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Growth Diagrams for Schubert RSK
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Abstract. Motivated by classical combinatorial Schubert calculus on the Grassmannian,
Huang–Pylyavskyy introduced a generalized theory of Robinson–Schensted–Knuth
(RSK) correspondence for studying Schubert calculus on the complete flag variety,
via insertion algorithms. The inputs of the correspondence are certain biwords, the in-
sertion objects are bumpless pipe dreams, and the recording objects are certain chains
in Bruhat order. In particular, they defined plactic biwords and showed that classi-
cal Knuth relations can be generalized to these. In this extended abstract, we give
an analogue of Fomin’s growth diagrams for this generalized RSK correspondence on
plactic biwords. We show that this growth diagram recovers the bijection between pipe
dreams and bumpless pipe dreams of Gao–Huang.

The general philosophy of a growth diagram can be thought of as translating a temporal
object, i.e., an algorithm, to a spatial object, i.e., a diagrammatic encoding of the algo-
rithm, so as to provide a powerful tool to study the algorithm, as well as an interface
between combinatorial algorithms and algebraic or geometric phenomena.1 The most
classical example of a growth diagram is of the classical Robinson-Schensted (RS) cor-
respondence, a bijection between a permutation and a pair of standard Young tableaux.
The Robinson-Schensted-Knuth (RSK) correspondence is a generalization of the RS cor-
respondence and is of central importance in symmetric function theory. Each variation
of these correspondences has its corresponding growth diagram version. The RS corre-
spondence is originally defined as an insertion algorithm on pairs of standard tableaux.
The algorithm iteratively scans the permutation, inserting each time a number to the
insertion tableaux, and records the position of the new entry in the recording tableaux.
The growth diagram first introduced by Fomin [2, 3], however, is a two dimensional
grid that can be roughly thought of as an “enriched” permutation matrix, with the extra
information determined by certain local “growth rules.” Although far from apparent at
a first glance, the growth diagram is a lossless encoding of the insertion algorithm. Fur-
thermore, the growth diagram manifests many non-obvious properties of the insertion

algorithm. For example, the property w RS←→ (P, Q) implies w−1 RS←→ (Q, P) can be easily
seen by transposing the growth diagram.
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It is possible to give the RSK correspondence an operator theoretic interpretation
through growth diagrams, and as a consequence obtain a noncommutative version of
Cauchy’s identity [4]. Furthermore, growth diagrams for the RS correspondence has
beautiful geometric and representation-theoretic interpretations [11, 14, 15].

Beyond classical RSK, there are many examples in the literature of expressing com-
binatorial algorithms using growth diagrams, see, e.g., [9, 12, 13, 16].

In [7] and [8], the first author and Pylyavskyy introduced a generalization of the
classical RSK correspondence for Schubert polynomials, called bumpless pipe dream
(BPD) RSK. As in the classical case, this generalization of RSK is defined via insertion
algorithms. The algorithm takes as input a certain biword, iteratively inserts it into a
bumpless pipe dream, and records the insertion via chains in mixed k-Bruhat order. An
analogue of Knuth moves was discovered for a more restrictive set of biwords, called
plactic biwords. It is then natural to pursue a growth diagram version of his generalized
RSK correspondence on plactic biwords. In this extended abstract, we describe these new
growth diagrams for the RSK correspondence for plactic biwords. As an application, our
growth diagram manifests the canonical bijection between pipe dreams and bumpless
pipedreams of the first author and Gao [5]. We also hope that this opens up a venue
for connecting the combinatorics of this generalized RSK to its algebraic or geometric
interpretations.

1 Plactic biwords and growth rules

1.1 Bumpless pipe dreams

In this subsection we recall the basic definition of bumpless pipe dreams [10]. A (re-
duced) bumpless pipe dream for a permutation π ∈ Sn is a tiling of an n × n grid
with allowable tiles , , , , , and , such that n “pipes” traveling from the bottom
of the grid to the right of the grid form, and no two pipes cross twice. The bottom of
the grid is labeled with 1, · · · , n, and a permutation read from the pipe labels from the
top to bottom on the right edge of the grid is π. We denote the set of bumpless pipe
dreams for π ∈ Sn with BPD(π). For example, Figure 1 shows a bumpless pipe dream in
BPD(14253). The natural embedding of permutations Sn ↪→ Sn+1 gives rise to a natural
embedding of bumpless pipe dreams in the n× n grid to those in the (n + 1)× (n + 1)
grid.

1.2 Generalized Knuth relations on plactic biwords

Definition 1.1 ([8]). A biletter is a pair of positive integers (a
k) where a ≤ k. A plactic

biword is a word of biletters (a
k) =

(
a1 ··· aℓ
k1 ··· kℓ

)
, where ki ≥ ki+1 for each i.
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Figure 1: A bumpless pipe dream in BPD(14253)

Definition 1.2 ([8]). We define the generalized Knuth relations on plactic biwords as
follows:

(1)
( ··· b a c ···
··· k k k ···

)
∼

( ··· b c a ···
··· k k k ···

)
if a < b ≤ c

(2)
( ··· a c b ···
··· k k k ···

)
∼

( ··· c a b ···
··· k k k ···

)
if a ≤ b < c

(3)
( ··· a b ···
··· k k ···

)
∼

( ··· a b ···
··· k+1 k ···

)
if a ≤ b

(4)
( ··· b a ···
··· k+1 k+1 ···

)
∼

( ··· b a ···
··· k+1 k ···

)
if a < b.

Notice that these relations are only defined on plactic biwords. We do not apply the
relation (3) or (4) if the resulting word is no longer plactic.

Given a biword Q =
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
, [7] defines a map L(Q) = (φL(Q), chL(Q)) where

φL(Q) is the BPD obtained by reading Q from right to left and successively performing
left insertion, and chL(Q) is the recording chain in mixed k-Bruhat order with edge labels
kℓ, · · · , k1, as well as a map R(Q) = (φR(Q), chR(Q)) where φR(Q) is the BPD obtained
by reading Q from left to right and successively performing right insertion, and chR(Q)
is the recording chain in mixed k-Bruhat order with edge labels k1, · · · , kℓ. For details
of these insertion algorithms see [7, Section 3]. Furthermore, by [8, Proposition 1.2],
the insertion BPD is well-defined regardless of the choice of insertion algorithms, so we
write φ(D) := φR(D) = φL(D). For the analysis of the insertion algorithm in this paper
we use R, the right insertion algorithm.

Theorem 1.3 ([8]). For any D ∈ BPD(π), the set of plactic biwords

words(D) := {Q : φ(Q) = D}

is connected by the generalized Knuth relations.

For a biword Q, we define Q>i to be the biword obtained from Q by removing all
biletters (

aj
kj
) with aj ≤ i. In particular, Q>0 is Q. We have the following lemma.

Lemma 1.4. Suppose Q and Q′ are connected by the generalized Knuth relations, then
for all i, Q>i and Q′>i are connected by the generalized Knuth relations.
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Proof. It suffices to consider the case where Q and Q′ are connected by one generalized
Knuth relation. Observe that in all relations, if we remove the biletters (a

k) and ( a
k+1),

then the remaining biwords are the same. Thus, we can iteratively remove all biletters
(1
∗), (

2
∗), . . . , ( i

∗), and after each step, either the remaining biwords are connected by the
same generalized Knuth relation or they are the same biword.

As a result of Lemma 1.4, for any D ∈ BPD(π) and any i, the set of plactic words
{Q>i | Q ∈ words(D)} is also connected by the generalized Knuth relations. Therefore,
for any Q ∈ words(D), φ(Q>i) is the same BPD.

Remark 1.5. One could similarly define Q<i to be the biword obtained from Q by re-
moving all biletters (

aj
kj
) with aj ≥ i and ask if Q ∼ Q′ implies Q<i ∼ Q′<i for all i.

The answer is unfortunately no. One small example is
(

1 3 2
3 3 3

)
∼

(
1 3 2
3 3 2

)
but

(
1 2
3 3

)
and(

1 2
3 2

)
are not connected by generalized Knuth relations. The reason is that if Q and Q′

are connected by the generalized Knuth relation (3) or (4), then removing (b
∗) yields two

different biwords.

1.3 Jeu de taquin on BPDs

Given D ∈ BPD(π) with ℓ(π) > 0, [5, Definition 3.1] produces another bumpless pipe
dream ∇D ∈ BPD(π′) where ℓ(π′) = ℓ(π)− 1. We call the ∇ operator jeu de taquin
on BPDs. The justification of this name is that, after applying a direct bijection between
(skew) semistandard tableaux and BPDs for Grassmaninan permutations, the jeu de
taquin algorithm on tableaux can be realized as a corresponding algorithm on BPDs.
See [6] for a detailed description. We will sometimes use the notation jdt(b, r) instead
of ∇ to emphasize that jeu de taquin starts from position (b, r). See Figure 4 for an
illustration.

For each BPD D, let b be the smallest row with an empty square , define D′ =
rect(D) be the BPD obtained from D by performing jdt on all empty squares on row b
from right to left. Suppose π and µ are the permutations of D′ and D, respectively, then
by [5], we have µ = sij . . . si1π, where ij > . . . > i1.

Theorem 1.6. Let D be the BPD corresponding to a biword w =
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and b =

min{b1, . . . , bℓ}, and let D′ be the BPD corresponding to w′ obtained by removing all
biletter ( b

ki
) from w. Then D′ = rect(D).

The following corollary is immediate from Theorem 1.6 by [5].

Corollary 1.7. With the same notation as in Theorem 1.6, let π and µ be the permutations
of D′ and D, respectively, then

µ = sij . . . si1π

where ij > . . . > i1.
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1.4 Growth diagrams

1.4.1 Defining growth diagrams

Given a plactic biword
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and let a = max{bi | 1 ≤ i ≤ ℓ}. We define a growth

diagram to be a matrix of permutations πi,j with 0 ≤ i ≤ a and 0 ≤ j ≤ ℓ. The initial
condition is πi,0 = id for all i and πa,j = id for all j. The figure below shows a generic
square of the growth diagram.

πi,j−1 πi,j

πi−1,j−1 πi−1,j

We fill the squares of the growth diagram as follows. For each biletter (bi
ki
), we put an ×ki

in the square whose corners are πbi,i−1, πbi,i, πbi−1,i−1, πbi−1,i. In addition, in every other
square between columns i− 1 and i, we put a subscript ki. The following figure shows
an example where the biword is

(
1 3 1 2 1
3 3 2 2 1

)
.

π3,0 π3,1 π3,2 π3,3 π3,4 π3,5

3 ×3 2 2 1

π2,0 π2,1 π2,2 π2,3 π2,4 π2,5

3 3 2 ×2 1

π1,0 π1,1 π1,2 π1,3 π1,4 π1,5

×3 3 ×2 2 ×1

π0,0 π0,1 π0,2 π0,3 π0,4 π0,5

For each point (i, j) in the growth diagram, let w(i, j) be the biword obtained from
reading from left to right the X’s to the NW of (i, j). Formally speaking, w(i, j) is obtained
from

(
b1 b2 ... bℓ
k1 k2 ... kℓ

)
by removing all biletter (bs

ks
) with bs ≤ i or s > j. For example, in the

above growth diagram, w(1, 4) =
(

3 2
3 2

)
. Define πi,j to be the permutation of φ(w(i, j)),

the bumpless pipe dream obtained by inserting w(i, j).

Remark 1.8. When k1 = · · · = kℓ = k, we recover a version of classical growth diagrams
for the RSK correspondence, where the input is a word with letters in positive numbers,
the insertion object is a semistandard tableau, and the recording object is a standard
tableau. However for classical Knuth relations, deleting either all of the smallest letter
in a word, or all of the largest letter in a word, preserves Knuth classes. However in
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our generalized RSK, we may only delete the biletters with the smallest bi, as stated in
Lemma 1.4.

1.4.2 Local rules

Theorem 1.9. Given a square with subscript k as follows:

π σ

µ ρ

Then one can get ρ from π, µ, and σ by the following rules:

1. If there is no ×:

(a) If π = σ then ρ = µ.

(b) If π = µ then ρ = σ.

(c) If π ̸= σ, µ, then µ = sij . . . si1π where I = {ij > . . . > i1}, and σ = tαβπ such
that π−1(α) ≤ k < π−1(β) for some α < β. Let x := min(IC ∩ [α, β)), and
A := (IC ∩ [β, ∞)) ∪ {x} = {j1 < j2 < . . .}. Then ρ = tjℓ,jℓ+1µ where ℓ is the
smallest index such that µ−1(jℓ) ≤ k < µ−1(jℓ+1).

2. If there is an ×, then π = σ and µ = sij . . . si1π where I = {ij > . . . > i1}. Let
IC = {j1 < j2 < . . .}, then ρ = tjℓ,jℓ+1µ where ℓ is the smallest index such that
µ−1(jℓ) ≤ k < µ−1(jℓ+1).

Example 1.10. Let the biword be
(

1 3 1 2 1
3 3 2 2 1

)
, using the rules in Theorem 1.9, we have the

following growth diagram.

12345 12345 12345 12345 12345 12345

3 ×3 2 2 1

12345 12345 12435 12435 12435 12435

3 3 2 ×2 1

12345 12345 12435 12435 13425 13425

×3 3 ×2 2 ×1

12345 12435 12534 13524 15324 25314
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Notice that in the square

π = 12435 σ = 13425

2

µ = 13524 ρ = 15324

we use rule (1c) of Theorem 1.9. In particular, we have π ̸= σ, µ and µ = s4s2π. Thus,
I = {2, 4}. Also, σ = t23π, so A = {3, 5, 6, . . .}. Since µ−1(3) ≤ k = 2 < µ−1(5), we have
ρ = t35µ = 15324. On the other hand, in the square

π = 13425 σ = 13425

×1

µ = 15324 ρ = 25314

we use rule (2) of Theorem 1.9. We have µ = s4s3π, so I = {3, 4}. Thus, IC =
{1, 2, 5, 6, . . .}. We have µ−1(1) ≤ k = 1 < µ−1(2), so ρ = t12µ = 25314.

To check that the above growth diagram is correct, we can go through the insertion
process. Figure 2 shows the insertion process of this biword. One can check that the
permutations we obtain along the way are exactly the permutations on the bottom row
of the growth diagram.

(

1

3

) (

3

3

)

(

2

2

)(

1

1

)

(

1

2

)

Figure 2: Insertion of
(

1 3 1 2 1
3 3 2 2 1

)
On the other hand, removing all biletters (1

k) in the original biword, we obtain the
biword

(
3 2
3 2

)
. The BPD of this biword is shown in Figure 3.
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(

3

3

) (

2

2

)

Figure 3: Insertion of
(

3 2
3 2

)
Let D be the BPD corresponding to the original biword

(
1 3 1 2 1
3 3 2 2 1

)
(in Figure 2), and

D′ be the BPD corresponding to the new biword
(

3 2
3 2

)
(in Figure 3). Theorem 1.6 says

that D′ = rect(D). This is indeed the case as shown in Figure 4.

jdt(1, 3) jdt(1, 2) jdt(1, 1)

Figure 4

Definition 1.11 ([1]). For a permutation π with ℓ(π) = ℓ, a pair of integer sequences(
a = (a1, . . . , aℓ), r = (r1, . . . , rℓ)

)
is a bounded reduced compatible sequence of π

if sa1 · · · saℓ is a reduced word of π, r1 ≤ · · · ≤ rℓ is weakly increasing, rj ≤ aj for
j = 1, . . . , ℓ, and rj < rj+1 if aj < aj+1.

Theorem 1.12. Let Q :=
(

b1 b2 ... bℓ
k1 k2 ... kℓ

)
and let a = max{bi | 1 ≤ i ≤ ℓ}, and (πi,j)0≤i≤a,0≤j≤ℓ

be the growth diagram of Q. Then the rightmost vertical chain

id = πa,ℓ ⋖ · · ·⋖ π0,ℓ

uniquely recovers a bounded reduced compatible sequence, and this bijects to φ(Q)
under the bijection in [5].

Explicitly, by Corollary 1.7, for each 1 ≤ i ≤ a, we have si,mi , · · · si,1πi,ℓ = πi−1,ℓ.,
where si,1 > · · · > si,mi . Then the compatible sequence that corresponds to Q is(

a
r

)
=

(
s0,1 · · · s0,m1 s1,1 · · · s1,m1 · · · sa−1,1 · · · sa−1,ma−1

1 · · · 1 2 · · · 2 · · · a · · · a

)
.

Example 1.13. Continuing Example 1.10, the compatible sequence that corresponds to
the chain

12345 ⋖ 12435 ⋖ 13425 ⋖ 25314



Growth Diagrams for Schubert RSK 9

is (
a
r

)
=

(
s4 s3 s1 s2 s3
1 1 1 2 3

)
.

2 Summary of proofs

Theorem 1.6 follows from the following lemma, which can be proven by a technical
analysis of the algorithms.

Lemma 2.1. Let D ∈ BPD(π) and D′ = ∇(D). Let c be the smallest such that row c
contains a blank tile in D. Given b ≥ c and k such that the smallest descent in π is at
least k. Then

∇
(

D ←
(

b
k

))
= D′ ←

(
b
k

)
.

For Theorem 1.9, cases (1a) and (1b) follow directly from the definition of the growth
diagram. It remains to prove cases (1c) and (2). The key lemma to prove these two cases
is the following. We use a notion of “insertion path” and do a careful analysis of how
the insertion algorithms interact with the pipes in D and D′.

Lemma 2.2. Let D ∈ BPD(π), and D′ = ∇(D). Suppose pop(D) = (i, c), then by
definition D′ ∈ BPD(σ) where σ = siπ. Given b ≥ c and k such that the smallest
descent in π is at least k. Suppose the insertion path of D′ ← (b

k) goes through pipes
p1 < p2 < . . . < pℓ. Let P := {p1, p2, . . . , pℓ}, then

1. if i = pj and i + 1 ̸= pj+1 for some 1 ≤ j ≤ ℓ− 1, then D ← (b
k) goes through pipes

p1, . . . , pj−1, pj + 1, pj+1, . . . , pℓ;

2. if i = pℓ−1 and i + 1 = pℓ, then D ← (b
k) goes through pipes p1, . . . , pℓ−2, pℓ, pℓ +

1, pℓ + 2, . . . until it terminates;

3. if i = pℓ then D ← (b
k) goes through pipes p1, . . . , pℓ−1, pℓ + 1;

4. otherwise, D ← (b
k) goes through pipes p1, . . . , pℓ.

In particular, unless i = pℓ−1 or i = pℓ, the last two pipes of D ← (b
k) are still pℓ−1 and

pℓ.

Let us give some examples of Lemma 2.2. In Figure 5, we have a BPD D with
pop(D) = (3, 1). In D′ = ∇(D), the insertion path of D′ ← (2

5) goes through pipes
2, 3, 5, 6, 7. Since i = 3 is one of the pipes, but i + 1 = 4 is not, the insertion path of
D ← (2

5) goes through pipes 2, 4, 5, 6, 7. This is case (1) of Lemma 2.2. On the other hand,
the insertion path of D′ ← (1

5) goes through pipes 1, 2, 3, 4. Since i and i + 1 are the last
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D D
′

Figure 5

two pipes, the insertion path of D ← (1
5) goes through pipes 1, 2, 4, 5, 6, 7. This is case (2)

in Lemma 2.2. Finally, the insertion path of D′ ← (2
2) goes through pipes 2 and 3. Thus,

the insertion path of D ← (2
2) goes through pipes 2 and 4. This is case (3) in Lemma 2.2.
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