‘positivity test’). For exam-
ple, for any cluster x for Grk,n [28], the positive Grassmannian Gr>0

k,n can be described as
the region in Grk,n where all the cluster variables of x are positive.

We think of Theorem 3.13 as a ‘positivity test’ for membership in a BCFW tile of
the amplituhedron. See [26, Theorem 6.8] for an analogous result for m = 2, and [9,
Conjecture 7.17] for some conjectures for general m.

From the point of view of discrete geometry, it is interesting to study tiles and more
generally Grasstopes because one can think of them as a generalization of polytopes in
the Grassmannian. In particular, the positivity tests for the positive Grassmannian and
BCFW tiles can be thought of as analogues of the hyperplane description of polytopes.
Finally, it would be interesting to show that tiles are positive geometries.

2 Background

2.1 The (positive) Grassmannian

The Grassmannian Grk,n(F) is the space of all k-dimensional subspaces of an n-dimensional
vector space Fn. Let [n] denote {1, . . . , n}, and ([n]k ) denote the set of all k-element subsets
of [n]. We can represent a point V ∈ Grk,n(F) as the row-span of a full-rank k× n matrix
C with entries in F. Then for I = {i1 < · · · < ik} ∈ ([n]k ), we let ⟨I⟩V = ⟨i1 i2 . . . ik⟩V be
the k× k minor of C using the columns I. The ⟨I⟩V are called the Plücker coordinates of V,
and are independent of the choice of matrix representative C (up to common rescaling).
The Plücker embedding V 7→ {⟨I⟩V}I∈([n]k )

embeds Grk,n(F) into projective space1 . If C

has columns v1, . . . , vn, we may also identify ⟨i1 i2 . . . ik⟩ with vi1 ∧ vi2 ∧ · · · ∧ vik , hence
e.g. ⟨i1 i2 . . . ik⟩ = −⟨i2 i1 . . . ik⟩. In this paper we will often be working with the real
Grassmannian Grk,n = Grk,n(R). We will also denote by Grk,N the Grassmannians of
k-planes in a vector space with basis indexed by a set N ⊂ [n].

Definition 2.1 (Positive Grassmannian). [24, 27] We say that V ∈ Grk,n is totally nonneg-
ative if (up to a global change of sign) ⟨I⟩V ≥ 0 for all I ∈ ([n]k ). Similarly, V is totally
positive if ⟨I⟩V > 0 for all I ∈ ([n]k ). We let Gr≥0

k,n and Gr>0
k,n denote the set of totally

nonnegative and totally positive elements of Grk,n, respectively. Gr≥0
k,n is called the totally

nonnegative Grassmannian, or sometimes just the positive Grassmannian.

1We will sometimes abuse notation and identify C with its row-span; we will also drop the subscript V
on Plücker coordinates when it does not cause confusion.
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If we partition Gr≥0
k,n into strata based on which Plücker coordinates are strictly posi-

tive and which are 0, we obtain a cell decomposition of Gr≥0
k,n into positroid cells [27]. Each

positroid cell S gives rise to a matroidM, whose bases are precisely the k-element sub-
sets I such that the Plücker coordinate ⟨I⟩ does not vanish on S;M is called a positroid.

There are many ways to index positroid cells in Gr≥0
k,n [27], such as plabic graphs:

Definition 2.2. Let G be a plabic graph, i.e. a planar bipartite graph2 embedded in a disk,
with black vertices 1, 2, . . . , n on the boundary of the disk. An almost perfect matching M of
G is a collection of edges which covers each internal vertex of G exactly once. The bound-
ary of M, denoted ∂M, is the set of boundary vertices covered by M. The positroid asso-
ciated to G is the collectionM =M(G) := {∂M : M an almost perfect matching of G}.

Both Grk,n and Gr≥0
k,n admit the following set of operations, which will be useful to us.

Definition 2.3 (Operations on the Grassmannian). We define the following maps on
Matk,n, which descends to maps on Grk,n and Gr≥0

k,n, which we denote in the same way:

• (cyclic shift) We define the cyclic shift as the map cyc : Matk,n → Matk,n which sends
v1 7→ (−1)k−1vn and vi 7→ vi−1, 2 ≤ i ≤ n, and in terms of Plückers: ⟨I⟩ 7→ ⟨I − 1⟩.

• (reflection) We define reflection as the map refl : Matk,n → Matk,n which sends vi 7→
vn+1−i and rescales a row by (−1)(

k
2), and in terms of Plückers: ⟨I⟩ 7→ ⟨n + 1− I⟩.

• (zero column) We define the map prei : Matk,[n]\{i} → Matk,n which adds a zero
column at i, and in terms of Plückers: ⟨I⟩ 7→ ⟨I⟩.

Here, I − 1 is obtained from I ∈ ([n]k ) by subtracting 1 (mod n) from each element of I
and n + 1− I is obtained from I by subtracting each element of I from n + 1.

2.2 The amplituhedron

Building on [2, 18], Arkani-Hamed and Trnka [4] introduced the (tree) amplituhedron,
which they defined as the image of the positive Grassmannian under a positive linear
map. Let Mat>0

n,p denote the set of n× p matrices whose maximal minors are positive.

Definition 2.4 (Amplituhedron). Let Z ∈ Mat>0
n,k+m, where k + m ≤ n. The amplituhedron

map Z̃ : Gr≥0
k,n → Grk,k+m is defined by Z̃(C) := CZ, where C is a k × n matrix repre-

senting an element of Gr≥0
k,n, and CZ is a k× (k + m) matrix representing an element of

Grk,k+m. The amplituhedron AZ
n,k,m ⊂ Grk,k+m is the image Z̃(Gr≥0

k,n).

In this article we will be concerned with the case where m = 4.
2We will always assume that plabic graphs are reduced [27, Definition 12.5].
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Definition 2.5 (Tiles). Fix k, n, m with k + m ≤ n and choose Z ∈ Mat>0
n,k+m. Given a

positroid cell S of Gr≥0
k,n, we let Z◦S := Z̃(S) and ZS := Z̃(S) = Z̃(S). We call ZS and Z◦S a

tile and an open tile for AZ
n,k,m if dim(S) = km and Z̃ is injective on S.

Definition 2.6 (Tilings). A tiling of AZ
n,k,m is a collection {ZS | S ∈ C} of tiles, such that

their union equals AZ
n,k,m and the open tiles Z◦S, Z◦S′ are pairwise disjoint.

There is a natural notion of facet of a tile, generalizing the notion of facet of a polytope.

Definition 2.7 (Facet of a cell and a tile). Given two positroid cells S′ and S, we say that
S′ is a facet of S if S′ ⊂ ∂S and S′ has codimension 1 in S. If S′ is a facet of S and ZS is a
tile of AZ

n,k,m, we say that ZS′ is a facet of ZS if ZS′ ⊂ ∂ZS and has codimension 1 in ZS.

Definition 2.8 (Twistor coordinates). Fix Z ∈ Mat>0
n,k+m with rows Z1, . . . , Zn ∈ Rk+m.

Given Y ∈ Grk,k+m with rows y1, . . . , yk, and {i1, . . . , im} ⊂ [n], we define the twistor coor-
dinate ⟨⟨i1i2 · · · im⟩⟩ to be the determinant of the matrix with rows y1, . . . , yk, Zi1 , . . . , Zim .

Note that the twistor coordinates are defined only up to a common scalar multiple.
An element of Grk,k+m is uniquely determined by its twistor coordinates [19]. Moreover,
Grk,k+m can be embedded into Grm,n so that the twistor coordinate ⟨⟨i1 . . . im⟩⟩ is the
pullback of the Plücker coordinate ⟨i1, . . . , im⟩ in Grm,n.

Definition 2.9. We refer to a homogeneous polynomial in twistor coordinates as a func-
tionary. For S ⊆ Gr≥0

k,n, we say a functionary F has a definite sign s ∈ {±1} (or vanishes)
on Z◦S if for all Z ∈ Mat>0

n,k+4 and for all Y ∈ Z◦S, F(Y) has sign s (or 0, respectively).

Functionaries will be crucial to describe tiles of the amplituhedron, to prove the main
theorems about cluster adjacency and BCFW tilings, and to connect with cluster algebras.

2.3 Cluster Algebras

Cluster algebras were introduced by Fomin and Zelevinsky in [14], motivated by the
study of total positivity; see [12] for an introduction. We give a quick definition of
cluster algebras from quivers. All cluster algebras here will be of geometric type.

A quiver Q is an oriented graph given by a finite set of vertices. For a quiver without
oriented cycles of length 1 and 2, one can define a quiver mutation µk(Q) at each vertex k
of Q. This operation, described in [14], is an involution: µ2

k(Q) = Q.

Definition 2.10. Choose s ≥ r positive integers. Let F be an ambient field of rational
functions in r independent variables over C(xr+1, . . . , xs). A labeled seed in F is a pair
(x, Q), where x = (x1, . . . , xs) forms a free generating set for F and Q is a quiver with
vertices 1, 2, . . . , r called mutable, and vertices r + 1, . . . , s called frozen.

We call x a cluster and its elements {x1, . . . , xs} cluster variables. The variables x1, . . . , xr
are called mutable, and the variables c = {xr+1, . . . , xs} are called frozen.
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Figure 1: The rectangle seed Σ4,7.
Mutable variables are in the

colored box.

Definition 2.11 (Seed mutations). Let (x, Q) be a labeled seed in F , and let k ∈ {1, . . . , r}.
The seed mutation µk in direction k transforms (x, Q) into the labeled seed µk(x, Q) =
(x′, µk(Q)), where the cluster x′ = (x′1, . . . , x′s) is defined as follows: x′j = xj for j ̸= k,
whereas x′k ∈ F is determined by the exchange relation

x′k xk = ∏
i: i→k

xi + ∏
i: i←k

xi . (2.1)

Where i → k (or i ← k) denotes an edge oriented from vertex i to k (or k to i). Note
that one omits arrows between two frozen vertices as they do not affect seed mutation.

Definition 2.12. Let Tr be an r-regular tree whose edges are labeled by 1, . . . , r, so that
edges emanating from each vertex receive different labels. A cluster pattern is an assign-
ment of a labeled seed Σt = (xt, Qt) to every vertex t ∈ Tn, such that the seed assigned
to the endpoint of an edge k emanated from t is obtained by mutating Σt in direction k.

Definition 2.13 (Cluster algebra). Given a cluster pattern, we denote as X the union of all
mutable variables of all the seeds in the pattern. Let C[c±1] be the ground ring consisting
of Laurent polynomials in the frozen variables. The cluster algebra A associated with a
given pattern is the C[c±1]-subalgebra of the ambient field F generated by all mutable
variables, with coefficients which are Laurent polynomials in the frozen variables: A =
C[c±1][X ]. We denote A = A(x, Q), where (x, Q) is any seed in the underlying cluster
pattern. We say that A has rank r because each cluster contains r mutable variables.
Cluster variables that belong to a common cluster are said to be compatible.

The Grassmannian Grk,n(C) has a cluster structure [28], defined starting from partic-
ularly nice seeds called rectangles seed Σk,n, see Figure 1 and the exposition of [11].

Theorem 2.14 ([28]). Let Gr◦k,n be the open subset of the Grassmannian where the frozen vari-
ables don’t vanish. Then the coordinate ring C[Ĝr

◦
k,n] of the affine cone over Gr◦k,n is the cluster

algebra A(Σk,n).

Moreover, the operations on the Grassmannian cyc, refl, pre in Definition 2.3 induce
maps on C[Ĝr

◦
k,N] which are compatible with the cluster structure of Theorem 2.14:

Proposition 2.15. The maps cyc, refl : C[Ĝr
◦
k,n] → C[Ĝr

◦
k,n], prei : C[Ĝr

◦
k,[n]\{i}] → C[Ĝr

◦
k,n]

take cluster variables to cluster variables and preserve compatibility and exchange relations.
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Figure 2: The BCFW product SL ▷◁ SR of SL and SR in terms of their plabic graphs.

3 Results

Our first main result is proving that a class of cells called BCFW cells give tiles for AZ
n,k,4.

We will build BCFW cells recursively using the BCFW product. Let us first introduce
some notation we will use throughout this section.

Notation 3.1. Choose integers 1 ≤ a < b < c < d < n with a, b and c, d, n consecutive.
Let3 NL = {n, 1, 2, . . . , a, b}, NR = {b, . . . , c, d, n} and D = (a, b, c, d, n). Also fix k ≤ n
and two nonnegative integers kL ≤ |NL| and kR ≤ |NR| such that kL + kR + 1 = k. Note
that, for any set of indices N ⊂ [n], our results hold with N instead of [n], by replacing
1 and n in the definition with the smallest and largest elements of N, respectively.

Definition 3.2 (BCFW product). Let SL ⊆ GrkL,NL , SR ⊆ Gr≥0
kR,NR

as in Notation 3.1 and
GL, GR be the respective plabic graphs. The BCFW product of SL and SR is the positroid
cell SL ▷◁ SR ⊆ Grk,n corresponding the plabic graph in the right-hand side of Figure 2.
When it is not clear from the context, we will say ▷◁ is performed ‘with indices D’.

We now introduce the family of BCFW cells to be the set of positroid cells which is
closed under the operations in Definitions 2.3 and 3.2:

Definition 3.3 (BCFW cells). The set of BCFW cells is defined recursively. For k = 0,
let the trivial cell Gr>0

0,n be a BCFW cell. If S is a BCFW cell, so is the cell obtained by
applying cyc, refl, pre to S. If SL, SR are BCFW cells, so is their BCFW product SL ▷◁ SR.

Example 3.4. For k = 1, the BCFW cells in Gr≥0
1,n are as in Figure 3 (left). They have

Plücker coordinates ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨d⟩, ⟨e⟩ > 0 and all others zero. In Figure 3 (right),
Sex ⊂ Gr≥0

2,7 is obtained as SL ▷◁ SR, with SL, SR BCFW cells in Gr≥0
1,NL

, Gr≥0
0,NR

respectively,
with NL = {7, 1, 2, 3, 4}, NR = {4, 5, 6, 7} and D = (3, 4, 5, 6, 7).

Theorem 3.5 (BCFW tiles). The amplituhedron map is injective on each BCFW cell. That is,
the closure ZS := Z̃(S) of the image of a BCFW cell S is a tile, which we refer to as a BCFW tile.

3Note that we will overload the notation and let n index an element of a vector space basis for different
vector spaces; however, in what follows, the meaning should be clear from context.
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Figure 3: Plabic graphs of: a BCFW cell in
Gr≥0

1,n (left); a BCFW cell Sex ⊂ Gr≥0
2,7 (right).

A key ingredient to prove Theorem 3.5 is inverting the amplituhedron map on BCFW
tiles [9, Theorem 7.7] by using product promotion – an operation which interacts nicely
both with the cluster structure on the Grassmannian and with the BCFW product.

Definition 3.6. Using Notation 3.1, product promotion is the homomorphism

ΨD = Ψ : C(Ĝr4,NL)×C(Ĝr4,NR)→ C(Ĝr4,n),

induced by the following substitution:

on Ĝr4,NL : b 7→ (ba) ∩ (cdn)
⟨a c d n⟩ , on Ĝr4,NR : n 7→ (ba) ∩ (cdn)

⟨a b c d⟩ , d 7→ (dc) ∩ (abn)
⟨a b c n⟩ .

The vector (ij)∩ (rsq) := vi⟨j r s q⟩− vj⟨i r s q⟩ = −vr⟨i j s q⟩+ vs⟨i j r q⟩− vq⟨i j r s⟩ is in
the intersection of the 2-plane and the 3-plane spanned by vi, vj and vr, vs, vq, respectively.

We show4 that Ψ is in fact a quasi-homomorphism (see [15]) from the cluster algebra5

C[Ĝr
◦
4,NL

]×C[Ĝr
◦
4,NR

] to a sub-cluster algebra of C[Ĝr
◦
4,n]. See [15, Definition 3.1, Propo-

sition 3.2] for the precise definition of a quasi-homomorphism.

Theorem 3.7. Product promotion Ψ is a quasi-homomorphism of cluster algebras. In particular,
Ψ maps a cluster variable (respectively, cluster) of C[Ĝr

◦
4,NL

]× C[Ĝr
◦
4,NR

], to a cluster variable
(respectively, sub-cluster) of C[Ĝr

◦
4,n], up to multiplication by Laurent monomials in T ′ :=

{⟨a b c n⟩, ⟨a b c d⟩, ⟨b c d n⟩, ⟨a c d n⟩}.

Remark 3.8. Definition 3.6 and Theorem 3.7 extend also to the degenerate cases, e.g. for
a = 1 (upper promotion), where Ψ : C(Ĝr4,NR)→ C(Ĝr4,n), see [9, Section 4.3].

Definition 3.9. Let x be a cluster variable of C[Ĝr
◦
4,NL

] or C[Ĝr
◦
4,NR

]. We define the rescaled
product promotion Ψ(x) of x to be the cluster variable of Gr4,n obtained from Ψ(x) by
removing6 the Laurent monomial in T ′ (c.f. Theorem 3.7).

4We will sometime omit the dependence on the indices D = {a, b, c, d, n} in Ψ (and Ψ) for brevity.
5C[Ĝr

◦
4,NL

]×C[Ĝr
◦
4,NR

] is a cluster algebra where each seed is the disjoint union of a seed of each factor.
6If x = ⟨bcdn⟩, then Ψ(x) = Ψ(x) = x.
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The fact that product promotion is a cluster quasi-homomorphism may be of inde-
pendent interest in the study of the cluster structure on Gr4,n. Much of the work thus far
on the cluster structure of the Grassmannian has focused on cluster variables which are
polynomials in Plücker coordinates with low degree; by constrast, the cluster variables
we obtain can have arbitrarily high degree in Plücker coordinates (e.g. see the chain
polynomials in [9, Theorem 8.3]). We introduce the following notation:

⟨a b c | d e | f g h⟩ := ⟨a, b, c, (d e) ∩ ( f g h)⟩ = ⟨a b c d⟩ ⟨e f g h⟩ − ⟨a b c e⟩ ⟨d f g h⟩. (3.1)

Example 3.10. For NL and NR as in Example 3.4, the only Plücker which changes is:
Ψ(⟨1 2 4 7⟩) = ⟨1 2 7|3 4|5 6 7⟩/⟨3 4 6 7⟩, and Ψ(⟨1 2 4 7⟩) = ⟨1 2 7|3 4|5 6 7⟩ which is a
quadratic cluster variable in Gr4,7, e.g. obtained by mutating ⟨2367⟩ in Σ4,7 of Figure 1.

Using rescaled product promotion and the operations in Proposition 2.15, we asso-
ciate to each BCFW tile ZS a collection of compatible cluster variables x(S) for Gr4,n.

Definition 3.11 (Cluster variables for BCFW tiles). Let S ⊂ Gr≥0
k,n be a BCFW cell. We

define the set of coordinate cluster variables x(S) for S recursively as follows:

• If S = SL ▷◁ SR with indices Dk = (ak, bk, ck, dk, nk), then

x(S) = ΨDk(x(SL) ∪ x(SR)) ∪ {⟨I⟩, I ∈
(

Dk
4

)
}, (3.2)

• If S =


prei(S

′)

cyc(S′)
refl(S′)

then x(S) =


x(S′)
cyc−1(x(S′))
refl(x(S′))

,

and for the base case k = 0, we set x(S) = ∅. Here, cyc−1 = cycn−1.
For a BCFW cell S, x(S) depends on the sequence of operations in Definition 3.3 used

to build S, but we will drop this dependence for brevity.
Note that x(S) is a collection of compatible cluster variables for Gr4,n [9, Lemma 7.6].

Example 3.12. From Example 3.4, Sex = SL ▷◁ SR and x(SL) = {⟨I⟩, I ∈ (DL
4 )}, x(SR) = ∅,

where DL = {1, 2, 3, 4, 7}. Then by Example 3.10 the coordinate cluster variables x(Sex)
are: Ψ(x(SL)) = x(SL) \ {⟨1247⟩} ∪ {⟨127|34|567⟩} together with {⟨I⟩, I ∈ (D

4 )}.

Given a cluster variable x in Gr4,n, we will denote as x(Y) the functionary on Grk,k+4
(cf. Definition 2.9) obtained by identifying Plücker coordinates ⟨I⟩ in Gr4,n with twistor
coordinates ⟨⟨I⟩⟩ in Grk,k+4 (cf. Definition 2.8). Then interpreting each cluster variable as
a functionary, we describe each BCFW tile as the semialgebraic subset of Grk,k+4 where
the coordinate cluster variables take on particular signs.

Theorem 3.13 (Sign description of BCFW tiles). Let ZS be a BCFW tile. For each element x
of x(S), the functionary x(Y) has a definite sign sx on Z◦S and

Z◦S = {Y ∈ Grk,k+4 : sx x(Y) > 0 for all x ∈ x(S)}.
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Figure 4: BCFW tiling for An,k,4. On the right: the first term is obtained by tiling
A[n]\{d},k,4 (from Tpre); the second term is the union over b, kL, kR as in Definition 3.16
of the collections of tiles obtained by tiling ANL,kL,4 and ANR,kR,4 (from TkL,kR,b,n).

Example 3.14. The open tile Z◦ex := Z̃(Sex), with Sex from Example 3.4, is the semial-
gebraic set in Gr2,6 where the functionaries x(Y), with x ∈ x(Sex) of Example 3.12 are
positive, except when x ∈ {⟨3567⟩, ⟨3457⟩, ⟨2347⟩, ⟨3567⟩}, for which x(Y) are negative.

One can study facets of tiles (see Definition 2.7) by describing associated functionaries
which vanish on them. Given a functionary F(⟨⟨I⟩⟩) on Grk,k+4, we can obtain a polyno-
mial F(⟨I⟩) in the Plücker coordinates in Gr4,n. Then the coordinate cluster variables in
Definition 3.11 are a key tool in the proof of cluster adjacency conjecture for BCFW tiles:

Theorem 3.15 (Cluster adjacency for BCFW tiles). Let ZS be a BCFW tile of AZ
n,k,4. Each

facet ZS′ of ZS lies on a hypersurface cut out by a functionary FS′(⟨⟨I⟩⟩) such that FS′(⟨I⟩) is in
x(S). Thus {FS′(⟨I⟩) : ZS′ a facet of ZS} is a collection of compatible cluster variables of Gr4,n.

Finally, we show how to use BCFW tiles to tile AZ
n,k,4 (Definition 2.6). Theorems 3.5

and 3.13 are important ingredients to prove our last main result Theorem 3.17. We use
Notation 3.1, fix n ≥ k + 4, and define bmin := 2 if kL = 0 and otherwise bmin := kL + 3.

Definition 3.16 (BCFW collections). We say that a collection T of 4k-dimensional BCFW
cells in Gr≥0

k,n is a BCFW collection of cells for An,k,4 if it has the following recursive form:

• If k = 0 or k = n− 4, T is the single BCFW cell Gr>0
0,n or Gr>0

n−4,n, respectively.
• If T = {S} is a BCFW collection of cells, so is {refl S}S∈T and {cyc S}S∈T .
• Otherwise T = Tpre

⊔
b,kL,kR

TkL,kR,b,n, where

– b ranges from bmin to n− 3− kR, and kL, kR as in Notation 3.1;

– Tpre = {pred(S)}S∈C , where C is a BCFW collection of cells for A[n]\{d},k,4;

– TkL,kR,b,n = {SL ▷◁ SR}(SL,SR)∈CL×CR
where CL and CR are BCFW collections of

cells for ANL,kL,4 and ANR,kR,4.

Theorem 3.17 (BCFW tilings). Every BCFW collection of cells T = {S} as in Definition 3.16
gives rise to a tiling {ZS}S∈T of the amplituhedron AZ

n,k,4, which we refer to as a BCFW tiling.
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See Figure 4 for an illustration. This generalizes the main result of [10], which proved
the same result for the standard BCFW cells, and proves the main conjecture of [4].

Non-BCFW tiles are also expected to satisfy cluster adjacency, have a sign description
in terms of cluster variables, and appear in tilings of AZ

n,k,4, see [9, Section 12.2].
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[8] J. Drummond, J. Foster, and Ö. Gürdoğan. “Cluster adjacency beyond MHV”. J. High
Energy Physics 03 (2019), p. 086. doi. arXiv:1810.08149.

[9] C. Even-Zohar, T. Lakrec, M. Parisi, R. Tessler, M. Sherman-Bennett, and L. Williams.
“Cluster algebras and tilings for the m=4 amplituhedron” (Oct. 2023). arXiv:2310.17727.

[10] C. Even-Zohar, T. Lakrec, and R. J. Tessler. “The Amplituhedron BCFW Triangulation”
(2021). arXiv:2112.02703.

https://dx.doi.org/10.1007/JHEP11(2017)039
https://arxiv.org/abs/1703.04541
https://dx.doi.org/10.1017/CBO9781316091548
https://dx.doi.org/10.1007/jhep01(2018)016
https://arxiv.org/abs/1909.06015
https://dx.doi.org/10.1103/PhysRevLett.94.181602
https://dx.doi.org/10.1103/PhysRevLett.120.161601
https://dx.doi.org/10.1007/JHEP03(2019)086
https://arxiv.org/abs/1810.08149
https://arxiv.org/abs/2310.17727
https://arxiv.org/abs/2112.02703


12 C. Zohar, T. Lakrec, M. Parisi, M. Sherman-Bennett, R. Tessler, and L. Williams

[11] S. Fomin, L. Williams, and A. Zelevinsky. “Introduction to cluster algebras: Chapter 6”.
arXiv:2008.09189.

[12] S. Fomin, L. Williams, and A. Zelevinsky. “Introduction to cluster algebras: Chapters 1-3”.
arXiv:1608.05735.

[13] S. Fomin and A. Zelevinsky. “Total positivity: tests and parametrizations”. Math. Intelli-
gencer 22.1 (2000), pp. 23–33. doi.

[14] S. Fomin and A. Zelevinsky. “Cluster algebras. I. Foundations”. J. Amer. Math. Soc. 15.2
(2002), pp. 497–529. doi.

[15] C. Fraser. “Quasi-homomorphisms of cluster algebras”. Adv. in Appl. Math. 81 (2016),
pp. 40–77. doi.

[16] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich. “Motivic Amplitudes
and Cluster Coordinates”. JHEP 01 (2014), p. 091. doi. arXiv:1305.1617.
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