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Abstract. For each Coxeter element c in the symmetric group, we define a pattern-
avoiding Birkhoff subpolytope whose vertices are the c-singletons. We show that the
normalized volume of our polytope is equal to the number of longest chains in a
corresponding type A Cambrian lattice. Our work extends a result of Davis and Sagan
which states that the normalized volume of the convex hull of the 132 and 312 avoiding
permutation matrices is the number of longest chains in the Tamari lattice, a special
case of a type A Cambrian lattice. Furthermore, we prove that each of our polytopes is
unimodularly equivalent to the order polytope of the heap of the c-sorting word of the
longest permutation. This gives an affirmative answer to a generalization of a question
posed by Davis and Sagan.
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1 Introduction

The sequence [6, A003121] counts shifted standard tableaux of staircase shape and
longest chains in the Tamari lattice; it also counts the number of reduced words in a
certain commutation class of the longest permutation. More recently, it was shown by
Davis and Sagan in [2] that this sequence gives the normalized volume of a certain
"pattern-avoiding polytope," a subpolytope of the Birkhoff polytope whose vertices are
132 and 312 avoiding permutations. Since these permutations form a distributive sub-
lattice of the right weak order, Davis and Sagan asked whether their polytope might be
unimodularly equivalent to the order polytope of the poset of join irreducibles of the 132
and 312 avoiding permutations.
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In the same paper, Davis and Sagan pointed out that the 132 and 312 avoiding permu-
tations are known to be the c-singletons for the symmetric group for a specific "Tamari"
Coxeter element c and proposed that it would be interesting to define similar pattern-
avoiding polytopes for other Coxeter groups and study them from the perspective of
c-singletons. The c-singletons are the spine of an important lattice called the c-Cambrian
lattice [7], and they form a distributive sublattice of the right weak order [4].

In this article, we associate a pattern-avoiding polytope to each Coxeter element c in
the symmetric group. We define this polytope to be the convex hull of the permutation
matrices of the c-singletons (see Sections 3.2 and 4.1). We prove that our polytope is
indeed unimodularly equivalent to the order polytope of the poset of join irreducibles of
the c-singletons (see Section 5). In particular, for the Tamari Coxeter element, our result
answers Davis and Sagan’s question in the affirmative.

2 Background and notation

Denote the symmetric group on n + 1 elements by An. We can represent a permutation
w ∈ An in one-line notation as w = w(1)w(2) · · ·w(n + 1). For each i ∈ {1, . . . , n}, we
write si ∈ An to denote the simple reflection (or adjacent transposition) that swaps i and i+ 1
and fixes all other letters. Every permutation can be expressed as a product of simple
reflections. Given w ∈ An, the minimum number of simple reflections among all such
expressions for w is called the (Coxeter) length of w, and is denoted by ℓ(w). A reduced
decomposition of w is an expression w = si1 · · · siℓ(w)

realizing the Coxeter length of w. To

simplify notation, we refer to such a decomposition via its reduced word
[
i1 · · · iℓ(w)

]
. For

example, consider w = 51342 ∈ A4. One of its reduced decompositions is s4s2s3s2s4s1
with [423241] as the corresponding reduced word, and ℓ(w) = 6.

A Coxeter element c in An is a product of all n simple reflections in any order, where
each reflection appears exactly once. The longest permutation of An is the permutation
w0 = (n + 1)n . . . 321 and ℓ(w0) = (n+1

2 ).
Simple reflections satisfy commutation relations of the form sisj = sjsi for |i − j| > 1.

An application of a commutation relation to a product of simple reflections is called a
commutation move. When referring to reduced words, we will say adjacent letters i and j
in a reduced word commute when |i − j| > 1. Given a reduced word [u] of a permutation,
the equivalence class consisting of all words that can be obtained from [u] by a sequence
of commutation moves is the commutation class of [u].

2.1 Heaps

We review the classical theory of heaps, which was used in [12] to study fully commu-
tative elements of a Coxeter group. Heaps also appeared as "the natural partial orders"
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in [3, Definition 6] and [5, Definition 1] and they were used to study certain acyclic do-
mains. For a detailed list of attributions on the theory of heaps, see [10, Solutions to
Exercise 3.123(ab)].

Definition 2.1. Given a reduced word [u] = [u1 · · · uℓ] of a permutation, consider the partial
order ≼ on the set {1, . . . , ℓ} obtained via the transitive closure of the relations

x ≺ y

for x < y such that |ux − uy| ≤ 1 (that is, ux and uy do not commute). For each 1 ≤ x ≤ ℓ, the
label of the poset element x is ux. This labeled poset is called the heap for [u], denoted Heap([u]).
The Hasse diagram for this poset with elements {1, . . . , ℓ} replaced by their labels is called the
heap diagram for [u]. The labels in the heap diagram are drawn in increasing order from left to
right.
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Figure 1: Hasse diagram of the underlying poset (left) and the heap diagram (right) of
a commutation class of w0 given in Example 2.2.

Example 2.2. Consider a reduced word [u] = [u1 . . . u10] = [1214321432] of the longest element
w0 in A4.

1. Figure 1 (left) shows a Hasse diagram of the underlying unlabeled poset Heap([u]). Here
ℓ = 10 and so the the elements of the heap poset Heap([u]) are {1, 2, . . . , 10}.

2. Figure 1 (right) shows the heap diagram for Heap([u]). The possible labels of the poset
elements are {1, 2, 3, 4}.

Linear extensions of Heap([u]) relate to the commutation class of [u].

Definition 2.3. A linear extension π = π(1) · · ·π(ℓ) of a partial order ≼ on {1, . . . , ℓ}
is a total order on the poset elements that is consistent with the structure of the poset. That
is, x ≺ y implies π(x) < π(y). A labeled linear extension of the heap of a reduced word
[u] = [u1 · · · uℓ] is a word

[
uπ(1) · · · uπ(ℓ)

]
, where π = π(1) · · ·π(ℓ) is a linear extension of

the heap.
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Proposition 2.4 ([12, Proof of Proposition 2.2] and [10, Solutions to Exercise 3.123(ab)]).
Given a reduced word [u], the set of labeled linear extensions of the heap for [u] is the commutation
class of [u].

Example 2.5. Three of labeled linear extensions of Heap([u]) from Example 2.2 are [u] itself,
[1243124312], and [4123412312]. Notice that these reduced words all belong to the same com-
mutation class, due to Proposition 2.4.

2.2 Order polytopes

In this section, we review order polytopes, following Stanley’s paper [11]. Given a finite
poset P, the order polytope of P is given by

O(P) := {x ∈ RP : 0 ⩽ xt ⩽ 1 for all t ∈ P and xt ⩽ xs when t ⩽P s} .

Many basic properties of an order polytope are answered by the combinatorial struc-
ture of the poset. Below are some properties that are relevant to us.

1. The dimension of O(P) is given by the number of elements in P.

2. The volume of O(P) can be computed from the number of linear extensions of P.

3. The vertices of O(P) are exactly the indicator vectors of order ideals of P.

In this paper, we will be focusing on order polytopes for certain heap posets.

3 c-singletons

3.1 c-sorting words and c-sortable permutations

In this section, we review c-sorting words and c-sortable elements, which were intro-
duced in [8]. Given a Coxeter element c and reduced word [a1a2 . . . an], define an infinite
word

c∞ := a1a2 . . . an | a1a2 . . . an | · · ·

consisting of repeated copies of the given reduced word for c. The symbols "|" are
"dividers" which facilitate the definition of sortable elements. The c-sorting word of
w ∈ An is the lexicographically first (as a sequence of positions in c∞) subword of c∞

that is a reduced word for w. We denote this word by sortc(w).
We say that the identity permutation is c-sortable. If w is not the identity permutation,

we can think of sortc(w) as a sequence of nonempty subsets of {a1, . . . , an}. The subsets
K1, K2, . . . , Kp in this sequence are the sets of letters of c that occur between two adjacent
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dividers, so we have x ∈ Kj if x is in the jth copy of c inside c∞. We say that a permutation
w is c-sortable if K1 ⊇ K2 ⊇ · · · ⊇ Kp. The set of c-sortable permutations does not depend
on the choice of reduced word for c.

Example 3.1. Consider the Coxeter element c = s1s2s3s4 = [1234] of A4. Then the c-sorting
word of the permutation 42351 is [1234 | 2 | 1]. Our subsets are K1 = {1, 2, 3, 4}, K2 = {2},
and K3 = {1}. Since K2 ̸⊇ K3, these sets do not form a nested sequence and therefore 42351 is
not c-sortable. On the other hand, the permutation 43215 has c-sorting word [123 | 12 | 1] and
is c-sortable.

Reading showed in [9] that the restriction of the right weak order to c-sortable ele-
ments is a lattice which is isomorphic to an important quotient of the right weak order
called the c-Cambrian lattice [7]. For the Coxeter element c = s1s2 . . . sn, the c-sortable
elements form the Tamari lattice. For this reason, we refer to this Coxeter element as the
"Tamari" Coxeter element of An. Cambrian lattices and c-sortable elements have strong
connections to cluster algebras, representation theory, and many areas of combinatorics,
and they are widely studied. We will be interested in a subclass of c-sortable elements,
called c-singletons, which we describe next.

3.2 c-singleton permutations

There is an order-preserving projection πc
↓ : An → An which sends an element w to the

largest c-sortable element that is weakly below w in the right weak order [9, Proposition
3.2]. In [4], Hohlweg, Lange, and Thomas used this map to introduce an important
subclass of c-sortable elements: A c-sortable w is called a c-singleton if the preimage of
{w} under πc

↓ is the singleton {w} itself. We will use the following characterization of
c-singletons.

Theorem 3.2 ([4, Theorem 2.2]). A permutation w is a c-singleton if and only if some reduced
word of w is a prefix of a word in the commutation class of sortc(w0), the c-sorting word of the
longest permutation w0.

The set of c-singletons form a distributive sublattice of the right weak order due to
[4, Proposition 2.5]. We denote this lattice by L(c-singletons). By [5, Proposition 3],
L(c-singletons) is isomorphic to the lattice of order ideals of Heap(sortc(w0)), which we
denote by J(Heap(sortc(w0))).

Proposition 3.3. The following map is a poset isomorphism

f : L(c-singletons) → J(Heap(sortc(w0)))

w 7→ Heap(sortc(w))

between the c-singletons and the order ideals of the heap poset Heap(sortc(w0)).
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As we noted in Section 2.2, the vertices of the order polytope O(P) of a poset P
correspond to the order ideals of P. As a consequence, the c-singletons are in bijection
with the vertices of O(Heap(sortc(w0))).

4 c-Birkhoff polytopes

The Birkhoff polytope is the convex hull of all permutation matrices. Davis and Sagan [2]
studied a "pattern-avoiding" subpolytope of the Birkhoff polytope whose vertices corre-
spond to the permutations avoiding the pattern 132 and 312. As noted in [2, Remark
3.6], for the "Tamari" Coxeter element c = s1s2 . . . sn, the c-singletons are precisely the
permutations which avoid these same patterns 132 and 312.

4.1 A pattern-avoidance criterion for c-singletons

There is a similar classification of c-singletons for other c (see Proposition 4.1). In this
section, we generalize Davis and Sagan’s pattern-avoiding polytope coming from the
"Tamari" Coxeter element c to all Coxeter elements c in An.

Let c be a Coxeter element in An. There is exactly one commutation class for c, so
every reduced word for c has the same heap. By abuse of notation we write Heap(c)
to denote this heap. Then Heap(c) is the partial order on {1, . . . , n} obtained via the
transitive closure of the cover relations i − 1 ≺ i if i − 1 appears to the left of i in every
reduced word of c, and i − 1 ≻ i otherwise.
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Figure 2: The heap diagram for the Coxeter element c = s1s4s3s2s6s5s7 which corre-
sponds to lower-barred numbers 2, 5, 7 and upper-barred numbers 3, 4, 6.

As described in [7, Chapter 6], we partition the integers in [2, n] into lower-barred and
upper-barred numbers [2, n] and [2, n], respectively. If i − 1 ≺ i, define i to be a lower-
barred number i ∈ [2, n]; If i − 1 ≻ i, define i to be a upper-barred number i ∈ [2, n]. For
example, see Figure 2.

We say that a permutation w avoids the pattern 312 if w contains no 312-pattern such
that the last entry "2" in the pattern is a lower-barred number. Similarly, a permutation
w avoids the pattern 231 if the one-line notation w contains no 231-pattern such that the
first entry "2" in the pattern is an upper-barred number.
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The following result of [7, Proposition 5.7] characterizes c-sortable and c-singleton
permutations using pattern-avoidance.

Proposition 4.1. A permutation w ∈ An is c-sortable if and only if the one-line notation of w
avoids the patterns 312 and 231. Furthermore, a c-sortable permutation w is a c-singleton if and
only if w avoids the patterns 132 and 213.

Definition 4.2. For a Coxeter element c in An, we define the c-singleton Birkhoff polytope, or
c-Birkhoff polytope for short, to be the convex hull of the permutation matrices corresponding
to the c-singletons, that is, the permutations avoiding the four patterns listed in Proposition 4.1.
We denote the c-Birkhoff polytope as Birk(c).

Note that our convention is that the permutation matrix of the permutation w =
w(1) . . . w(n + 1) has 1’s in entries (i, w(i)).

Remark 4.3. Davis and Sagan suggested in [2, Remark 3.6] that it would be interesting to define
pattern-avoiding polytopes for other Coxeter groups. Theorem 4.12 of [8] characterizes type B and
D c-sortable elements as signed permutations satisfying certain pattern avoidance conditions.
This can be used to give us an analog of Proposition 4.1 for type B and D c-singletons.

4.2 Relations for c-Birkhoff polytopes

The classical Birkhoff polytope of An lives in a (n+ 1)2-dimensional ambient space. Since
each of its row and column sum up to one, it is a n2-dimensional polytope. The row and
column relations for the classical Birkhoff polytope also hold in the c-Birkhoff polytope,
since the vertices still come from permutation matrices. Our goal in this section is to
exhibit (n

2) additional relations which any point in Birk(c) satisfies, so that it is in fact an
(n+1

2 )-dimensional polytope.
From the pattern avoidance criteria in Proposition 4.1, we see that if w is a c-singleton

and i ∈ [2, n], all numbers less than i or all numbers greater than i must appear after
i in the one-line notation w and similarly for upper-barred numbers. In particular, if
m = max(i + 1, n − i + 2), then i cannot appear in any of the last m spots of w.

We will consider points in Birk(c) as matrices (xi,j) for 1 ≤ i, j ≤ n + 1.

Proposition 4.4. Let c be a Coxeter element in An, and let (xi,j) be a point in the c-Birkhoff
polytope. For 2 ≤ i ≤ n, if i ∈ [2, n] and m = max(i + 1, n + 2 − i), we have

xm,i = xm+1,i = · · · = xn+1,i = 0.

Otherwise, i ∈ [2, n] and if r = min(i − 1, n + 2 − i), then

x1,i = x2,i = · · · = xr,i = 0.



8 Esther Banaian, Sunita Chepuri, Emily Gunawan, and Jianping Pan

Using the pattern avoidance repeatedly puts restrictions on which numbers can ap-
pear together in the first u spots of a c-singleton for some values of u.

Theorem 4.5. Let c be a Coxeter element in An. For each 1 ≤ i ≤ n−1
2 and i + 1 ≤ u ≤ n − i,

there exists a sequence i = v0 < v1 < · · · < vd, where d ≥ 1, such that

d

∑
j=0

u

∑
i=1

xi,vj

is equal to either 1 or d (depending on i and u) for all points in the c-Birkhoff polytope.

Example 4.6. Let c = s1s2s4s3. Then the c-Birkhoff polytope has (4
2) = 6 additional relations.

Proposition 4.4 gives us four relations

x5,2 = x4,3 = x5,3 = x1,4 = 0.

Theorem 4.5 gives us two more relations. For i = 1, u = 2, the sequence is v0 = 1, v1 = 3, v2 =
4, and we have the relation

2

∑
j=0

2

∑
i=1

xi,vj = ∑
j∈{1,3,4}

2

∑
i=1

xi,j = x1,1 + x2,1 + x1,3 + x2,3 + x1,4 + x2,4 = 1.

For i = 1, u = 3, the sequence is v0 = 1, v1 = 5 and we have the relation

1

∑
j=0

3

∑
i=1

xi,vj = ∑
j∈{1,5}

3

∑
i=1

xi,j = x1,1 + x2,1 + x3,1 + x1,5 + x2,5 + x3,5 = 1.

5 Birk(c) and O(Heap(sortc(w0)))

In this section, we will prove Birk(c) is unimodularly equivalent to the order poly-
tope O(Heap(sortc(w0))). We will achieve this by first explicitly constructing a lattice-
preserving projection Πc on Birk(c), and then show the existence of a unimodular trans-
formation Uc.

5.1 A lattice-preserving projection

Let c be a Coxeter element of An. We define a projection Πc on (n+ 1)× (n+ 1)-matrices
which reads (n+1

2 ) of the entries in a specific order. We describe the reverse order by
reading entries in the matrix.

Let 1 < p1 < · · · < pr < n + 1 be the set of lower-barred numbers and q1 <
. . . qs < n + 1 be the set of upper-barred numbers for c. Let σ be the permutation
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(n + 1) pr pr−1 . . . p1 1 q1q2 . . . qs written in one-line notation. The first entries we will
read are

(p1 − 1, p1), (p1 − 2, p1), . . . , (1, p1),
. . .
(pr − 1, pr), (pr − 2, pr), . . . , (1, pr),
(n, n + 1), (n − 1, n + 1), . . . , (1, n + 1).

The remaining entries come from qs, . . . , q1. For each qi, take qi − 1 entries as follows:

• Let m = min(qi − 1, n+ 1− qi). Let σi
1, σi

2, . . . , σi
m be the m numbers of σ (in one-line

notation) immediately before qi, from right to left.

• First take the m entries (n + 1, σi
1), (n, σi

2), . . . , (n + 2 − m, σm
i ).

• Then take the additional qi − 1 − m entries (qi − 1, qi), (qi − 2, qi), . . . , (m + 1, qi).

Example 5.1. Let c = s1s4s3s2s6s5s7 be the Coxeter element whose Heap diagram and corre-
sponding upper- and lower-barred numbers are illustrated in Figure 2. Then p1, p2, p3 = 2, 5, 7
and q1, q2, q3 = 3, 4, 6. We have σ = 87521346. We compute the projection Πc in Figure 3 (left).

28 X X 24 X 18 11
X X 25 X 19 12

X 26 6 20 13
27 7 21 14

8 22 15
3 X 23 16

4 1 9 X 17
2 X 5 10 X X

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Figure 3: Left: The projection Πc of Example 5.1. Right: permutation matrix for b4 of
Example 5.5.

Theorem 5.2. Πc is a lattice-preserving projection on the c-Birkhoff polytope.

5.2 A diagonal reading word

Let c be a Coxeter element of An and let Rc denote the labeled linear extension of
Heap(sortc(w0)) which is lexicographically first, in the sense of lexicographic order on
heap labels. Observe that Rc is the word formed by concatenating the diagonals of
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11
21

12 31
22 41

13 32 51
23 42 61

14 33 52 71
24 43 62

15 34 53 72
25 44 63

16 35 54 73
26 45 64

17 36 55 74
27 46 65

18 37 56 75

11

4 6
3 5 7

2 4 6
1 3 5 7

2 4 6
1 3 5 7

2 4 6
1 3 5 7

6
7

Figure 4: Left: Algorithm for constructing the heap Heap(sortc(w0)) for [4321657]-
sorting word of the longest element w0 in A7. Right: The heap diagram for
Heap(sortc(w0)).

Heap(sortc(w0)) from left to right; within each diagonal, read from southeast to north-
west. For this reason, we refer to the reduced word Rc as the diagonal reading word of
Heap(sortc(w0)).

Thanks to [1, 5], we can give a nice algorithmic construction of Heap(sortc(w0)) using
the upper- and lower-barred numbers corresponding to c. For example, Figure 4 shows
this construction for Heap(sortc(w0)) where c = [4321657] with lower-barred numbers
5, 7 and upper-barred numbers 2, 3, 4, 6. This algorithm gives us the following lemma.

Lemma 5.3. Let c be any Coxeter element in An with s upper-barred numbers 1 < q1 < · · · <
qs < n + 1 and r lower-barred numbers 1 < p1 < · · · < pr < n + 1. Then

Rc =
[
(p1 − 1)...1

]
. . .

[
(pr − 1)...1

]
[n...1] [n...(n − qs + 2)] . . . [n...(n − q1 + 2)]

is a concatenation of n factors, where each factor is a decreasing sequence of consecutive integers.

Example 5.4. For example, the reduced word [u] = [1] [21] [4321] [432] given in Example 2.2 is
the diagonal reading word R[1243] of the heap diagram in Figure 1. The diagonal reading word of
the heap diagram given in Figure 4 is

R[4321657] = [4321] [654321] [7654321] [76543] [765] [76] [7] .
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5.3 Unimodular equivalence

Note that Rc is of length (n+1
2 ) = ℓ(w0), and write Rc =

[
r1 . . . rℓ(w0)

]
. For each 1 ⩽ i ⩽

ℓ(w0), define bi to be the length-i prefix of Rc, that is, bi = [r1 . . . ri]. Since Rc is a labeled
linear extension of Heap(sortc(w0)), Proposition 2.4 tells us that it is in the commutation
class of sortc(w0), and thus Theorem 3.2 tells us that each bi is a c-singleton.

Given a c-singleton w, let f (w) be the corresponding order ideal of Heap(sortc(w0)),
where f is as defined in Proposition 3.3. Consider the vector in Rℓ(w0) defined by the
indicator function of f (w), following the linear extension given by Rc. Let o(w) denote
this vector in reverse order. In particular, note that o(bi) is the vector whose last i entries
are 1s and whose all other entries are 0s.

Example 5.5. Let c be as in Example 5.1 with p1, p2, p3 = 2, 5, 7 and q1, q2, q3 = 3, 4, 6. We
have Rc = [1 4321 654321 7654321 76543 765 76]. Therefore b4 = s1s4s3s2 = 25134678 and
its permutation matrix is in Figure 3 (right). We can then compute

Πc(b4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) , and
o(b4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) .

Lemma 5.6. Let c be a Coxeter element of An. Then the
(
(n+1

2 )− i + 1
)

th entry of the vector
Πc(bi) is 1, and all earlier entries of Πc(bi) are zero. That is, the matrix whose columns are
Πc(bi) is a lower antidiagonal triangular matrix with 1’s along the antidiagonal.

Theorem 5.7. Fix a Coxeter element c in An. There exists a (n+1
2 ) × (n+1

2 ) lower-triangular
matrix Uc with 1’s on the main diagonal such that Uc ◦ Πc(bi) = o(bi) for all 1 ⩽ i ⩽ (n+1

2 ).
Furthermore, we have Uc ◦ Πc(w) = o(w) for any c-singleton w.

Corollary 5.8. The c-Birkhoff polytope Birk(c) is unimodularly equivalent to the order polytope
O(Heap(sortc(w0))).

Proof. This follows from the facts that the projection Πc preserves lattice points (Theo-
rem 5.2) and that the linear transformation Uc has determinant 1 (Theorem 5.7).

Corollary 5.9. The normalized volume of the c-Birkhoff polyope is equal to the number of longest
chains in the corresponding Cambrian lattice.

Corollary 5.9 recovers, and generalizes, a result of Davis and Sagan in [2].

Remark 5.10. One might ask whether our result generalizes as follows: If w ∈ An and [u] is a
reduced word for w then the order polytope of Heap[u] is unimodularly equivalent to the convex
hull of the permutations corresponding to order ideals of Heap[u]. This is not true in general;
for A4 the reduced words [2123243212] and [3432312343] are counterexamples. It would be
interesting to determine when the above statement holds.
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