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Abstract. We settle the question of where exactly do the reduced Kronecker coef-
ficients lie on the spectrum between the Littlewood-Richardson and Kronecker coeffi-
cients by showing that every Kronecker coefficient of the symmetric group is equal to a
reduced Kronecker coefficient by an explicit construction. This implies the equivalence
of a question by Stanley from 2000 and a question by Kirillov from 2004 about combi-
natorial interpretations of these two families of coefficients. Moreover, as a corollary,
we deduce that deciding the positivity of reduced Kronecker coefficients is NP-hard,
and computing them is #P-hard under parsimonious many-one reductions.
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1 Introduction

The Kronecker coefficients k(λ, µ, ν) of the symmetric group Sn are some of the most clas-
sical, yet largely mysterious, quantities in Algebraic Combinatorics and Representation
Theory. The Kronecker coefficient is the multiplicity of the irreducible Sn representation
Sν in the tensor product Sλ ⊗ Sµ of two other irreducible Sn representations. Murnaghan
defined them in 1938 as an analogue of the Littlewood-Richardson coefficients cλ

µν of the
general linear group GLN, which are the multiplicities of the irreducible Weyl modules
Vλ in the tensor products Vµ ⊗ Vν. Yet, the analogy has not translated far into their
properties. The Littlewood-Richardson coefficients have a beautiful positive combinato-
rial interpretation and their positivity is “easy” to decide, formally it is in P. However,
positive combinatorial formulas for the Kronecker coefficients have eluded us so far, see
Section 1.2, and their positivity is hard to decide.
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The reduced Kronecker coefficients k(α, β, γ) are defined as the stable limit of the ordi-
nary Kronecker coefficients

k(α, β, γ) := lim
n→∞

k( (n − |α|, α), (n − |β|, β), (n − |γ|, γ) ).

These coefficients are called extended Littlewood-Richardson numbers in [13], since in the
special case when |α| = |β|+ |γ| we have k(α, β, γ) = cα

β,γ, the Littlewood-Richardson
coefficient. Problem 2.32 in [13] asks for a combinatorial interpretation of k(α, β, γ).
As such they have been considered as an intermediate, an interpolation, between the
Littlewood-Richardson and Kronecker coefficients. They have been an object of inde-
pendent interest, see [16, 17, 4, 27, 13, 3, 2, 5, 15, 24, 10, 21, 18, 19], and considered better
behaved than the ordinary Kronecker coefficients.

This is, however, not the case. As we show, every Kronecker coefficient is equal to an
explicit reduced Kronecker coefficient of not much larger partitions, and in particular:

Theorem 1. For all partitions λ, µ, ν of equal sizes, we have

k(λ, µ, ν) = k
(

ν
ℓ(λ)
1 + λ, ν

ℓ(µ)
1 + µ, (νℓ(λ)+ℓ(µ)

1 , ν)
)
.

Here ab := (a, . . . , a︸ ︷︷ ︸
b many

) and (νb
1 , ν) := (ν1, . . . , ν1︸ ︷︷ ︸

b many

, ν1, ν2, ν3, . . .).

This implies that in a very strong sense, on the spectrum between Littlewood-
Richardson and Kronecker coefficients, the reduced Kronecker coefficients are at the
same point as the ordinary Kronecker coefficients. In particular, Theorem 1 implies that
Problem 2.32 in [13] is equivalent to Problem 10 in [26]: Finding a combinatorial inter-
pretation for the Kronecker coefficient or for the reduced Kronecker coefficient are the
same problem. Formally, Conjecture 9.1 and 9.4 in [20] are the same. Our result can be
interpreted in a positive or in a negative way. On the one hand, the reduced Kronecker
coefficients cannot be easier to understand than the ordinary Kronecker coefficients. On
the other hand, understanding the reduced Kronecker coefficients is sufficient to under-
stand all ordinary Kronecker coefficients.

We thus settle the conjecture from [21, §4.4] on the hardness of deciding positivity:

Corollary 1. Given α, β, γ in unary, deciding if k(α, β, γ) > 0 is NP-hard.

Moreover, by the same immediate argument it is now clear that computing the re-
duced Kronecker coefficient is strongly #P-hard under parsimonious many-one reduc-
tions (the argument in [21] gives only the #P-hardness under Turing reductions).

1.1 Background and definitions

We refer to [12, 25, 23] for basic definitions and properties from algebraic combina-
torics and representation theory, and employ the following notation. For a partition
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λ = (λ1, λ2, . . .) of n, denoted λ ⊢ n, its size is denoted |λ| := ∑i λi and length
ℓ(λ) = max{i | λi > 0}. We write λ′ do denote the transpose partition, i.e., the par-
tition that arises from reflecting the Young diagram at the main diagonal. Formally,
λ′

j := max{i | λi ≥ j}. We add partitions row-wise: (λ + µ)i = λi + µi. We define
λ ⋄ µ := (λ′ + µ′)′, adding partitions column-wise as Young diagrams. The Specht mod-
ules Sλ for λ ⊢ n are the irreducible representation of the symmetric group Sn, see [12,
25, 23].

The Kronecker coefficient k(λ, µ, ν) is the structure constant1 defined as

Sν ⊗ Sµ =
⊕

λ S
⊕k(λ,µ,ν)
λ

via Specht modules, giving that k(λ, µ, ν) is a nonnegative integer. Yet the problem of
finding a combinatorial interpretation of k(λ, µ, ν) is wide open [26, 9, 22]. The Kro-
necker coefficients were defined by Murnaghan [16] in 1938 as the analogues of the
Littlewood-Richardson coefficients cλ

µν, which are the structure constants in the ring of irre-

ducible GLN representations, the Weyl modules Vλ, given as Vµ ⊗ Vν =
⊕

λ V
⊕cλ

µν

λ . Some
simple properties, see [12, 23] include the transposition invariance k(λ, µ, ν) = k(λ′, µ′, ν)
and permutation of the terms. We define k′(λ, µ, ν) := k(λ′, µ′, ν′) = k(λ′, µ, ν) =
k(λ, µ′, ν) = k(λ, µ, ν′). It is known that k(λ, µ, ν) = 0 if ℓ(λ) > ℓ(µ) · ℓ(ν) [6], which
also follows by combining k(λ, µ, ν) = k(λ, µ′, ν′) with Lemma 3. We define the stable
range as the set of triples (λ, µ, ν) that satisfy k(λ, µ, ν) = k

(
λ + (i), µ + (i), ν + (i)

)
for all i ≥ 0. The reduced Kronecker coefficient is defined as this limit value:

k(α, β, γ) := lim
n→∞

k( (n − |α|, α), (n − |β|, β), (n − |γ|, γ) )

for arbitrary partitions α, β, γ (in particular, we do not require |α| = |β| = |γ|). When
|α| = |β|+ |γ|, then k(α, β, γ) = cα

β,γ. For a full list of definitions and properties we refer
to the full version of this paper [11].

1.2 Related work

The Littlewood-Richardson (LR) coefficients can be computed by the Littlewood-
Richardson rule, stated in 1934 and proven formally about 40 years later. It says that
cλ

µν is equal to the number of LR tableaux of shape λ/µ and content ν. The apparent
analogy in definitions motivates the community to search for such interpretations for
the Kronecker coefficients. Interest in efficient ways to compute k(λ, µ, ν) and k(α, βγ)
dates back at least to Murnaghan [16]. Specific interest in nonnegative combinatorial
interpretations of k(λ, µ, ν) can be found in [Lascoux 1979, Garsia-Remmel 1985] and

1In the combinatorics literature these coefficients have usually been denoted by g, e.g. g(λ, µ, ν), but
here we use k to avoid overlap with the notation used for the representation theory of GLN .
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was formulated clearly again by Stanley as Problem 10 in his list “Open Problems in
Algebraic Combinatorics” [26]. See also [22] for a detailed discussion on this topic.

Despite its natural and fundamental nature and the variety of efforts, this question
has seen relatively little progress. The state of the art is combinatorial interpretations
for specific classes of partitions (ν being a hook, or µ, ν being two-row partitions, etc).
It was shown by Murnaghan [17] that the reduced Kronecker coefficients generalize the
Littlewood-Richardson coefficients as

k(α, β, γ) = cα
βγ for |α| = |β|+ |γ|,

which motivates Kirillov’s naming of k as “extended Littlewood-Richardson numbers”.
This relationship and other properties have motivated an independent interest in the
reduced Kronecker coefficients as intermediates between Littlewood-Richardson and or-
dinary Kronecker coefficients. Some special cases of combinatorial interpretations can
be derived from the existing ones for the ordinary Kronecker coefficients. In [5] a com-
binatorial interpretation was given when µ, ν are rectangles and λ is one row. A com-
binatorial interpretation of k(α, β, γ) in the subcase where ℓ(α) = 1 was obtained in [1].
Methods to compute them have been discussed in [16, 17] and have been developed in a
series of papers, see [3, 2, 18, 19]. As observed in [2] the reduced Kronecker coefficients
are also the structure constants for the ring of so called character polynomials. The re-
duced Kronecker coefficients are a special case of a more general stability phenomenon
that if k(iα, iβ, iγ) = 1 for all i, then k(λ + Nα, µ + Nβ, ν + Nγ) stabilizes as N → ∞ as
seen in [24, 27].

The Kronecker coefficients can be expressed as a small alternating sum of reduced
Kronecker coefficients, and reduced Kronecker coefficients are certain sums of ordinary
Kronecker coefficients for smaller partitions, see [3]. These relationships showed that
reduced Kronecker coefficients are also #P-hard to compute, see [21]. However, these
relations did not imply that deciding positivity of reduced Kronecker coefficients is NP-
hard.

It is important to note that deciding if cλ
µν > 0 is in P, since they count integer points

in a polytope that has an integral vertex whenever it is nonempty, a consequence of
Knutson-Tao’s proof of the saturation property: cNλ

Nµ,Nν > 0 ⇐⇒ cλ
µν > 0. The Kro-

necker coefficients do not satisfy the saturation property, because k(22, 22, 22) = 1, but
k(12, 12, 12) = 0. Until recently it was believed that the reduced Kronecker coefficients
have the saturation property: It was conjectured in [13, 14] that if k(Nα, Nβ, Nγ) > 0
for some N > 0, then k(α, β, γ) > 0. This was disproved in [21] in 2020 and moved the
reduced Kronecker coefficients away from the Littlewood-Richardson coefficients on that
spectrum.



All Kronecker coefficients are reduced Kronecker coefficients 5

2 Setting up the proof of Theorem 1

We discovered Theorem 1 using the natural interpretation of k(λ, µ, ν) via the general
linear group, see §3, and the relationship with 3-dimensional binary contingency arrays.
We set the proof up in this section, reducing to a more general Theorem 2, which has a
short proof via GLN and two short, self-contained proofs using basic symmetric function
techniques. The complete proofs are available in [11].

Lemma 1. Let λ, µ, ν be partitions with ℓ(λ) ≤ l, ℓ(µ) ≤ m. Then

k(λ, µ, ν) = k(ml + λ, lm + µ, 1lm + ν ).

The following Lemma 2 is proved by applying Lemma 1 twice, in different directions.

Lemma 2. Let λ, µ, ν be partitions of the same size, and let l ≥ ℓ(λ), m ≥ ℓ(µ) and c ≥ ν1.
Let d = (m + 1)c, e = (l + 1)c. Then

k(λ, µ, ν) = k
(
(d) ⋄ (cl + λ), (e) ⋄ (cm + µ), cl+m+1 ⋄ ν

)
.

In lieu of a proof we illustrate this by example with λ = (5, 2), µ = (3, 3, 1) and
ν = (4, 3), with l = 2, m = 3 and c = 4. The red boxes are the addition from the first
application of Lemma 1 and the blue boxes are the second application.

, ,

Theorem 2. Let λ, µ, ν be partitions of the same size, such that λ1 ≥ ℓ(µ) · ν1 and µ1 ≥
ℓ(λ) · ν1. Then for every h ≥ 0 we have

k(λ, µ, ν) = k( λ + h, µ + h, ν + h ).

Our proofs use an observation on 3-dimensional contingency arrays Q with zeros
and ones as entries (Lemma 4), applied differently. We identify subsets Q ⊆ N3

with their characteristic functions Q : N3 → {0, 1}, and we call Q a binary or {0, 1}-
contingency array. This means, we interpret Q as a function to {0, 1}, and as the point
set of its support. The interpretation will always be clear from the context. The 2-
dimensional marginals of Q are defined as Qi∗∗ := ∑j,k Qi,j,k = |Q ∩ ({i} × N × N)|,
Q∗i∗ := ∑j,k Qj,i,k = |Q ∩ (N × {i} × N)|, Q∗∗i := ∑j,k Qj,k,i = |Q ∩ (N × N × {i})|. For
α ∈ NN, β ∈ NN, γ ∈ NN, |α| = |β| = |γ| < ∞, we denote by

C(α, β, γ) := {Q ⊆ N3 | Qi∗∗ = αi, Q∗i∗ = βi, Q∗∗i = γi for every i}.

There is a close connection to the Kronecker coefficients via the following (see e.g. §4):
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Lemma 3. For partitions α, β, γ of equal size, we have k′(α, β, γ) ≤ |C(α, β, γ)|.

Restrictions on the marginals can result in strong restrictions on the sets Q:

Lemma 4. Let α, β, γ be compositions with |α| = |β| = |γ|. Let a ≥ ℓ(α), b ≥ ℓ(β), and let
the integers c, h be such that c + h ≥ ℓ(γ) and ∑i>c γi ≤ h. Furthermore, let α1 ≥ bc + h,
β1 ≥ ac + h. Then, for every Q ∈ C(α, β, γ) we have

{1} × [b]× [c] ⊆ Q, [a]× {1} × [c] ⊆ Q, {1} × {1} × [c + h] ⊆ Q, and
Q ∩ (N × N × [c + 1, c + h]) = {1} × {1} × [c + 1, c + h].

In particular, if C(α, β, γ) is non-empty, then a = ℓ(α), b = ℓ(β), γi = 1 for all c + 1 ≤ i ≤
c + h, and α1 = bc + h, β1 = ac + h, α2 ≤ bc, and β2 ≤ ac.

In other words, if we have 3d point configurations with such marginals, then the
walls consist of two rectangles and a long column as depicted in the figure below.
Proof: Assume that there exists a binary contin-
gency array Q ∈ C(α, β, γ). Let B∪ := {1}× [b]×
[c + h] ∪ [a]× {1} × [c + h] be the set of points
in the planes x = 1 and y = 1, and let B∩ :=
{1}× {1}× [c+ h] be the set of points on the line
x = y = 1. Let Hi := Q ∩ (N × N × {i}) ∩ B∪
be the entries of Q in B∪ at the section with the

plane z = i. In particular,
c+h

∑
i=1

|Hi| = |Q ∩ B∪|.

We have ∑c+h
i=c+1 |Hi| ≤ ∑c+h

i=c+1 γi ≤ h, |Hi| ≤
a + b − 1 for all 0 < i ≤ c and |Q ∩ B∩| ≤ c + h.
All these inequalities must be met with equality,
because

1st coord.

3rd coord.

2nd coord.

α1 + β1 = |Q ∩ B∩|+ |Q ∩ B∪| = |Q ∩ B∩|+ ∑c+h
i=1 |Hi|

= |Q ∩ B∩|+ ∑c
i=1 |Hi|+ ∑c+h

i=c+1 |Hi|
≤ (c + h) + (a + b − 1)c + h = (a + b)c + 2h ≤ α1 + β1.

We thus have the following equalities: |Q ∩ B∩| = c + h = |B∩| and ∀i ∈ [c] we have
|Hi| = a + b − 1 = |(N×N×{i})∩ B∪|. Thus we have B∩ ⊆ Q, and {1}× [b]× [c] ⊆ Q,
and [a]× {1} × [c] ⊆ Q, and Q ∩ (N × N × [c + 1, c + h]) = {1} × {1} × [c + 1, c + h].
This gives the desired marginals and the claim follows.

Proof of Theorem 1. Let ℓ(λ) = l, ℓ(µ) = m and ν1 = c and set d = mc + c, e = lc + c.
Suppose first that λ1 ≤ mc and µ1 ≤ lc. We apply Lemma 2, and obtain

k(λ, µ, ν) = k
(
(d) ⋄ (cl + λ)︸ ︷︷ ︸

=: λ̂

, (e) ⋄ (cm + µ)︸ ︷︷ ︸
=: µ̂

, cl+m+1 ⋄ ν︸ ︷︷ ︸
=: ν̂

)
.
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The top rows of λ̂, µ̂, ν̂ are d, e, c respectively and thus Theorem 2 gives that for all
h ∈ N we have k(λ̂, µ̂, ν̂) = k(λ̂ + h, µ̂ + h, ν̂ + h) =

= k( (d + h) ⋄ (cl + λ), (e + h) ⋄ (cm + µ), (c + h) ⋄ cl+m ⋄ ν ) = k(cl + λ, cm + µ, cl+m ⋄ ν),

where the last identity follows by letting h → ∞. This proves Theorem 1 in the first case.
Suppose now that λ1 > mc, the case µ1 > lc is completely analogous. Set b := m + 1.

Then we have k(λ, µ, ν) = k(λ′, µ, ν′) = 0 since ℓ(λ′) = λ1 > mc = ℓ(µ)ℓ(ν′). On the
other hand, the reduced Kronecker coefficient is obtained by adding long first rows,
cm + c + h, cl + c + h, c + h respectively, so k(cl + λ, cm + µ, cl+m ⋄ ν) =

= k
(
(cm + c + h) ⋄ (cl + λ), (lc + c + h) ⋄ (cm + µ), (c + h) ⋄ cl+m ⋄ ν)

)
= k′

(
(cm + c + h) ⋄ (cl + λ)︸ ︷︷ ︸

=: α

, (lc + c + h) ⋄ (cm + µ)︸ ︷︷ ︸
=: β

, ((l + b)c + ν′) ⋄ (1h)︸ ︷︷ ︸
=: γ

)
for sufficiently large h. Let γ̂ = (l + b)c + ν′ be γ without the h many trailing 1s. We
observe that α2 = λ1 + c, ℓ(β) = b, and ℓ(γ̂) = c. From λ1 > mc we conclude α2 > bc.
Lemma 4 shows that C(α, β, γ) = ∅. Hence k′(α, β, γ) = 0 by Lemma 3.

3 Proofs via the general linear group

We refer to [7, §8] for the basic properties of the irreducible representations of the gen-
eral linear group. The Kronecker coefficients have an interpretation as the structure
coefficients arising when decomposing irreducible GLab representations as GLa × GLb
representations, which can be seen directly from Schur-Weyl duality:

Vν(C
ab) ≃

⊕
λ⊢a|ν|, µ⊢b|ν|

(
Vλ(C

a)⊗ Vµ(C
b)
)⊕k(λ,µ,ν)

.

Another formulation is via the multiplicity of the irreducible G := GLa × GLb × GLc
representation Vα(Ca)⊗ Vβ(C

b)⊗ Vγ(Cc) in the D-th wedge power of Ca ⊗ Cb ⊗ Cc, see
[8]. Formally for partitions α, β, γ ⊢ D we have

k′(α, β, γ) := k(α, β, γ′) = multα,β,γ
(∧D

(Ca ⊗ Cb ⊗ Cc)
)
.

A vector v for which
(
diag(r1, . . . , ra), diag(s1, . . . , sb), diag(t1, . . . , tc)

)
v = rλ1

1 · · · rλa
a ·

sµ1
1 · · · sµb

b · tν1
1 · · · tνc

c v is called a weight vector of weight (λ, µ, ν).
For (A, B, C) ∈ Ca×a × Cb×b × Cc×c, the Lie algebra action on

∧D(Ca ⊗ Cb ⊗ Cc) is
defined as (A, B, C).v := limε→0 ε−1((ε(A, B, C) + (ida, idb, idc))v − v). A raising oper-
ator is the Lie algebra action of (Ei−1,i, 0, 0), where Ei,j is the matrix with a 1 at posi-
tion (i, j) and zeros everywhere else. The other raising operators are (0, Ei−1,i, 0) and
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(0, 0, Ei−1,i). Let ei := (0, . . . , 0, 1, 0, . . . , 0)T and let ei,j,k := ei ⊗ ej ⊗ ek. Then, for example,
(Ei,j, 0, 0)er,1,1 = ei,1,1 iff r = j and 0 otherwise. A highest weight vector (HWV) of weight
(α, β, γ) is a nonzero weight vector of weight (α, β, γ) that is mapped to zero by all rais-
ing operators. The irreducible GLa × GLb × GLc representation Vα ⊗ Vβ ⊗ Vγ contains
exactly one HWV (up to scale), and that is of weight (α, β, γ). Hence ([8, Lemma 2.1]),

k′(α, β, γ) = dim
(

HWVα,β,γ
∧D

(Ca ⊗ Cb ⊗ Cc)
)

,

where HWVα,β,γ denotes the space of HWVs of weight (α, β, γ). Note that each standard
basis vector in

∧D(Ca ⊗ Cb ⊗ Cc) is a weight vector, and hence for each weight vector
space of weight w we have a basis given by the set of standard basis vectors of weight w.
Let ei,j,k := ei ⊗ ej ⊗ ek, and for a list of points Q ∈ (N3)D we define ψQ := eQ1 ∧ eQ2 ∧
· · · ∧ eQD . If Q has marginals (α, β, γ), then ψQ has weight (α, β, γ). This immediately
implies the result of Lemma 3.

Proof of Theorem 2 via contingeny arrays and highest weight vectors. Let a := ℓ(λ), b :=
ℓ(µ), c := ν1. Let γ := ν′, so ℓ(γ) = c. We have λ1 ≥ bc and µ1 ≥ ac. Observe
that k(λ, µ, ν) = k′(λ, µ, γ). Let λ̃ = λ + (h), µ̃ = µ + (h), γ̃ = γ ⋄ (1h). We define an
injective linear map φ as follows.

φ :
∧D

(Ca ⊗ Cb ⊗ Cc) →
∧D+h

(Ca ⊗ Cb ⊗ Cc+h)

v 7→ v ∧ e1,1,c+1 ∧ e1,1,c+2 ∧ · · · ∧ e1,1,c+h

Note that φ maps vectors of weight (λ, µ, γ) to vectors of weight (λ̃, µ̃, γ̃). It remains
to show that φ maps HWVs to HWVs, and that every HWV of weight (λ̃, µ̃, γ̃) has a
preimage under φ.

We first prove that φ sends HWVs to HWVs. By construction of φ, we observe that
for 1 ≤ i < i′ ≤ a, we have

(Ei,i′ , 0, 0)φ(u) = φ((Ei,i′ , 0, 0)u) = φ(0) = 0.

Analogously, (0, Ej,j′ , 0)φ(u) = 0 for 1 ≤ j < j′ ≤ b, and (0, 0, Ek,k′)φ(u) = 0 for 1 ≤ k <
k′ ≤ c. The remaining raising operators also vanish by construction of φ, because

(0, 0, Ek,k′)(v ∧ e1,1,c+1 ∧ · · · ∧ e1,1,c+h)

= v ∧ e1,1,c+1 ∧ · · · ∧ ê1,1,c+k ∧ e1,1,c+k′ ∧ e1,1,c+k′ ∧ · · · ∧ e1,1,c+h = 0

because of the repeated factor e1,1,c+k′ . Here the ê1,1,c+k means omission of that factor.
We now show that every weight vector of weight (λ̃, µ̃, γ̃) has a preimage under φ,

which finishes the proof. It is sufficient to show this for basis vectors. Let u = ψP be a
basis weight vector of weight (λ̃, µ̃, γ̃), i.e., Q ⊆ N3 with marginals (λ̃, µ̃, γ̃). We apply
Lemma 4 to see that {1} × {1} × [c + 1, c + h] ⊂ Q and Q ∩ (N × N × {i}) = {(1, 1, i)}
for all c + 1 ≤ i ≤ c + h. Therefore, ψQ has a preimage under φ, namely ψP, where P
arises from Q by deleting all points with 3rd coordinate > c.
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4 Proofs via symmetric functions

Here we use basic definitions and facts from symmetric function theory, see [25, 23] and
will skip the definitions of SSYTs, Schur function etc.. The multi-LR coefficients cλ

α1···αk are
defined as

cλ
α1···αk := ⟨sλ, sα1sα2 · · · sαk⟩ = ∑

β1,β2,...

cλ
α1β1cβ1

α2β2 · · · cβk−1

αk−1αk (4.1)

from where it is easy to see that they count SSYTs T of shape λ and type (α1 ⋄ α2 ⋄
· · · ), such that the reading word of each skew subtableau corresponding to the entries
with values between 1 + ∑r

i=1 ℓ(α
i) and ∑r+1

i=1 ℓ(α
i) is a lattice permutation for every

r = 1, . . . , k − 1. For example, 1 1 1 1 4 4 6
2 2 2 4 5 7
3 5 5 6 6

and 1 1 1 1 4 4 6
2 2 2 4 6 6
3 5 5 5 7

are two

multi-LR tableaux of shape λ = (7, 6, 5) and types α1 = (4, 3, 1), α2 = (3, 3), α3 = (3, 1).

The Kronecker coefficient can be studied via the following two [equivalent] identities

sλ[x · y] = ∑µ,ν k(λ, µ, ν)sµ(x)sν(y), ∑λ,µ,ν k(λ, µ, ν)sλ(x)sµ(y)sν′(z) = ∏i,j,k(1 + xiyjzk).

Extracting coefficients in both gives us the following formulas via multi-LRs:

k(λ, µ, ν) = ∑
σ∈Sℓ

sgn(σ) ∑
αi⊢λi−i+σi

cµ

α1···αk cν
α1···αk . (4.2)

and via 3d point configurations with given marginals:

∑λ,µ,ν k(λ, µ, ν)sλ(x)sµ(y)sν′(z) = ∑α,β,γ C(α, β, γ)xαyβzγ (4.3)

Note that this identity immediately gives the upper bound in Lemma 3 by comparing co-
efficients at xλyµzν′ on both sides. Replacing the Schurs by Weyl determinantal formula
and extracting monomials gives

k(λ, µ, ν) = ∑
σ∈Sa, π∈Sb, ρ∈Sc

sgn(σ) sgn(π) sgn(ρ)C(λ + σ − id, µ + π − id, ν′ + ρ − id). (4.4)

where a permutation σ is interpreted as the vector (σ(1), . . . , σ(a)) and id = (1, 2, . . .).

Proof of Theorem 2 via contingency arrays and symmetric functions. From now on we will
use formula (4.4) and Lemma 4 to show that the only possible contingency arrays are
the ones depicted there. Consider now k(λ + h, µ + h, ν + h) as in the problem, and
let α = (λ + h), β = (µ + h), γ = (ν + h)′ so that k(α, β, γ′) = k(λ + h, µ + h, ν + h).
Let ν1 = c, ℓ(λ) = a and ℓ(µ) = b, so we have α1 ≥ bc + h, β1 ≥ ac + h, γi = 1 for
i = c + 1, . . . , c + h and

k(α, β, γ′) = ∑
σ∈Sa, π∈Sb, ρ∈Sc+h

sgn(σ) sgn(π) sgn(ρ)C(α + σ − id, β + π − id, γ + ρ − id). (4.5)
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In formula (4.5) we then consider {0, 1}-contingency arrays Q with marginals

Q1∗∗ := ∑
j,k

Q1,j,k = λ1 + σ1 − 1 ≥ bc + h, Q∗1∗ := ∑
i,k

Qi,1,k = µ1 + π1 − 1 ≥ ac + h,

Q∗∗k := ∑
i,j

Qi,j,k = 1 + ρk − k, for k = c + 1, . . . , c + h.

Note that then we have ∑
k>c

Q∗∗k = h +
c+h

∑
k=c+1

ρk −
c+h

∑
k=c+1

k ≤ h, and the support of the

array is in [1, a]× [1, b]× [1, c + h], so we can apply Lemma 4 and conclude that Q1,j,k =
0 iff (j, k) ∈ [2, b] × [c + 1, c + h] and Qi,1,k = 0 iff (i, k) ∈ [2, a] × [c + 1, c + h]. Thus,
we must have Q1∗∗ = bc + h, Q∗1∗ = ac + h and so σ1 = π1 = 1, {ρc+1, . . . , ρc+h} =
{c + 1, . . . , c + h} and for k ∈ [c + 1, c + h] we must have Qi,j,k = 0 unless i = j = 1. This
also forces us to have Q1,1,k = 1 for all these k, and so ρk = k for k = c + 1, . . . , c + h.

This completely determines Qi,j,k for k > c, as well as ρk for k > c, and ρ = ρ̄, (c +
1), . . . , (c + h) for ρ̄ ∈ Sc. We can thus write formula (4.5) as
k(λ + h, µ + h, ν + h)

= ∑
σ∈Sa, π∈Sb, ρ∈Sc+h

sgn(σ) sgn(π) sgn(ρ)C(α + σ − id, β + π − id, γ + ρ − id)

= ∑
σ∈Sa, π∈Sb, η∈Sc

sgn(σ) sgn(π) sgn(η)C(ᾱ + σ − id, β̄ + π − id, γ̄ + η − id),

where ᾱ = α − (h) = λ, β̄ = β − (h) = µ and γ̄ = (γ1 . . . , γc) = ν′. As the last part
coincides with the expression for k(λ, µ, ν) in (4.4), we get the desired identity.

Proof of Theorem 2 via Littlewood-Richardson coefficients.
Let again ℓ(λ) = a, ℓ(µ) = b and ν1 = c.

We have that k(λ + h, µ + h, ν + h) = k(ν′ ⋄ (1h), λ′ ⋄ (1h), µ + h) and we are going to
apply formula (4.2) with that triple of partitions. Set µ̂ = µ + h, λ̂ = λ′ ⋄ (1h) = (λ + h)′

and ν̂ = ν′ ⋄ (1h)(ν + h)′. Here ℓ(ν′ ⋄ (1h)) = c + h, so

k(λ + h, µ + h, ν + h) = ∑
σ∈Sc+h

sgn(σ) ∑
αi⊢ν̂i−i+σi

cλ̂
α1α2···c

µ̂

α1α2···

From the iterated definition of the multi-LR coefficients (4.1) we see that in order for the
coefficients to be nonzero, we must have αi ⊂ µ̂ and αi ⊂ λ̂. Tthen ℓ(αi) ≤ ℓ(µ) = b and
αi

1 ≤ λ̂1 = a. Note that multi-LR coefficients count certain SSYTs of type (α1 ⋄ α2 ⋄ . . . ⋄
αc ⋄ . . .) and thus in the shape λ̂ the first column will have at most ℓ(α1)+ · · ·+ ℓ(αc) ≤ bc
many entries from the first c partitions. So there are at least h boxes in the first column
which need to be covered by the partitions αc+1, . . . , αc+h. We then have

h ≤ ℓ(αc+1) + · · ·+ ℓ(αc+h) ≤ |αc+1|+ · · ·+ |αc+h| =
c+h

∑
i=c+1

1 − i + σi ≤ h,
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as σc+1 + · · ·+ σc+h ≤ c + 1 + · · · c + h. Thus we need to have equalities, and so

|αc+1|+ · · ·+ |αc+h| = h, ℓ(αi) = |αi|,

so αi are single column partitions, possibly empty. Further, we have αi ≤ a, αi ⊂ µ̂.
As there is a multi-LR of type (α1 ⋄ α2 · · · ), the first row of that tableaux can only be
occupied by the smallest entries of each type. So we must have

ac + h = µ̂1 ≤ ∑
i

αi
1 ≤

c

∑
i=1

a +
c+h

∑
i=c+1

αi
1.

Thus αc+1
1 + · · · + αc+h

1 ≥ h. Since αi
1 ≤ 1 by the above consideration, we must have

αi = (1) for all i > c. So σi = i for i = c + 1, . . . , c + h. Then

cλ̂
α1α2···αc+h = cλ′

α1···αc and cµ̂

α1α2···αc+h = cµ

α1···αc .

We thus get that k(λ + h, µ + h, ν + h) = ∑
σ∈Sc+h

sgn(σ) ∑
αi⊢ν̂i−i+σi

cλ̂
α1α2···c

µ̂

α1α2···

= ∑
σ∈Sc

sgn(σ) ∑
αi⊢ν′i−i+σi

cλ′

α1α2···c
µ

α1α2··· = k(ν′, λ′, µ) = k(λ, µ, ν).
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