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Abstract. We provide a combinatorial interpretation for the symmetric function
Θek Θel∇en−k−l |t=0 in terms of Smirnov words, which are words where adjacent let-
ters are distinct. The motivation for this work is the study of a diagonal coinvariant
ring with one set of commuting and two sets of anti-commuting variables, whose
Frobenius characteristic is conjectured to be the symmetric function in question. It is
intimately related to the two Delta conjectures, as our work is a step towards a unified
formulation of these.

Résumé. Nous donnons une interprétation combinatoire à la fonction symétrique
Θek Θel∇en−k−l |t=0 en termes de mots de Smirnov, qui sont les mots dont les lettres
adjacentes sont distinctes. La motivation de ce travail est l’étude de l’anneau des coin-
variants diagonaux avec un jeu de variables commutatives et deux jeux de variables
anticommutatives, dont la caractéristique de Frobenius est, conjecturalement, la fonc-
tion symétrique en question. Elles est intimement liée aux conjectures Delta, ce travail
constituant un pas vers une formulation unifiée de ces dernières.
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1 Introduction

This work is mainly concerned with a combinatorial expansion and its consequences. It
is motivated by a circle of problems in representation theory, which we briefly survey in
this introduction.

In the 1990s, Garsia and Haiman introduced the ring of diagonal coinvariants DRn. The
study of the structure of this Sn-module and its generalizations has been an important
research topic in algebra and combinatorics ever since. The ring is defined as follows:
consider the space C[xn, yn] := C[x1, . . . , xn, y1, . . . , yn] and define an Sn-action as

σ · f (x1, . . . , xn, y1, . . . , yn) := f (xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n))
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for all f ∈ C[xn, yn] and σ ∈ Sn. Let I(xn, yn) be the ideal generated by the Sn-invariants
with vanishing constant term. Then the ring of diagonal coinvariants is defined as

DRn := C[xn, yn]/I(xn, yn).

The space has a natural bi-grading: let DR(i,j)
n be the component of DRn with homo-

geneous x-degree i and homogeneous y-degree j. This grading is preserved by the
Sn-action. Garsia and Haiman conjectured, and Haiman later proved [9], a formula for
the graded Frobenius characteristic of the diagonal harmonics:

grFrob(DRn; q, t) := ∑
i,j∈N

qitj Frob(DR(i,j)
n ) = ∇en, (1.1)

where en is the n-th elementary symmetric function and ∇ is the operator introduced in
[1]. In [7], the authors gave a combinatorial formula for this graded Frobenius character
∇en, in terms of labelled Dyck paths, called the shuffle conjecture. It is now a theorem by
Carlsson and Mellit [2].

The Delta conjecture is a pair of combinatorial formulas for the symmetric function
∆′

en−k−1
en in terms of decorated labelled Dyck paths, stated in [8] –we detail the combina-

torics in Section 5. Here ∆′
en−k−1

is a certain symmetric function operator (depending on
q, t). These conjectures reduce to the shuffle theorem when k = 0.

This extension of the combinatorial setting led Zabrocki, D’Adderio, Iraci and Vanden
Wyngaerd to introduce extensions of DRn [15, 3]. Consider the ring C[xn, yn, θn, ξn]
where the xn, yn are the usual commuting (or bosonic) variables, while the θn, ξn are
anti-commuting (or fermionic): θiθj = −θjθi and ξiξ j = −ξ jξi for all 1 ≤ i, j ≤ n.

Again, consider the Sn-action that permutes all the variables simultaneously. If
I(xn, yn, θn, ξn) now denotes the ideal generated by the Sn-invariants without constant
term, define TDRn := C[xn, yn, θn, ξn]/I(xn, yn, θn, ξn). This ring is naturally quadruply
graded: let TDR(i,j,k,l)

n denote the component of TDRn of homogeneous (i, j, k, l)-degrees.
In [15] Zabrocki conjectured

∑
i,j∈N

qitj Frob(TDR(i,j,k,0)
n )

?
= ∆′

en−k−1
en. (1.2)

Note that the symmetric function of the Delta conjectures occurs on the right-hand side.
In [3], D’Adderio with the first and third named authors introduced operators Θ f (de-
pending on q, t), for any symmetric function f , and showed that ∆′

n−k−1en = Θek∇en−k.
This permitted them to extend Zabrocki’s conjecture as follows:

∑
i,j∈N

qitj Frob(TDR(i,j,k,l)
n )

?
= Θel Θek∇en−k−l. (1.3)
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Special cases of the conjecture have been studied over the years. Let us call the
“(a, b)-case” the structures linked to the diagonal coinvariant ring with a sets of bosonic
variables and b sets of fermionic variables. The (2, 1)- and the (2, 2)-cases thus occur
in (1.2) and (1.3) respectively, and the (2, 0)-case is the known case (1.1). The (1, 0) and
(0, 1) cases are classical rings and the conjecture is known to hold in this case. The
(1, 1)-case, or the superspace coinvariant ring, is still open, but Rhoades and Wilson in
[12] showed that its Hilbert series agrees with the expected formula. The (0, 2)-case, or
fermionic Theta case, was proved by Iraci, Rhoades, and Romero in [10].

In this abstract, we will turn our interest to the combinatorics that (conjecturally) oc-
cur in the (1, 2)-case. Following Conjecture (1.3), we thus are led to study the symmetric
function Θek Θel∇en−k−l|t=0.

Our combinatorial model is that of segmented Smirnov words. A Smirnov word is
a word in the alphabet of positive integers such that adjacent letters are distinct. A
segmented Smirnov word is the concatenation of Smirnov words with prescribed lengths
(see Definition 2.1). The main result of this paper (Theorem 2.5) is an expansion in terms
of segmented Smirnov words.

Theorem. For any n, k, l, we have the identity between symmetric functions in (xi)i≥1

Θek Θel∇en−k−l|t=0 = ∑
w∈SW(n,k,l)

qsminv(w)xw1 xw2 · · · xwn .

Here SW(n, k, l) is the set of segmented Smirnov words with k descents and l ascents,
while the power of q is given by a new sminversion statistic on these words (see Defi-
nition 2.3). This expansion can be expressed more compactly in terms of fundamental
quasisymmetric functions (Proposition 2.7).

The proof of the main theorem relies on an algebraic recursion (Proposition 2.4)
for the symmetric function under study. We show in Section 3 that the combinatorial
expansion satisfies indeed the same recursion.

In Section 4, we focus on the special case k + l = n − 1 which turns out to be linked
to various topics in the literature. In Section 5, we describe an explicit bijection between
segmented Smirnov words and “doubly decorated labelled Dyck paths” (Theorem 5.1),
motivated by a potential unified Delta conjecture.

2 Preliminaries and main result

Combinatorics. In this work Z+ is the set of positive integers, and we will fix n ∈ Z+.
We write µ ⊨0 n if µ is a weak composition of n, that is µ = (µ1, µ2, . . .) where the
µi are nonnegative integers that sum to n. A composition α ⊨ n is a finite sequence
α = (α1, . . . , αt) of positive integers that sums to n.



4 Alessandro Iraci, Philippe Nadeau, and Anna Vanden Wyngaerd

Definition 2.1. A Smirnov word of length n is an element w ∈ Zn
+ such that wi ̸= wi+1 for

all 1 ≤ i < n. A segmented Smirnov word is a word w ∈ Zn
+ together with a composition

α = (α1, . . . , αt) ⊨ n such that if w is written as the concatenation w1 · · ·wt where each
wi has length αi, then each wi is a Smirnov word.

Let SW(n) be the set of segmented Smirnov words of length n. We say that α is
the shape of w. We call w1, . . . , wt segments of w. We usually simply denote a segmented
Smirnov word by w, and omit the shape α. In examples, we separate segments by vertical
bars. Segmented Smirnov words of shape (n) are naturally identified with Smirnow
words of length n.

Given µ ⊨0 n, we denote by SW(µ) the set of segmented Smirnov words with content
µ, that is they contain µ1 occurrences of 1, µ2 occurrences of 2, and so on. We clearly
have SW(n) =

⋃
µ⊨0n SW(µ). We call segmented permutation a segmented Smirnov word

in SW(1n). Note that these can be identified with pairs (σ, α) with σ ∈ Sn and α ⊨ n.

Example 2.2. If µ = (2, 1), then SW(µ) has 8 elements: 1|1|2, 1|2|1, 2|1|1 with shape
(1, 1, 1); 1|12, 1|21 with shape (1, 2); 21|1, 12|1 with shape (2, 1) and 121 with shape (3).

Given a Smirnov word w, we say that i is an ascent of w if wi+1 > wi, and a descent
otherwise. If w ∈ SW(n), we say that i is an ascent (resp. descent) of w if it is an ascent
(resp. descent) of one of its segments. Let us denote by SW(n, k, l) the set of segmented
Smirnov words with k descents and l ascents; note that these words have n − k − l
segments. For µ ⊨0 n, we also define SW(µ, k, l) as the intersection SW(µ) ∩ SW(n, k, l).

We can now define the main new statistic of this work. An index i ∈ {1, . . . , n} is
called initial (resp. final) if it corresponds to the first (resp. last) position of a segment, i.e.
if it has the form i = α1 + · · ·+ αm−1 + 1 (resp. i = α1 + · · ·+ αm) for some t ∈ {1, . . . , t}.

Definition 2.3 (The sminv statistic). For a segmented Smirnov word w of shape α ⊨ n, we
say that (i, j) with 1 ≤ i < j ≤ n is a sminversion if wi > wj and one of the following
holds:

1. j is initial in w;
2. wj−1 > wi;
3. i ̸= j − 1, wj−1 = wi, and j − 1 is initial in w;
4. i ̸= j − 1 and wj−2 > wj−1 = wi.

We let sminv(w) be the number of sminversions of w. The segmented Smirnov word
w = 321|2131, has sminv equal to 4, since (1, 4), (2, 5), (2, 7) and (4, 7) are its sminver-
sions. Finally, define

SWq(µ, k, l) = ∑
w∈SW(µ,k,l)

qsminv(w).

In view of Example 2.2, we can compute that SWq((2, 1), 0, 0) = 1 + q + q2;
SWq((2, 1), 1, 0) = 1 + q; SWq((2, 1), 1, 1) = 1; and SWq((2, 1), 0, 1) = 1 + q.

Let us note two important cases where the statistic sminv simplifies:
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• When w is a segmented permutation σ, only cases (1) and (2) occur.
• When w has shape (n), i.e. w is a Smirnov word, only cases (2) and (4).

Symmetric functions. We refer to [14, Ch. 7] for undefined terminology. Consider the
ring Λ of symmetric functions in (xi)i∈Z+ with coefficients in Q(q). Let us define

SF(n, k, l) := Θek Θel∇en−k−l|t=0 ∈ Λ (2.1)

to simplify notations. Here h⊥j is the operator dual to multiplication by hj, with respect
to the standard duality on Λ given by ⟨hλ, mµ⟩ = δλ,µ.

The following proposition is the key to the combinatorial interpretation:

Proposition 2.4. For any n, k, l with k + l < n, SF(n, k, l) satisfies

h⊥j SF(n, k, l) =
j

∑
r=0

j

∑
a=0

j

∑
i=0

q(
r−i

2 )q(
a−i

2 )

[
n − k − l

j − r − a + i

]
q

[
n − k − l − (j − r − a)− 1

i

]
q

×
[

n − k − l − (j − r − a + i)
r − i

]
q

[
n − k − l − (j − r − a + i)

a − i

]
q
SF(n − j, k − r, l − a)

for any j ≥ 1. Moreover SF(0, k, l) = δk,0δl,0 and SF(n, k, l) = 0 if n < 0.

We omit the proof of this proposition in this abstract: it comes from the specialization
t = 0 of [6, Theorem 8.2], with some extra elementary computations.

Main result. Define

SWx;q(n, k, l) = ∑
µ⊨0n

SWq(µ, k, l)xµ = ∑
w∈SW(n,k,l)

qsminv(w)xw, (2.2)

where xw = ∏n
i=1 xwi .

Theorem 2.5. For any n, k, l with k + l < n, we have the identity

SF(n, k, l) = SWx;q(n, k, l). (2.3)

Expansion into fundamental quasisymmetric functions. Let w be a segmented Smirnov
word. For 1 ≤ i ≤ n, we say that i is thick if i is initial or wi−1 > wi, and thin otherwise.

Definition 2.6. Let σ be a segmented permutation of size n, and i ∈ {1, . . . , n}. Let j be
such that σj = σi+1. We say that i is splitting for σ if either of the following holds:

• i and j are in the same segment of σ, and |i − j| = 1;
• i is thick and j is thin;
• i and j are both thin and i < j;
• i and j are both thick and j < i.
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Let Split(σ) = {1 ≤ i ≤ n − 1 | i is splitting for σ}. For any subset S ⊆ [n − 1], let
QS,n be the fundamental quasisymmetric function associated to S (see [14, Sec. 7.19]).

Proposition 2.7.
SWx;q(n, k, l) = ∑

σ∈SW(1n,k,l)
qsminv(σ)QSplit(σ),n.

The proof relies on grouping terms in the right-hand side of (2.2) using a certain
“reading order”. We omit it in this abstract.

3 Proof of Theorem 2.5

The proof consists in showing that the series SWx;q(n, k, l) satisfies the relations encoded
in Proposition 2.4.

In detail, fix µ ⊨0 n nonzero, let Fµ be the coefficient of xµ in the power series
SF(n, k, l), and let the last nonzero part of µ be µm = j. Then by taking the inner product
of SF(n, k, l) with hµ in Proposition 2.4, we obtain a recurrence for Fµ. Theorem 2.5 then
claims that SWq(µ, k, l) obeys the same recurrence. Explicitly, let µ− be equal to µ except
that µ−

m = 0, and let s := n − k − l be the number of segments, then one has to show:

SWq(µ, k, l) =
j

∑
i=0

j

∑
r=i

j

∑
a=i

q(
r−i

2 )

[
s − (j − r − a + i)

r − i

]
q
q(

a−i
2 )

[
s − (j − r − a + i)

a − i

]
q

×
[

s
j − r − a + i

]
q

[
s − j + r + a − 1

i

]
q
SWq(µ

−, k − r, l − a). (3.1)

We will sketch a bijective proof below. Since it is quite technical, let us first give the
simpler proof in the case µ = 1n, which boils down to the following proposition:

Proposition 3.1. For any n, k, l with k + l < n, the polynomials SWq(1n, k, l) satisfy

SWq(1n, k, l) = [n − k − l]q
(
SWq(1n−1, k, l) + SWq(1n−1, k − 1, l)

+ SWq(1n−1, k, l − 1) + SWq(1n−1, k − 1, l − 1)
)

.

Proof. Given a segmented permutation on n − 1 elements, we want to insert n in all
possible ways. It can be done in four different manners:

1. as a new singleton segment. This keeps the number of ascents and descents the
same, and increases the number of segments by one;

2. at the beginning of a segment. This creates no ascent and one descent, and keeps
the number of segments the same;

3. at the end of a segment. This creates one ascent and no descents, and keeps the
number of segments the same;
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4. as an element merging two adjacent segments · · ·w1|w2 · · · → · · ·w1nw2 · · · . This
creates an ascent and a descent, and decreases the number of segments by one.

Each of these insertions can be done in s different ways, if s is the number of segments
in the final segmented permutation. Moreover, the construction is injective: if i is such
that σi = n for some σ ∈ SW(1n), then by looking whether i is initial and/or final, one
knows which of the four types of insertion was performed.

From this one sees that the proposition holds at q = 1. As for sminversions, one
checks that inserting n does not modify the number of those involving letters in {1, . . . , n−
1}. Moreover, the value n is part of a sminversion with all initial letters to its right. In
each case, this increases sminv by all possible amounts between 0 and s − 1 = n − k − l −
1. The recursion of Proposition 3.1 follows.

Sketch of the proof of (3.1). The idea is the same as in the standard case above. Starting
with a word in w ∈ SW(µ−), we want to insert j occurrences of the letter m (larger than
all letters of w) to create a word w′ in SW(µ, k, l). As in the standard case, we distinguish
if the occurrences of m are initial and/or final. The complication comes from inserting
several occurrences of m.

Pick i, a, r ≥ 0 such that i ≤ a ≤ j and i ≤ r ≤ j. Then we insert successively:
• i is occurrences of m that are neither initial nor final (this is done by merging

adjacent segments as in the standard case);
• r − i occurrences of m that initial but not final;
• a − i occurrences of m that are final but not initial;
• and finally j − r − a + i singletons equal to m.

Note that the total number of occurrences of m is indeed j. Since we want s = n − k − l
segments in the end, we must have s + i − (j − r − a + i) = s − j + r + a segments in w.
Also, w must have k − r descents and l − a ascents so that the final word has k descents
and l ascents.

The claim is that the number of ways to insert m is given by the coefficient of
SWq(µ−, k − r, l − a) in (3.1) at q = 1: each of the four binomial coefficients can be
whown to correspond naturally to one of the cases above. To complete the proof, one
needs to check that then number of sminversions behaves as wanted. We omit the details
in this abstract.

4 The maximal case k + l = n − 1

We focus in this section on various aspects of the case k + l = n − 1 of Theorem 2.5.
The combinatorial side now involves only Smirnov words. It is also conjecturally giving
the graded Frobenius characteristic of the subspace of the (1, 2)-coinvariant space of
maximum total degree in the fermionic variables ζn, ξn (cf. (1.3)).
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Chromatic symmetric function interpretation. Given a graph G = (V, E), a proper
coloring is a function c : V → Z+ such that {i, j} ∈ E =⇒ c(i) ̸= c(j). If V = [n], a
descent of a coloring is an edge {i, j} ∈ E such that i < j and c(i) > c(j). The chromatic
quasisymmetric function of G is defined as

XG(x; q) = ∑
c : V→Z+
c proper

qdes(c) ∏
v∈V

xc(v),

where des(c) is the number of descents of c.
For the path graph Gn = 1− 2− · · · − n, if c is a proper coloring then c(1)c(2) . . . c(n)

is a Smirnov word of length n, and vice versa, if w is a Smirnov word of length n, then
c(i) = wi is a proper coloring of Gn. It follows from Theorem 2.5

XGn(x; u) =
n−1

∑
k=0

ukΘek Θen−k−1e1

∣∣∣∣∣
q=1,t=0

.

This suggests also the existence of an extra q-grading on the cohomology of the permu-
tahedral toric variety Vn: indeed the graded Frobenius characteristic of that cohomology
is known to be given by ωXGn(x; u), see [13].

Parallelogram polyominoes. A parallelogram polyomino of size m × n is a pair of north-
east lattice paths on a m × n grid, such that first is always strictly above the second,
except on the endpoints (0, 0) and (m, n). A labelling of a parallelogram polyomino is an
assignment of positive integer labels to each cell that has a north step of the first path as
its left border, or an east step of the second path as its bottom border, such that columns
are strictly increasing bottom to top and rows are strictly decreasing left to right. In [5] it
is conjectured that Θem−1Θen−1e1 enumerates labelled parallelogram polyominoes of size
m × n with respect to two statistics, one of which is (a labelled version of) the area, and
the other is unknown.

It is immediate to see that parallelogram polyominoes of size (n − k)× (k + 1) and
area 0 are again in bijection with Smirnov words of length n with k descents, and proper
colorings of Gn with k descents. Indeed, reading the labels of such a polyomino bottom
to top, left to right, yields a Smirnov word of size n with k descents, and the correspon-
dence is bijective. In particular, sminversions on Smirnov words define a statistic on this
subfamily of parallelogram polyominoes, proving the conjectural identity and partially
answering Problem 7.13 from [5] in the case when the area is 0.

The case q = 0. Note that in this case, it is known [10] that the symmetric function
in Theorem 2.5 is the Frobenius characteristic of the (0, 2)-case. It was also shown that
the high-degree part of this module has a basis indexed by noncrossing partitions. In
particular, this means that there is a bijection between segmented permutations with one
segment (that is, permutations) with zero sminv, and noncrossing partitions.
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Lemma 4.1. Permutations with zero sminv are exactly 231-avoiding permutations, that is per-
mutations σ with no i < j < k such that σk < σi < σj.

Proof. Let σ be a permutation, and suppose that it has a 231 pattern, that is, that there
exist indices i < j < k such that σk < σi < σj. Let m = min j < a ≤ k | σm < σi; by
definition, i < j ≤ m − 1, and σm−1 > σi, so (i, m) is a sminversion of σ. It follows that
permutations with zero sminv are 231-avoiding permutations. Since a sminversion in a
permutation corresponds to a 231 pattern, this concludes the proof.

Let π be a noncrossing partition, and let ϕ(π) be the permutation that, in one line
notation, is written by listing the blocks of π sorted by their smallest element, with
the elements of each segment sorted in decreasing order. Let us call decreasing run of a
permutation σ a maximal subsequence of consecutive decreasing entries of σ (in one line
notation): then the blocks of π correspond to the decreasing runs of ϕ(π). For instance,
if π = {{1, 2, 5}, {3, 4}, {6, 8, 9}, {7}}, then ϕ(π) = 521439867.

The map ϕ defines a classical bijection between noncrossing partitions of size n with
k + 1 blocks and 231-avoiding permutations with k descents. This recovers known nu-
merology about the (0, 2)-case.

Remark 4.2. More generally, standard segmented permutations with zero sminv can be
characterized as 231-avoiding permutations where letters of a segment are smaller all
than letters of the segments to its right. These can be easily counted, and we recover the
total dimension of the (0, 2)-coinvariant ring given by (2n+1

n ).

5 Connection with the Delta conjectures

Let us first note that we recover known combinatorial interpretations when setting k = 0
(resp. l = 0) in Theorem 2.5. Indeed this gives an expansion over segmented Smirnov
words with no descents (resp. ascents), and these are easily identified with ordered
multiset partitions [11]. In each case, the sminv statistic can moreover be seen to be
distributed as the inv statistic on ordered set partitions.

The two different Delta conjectures are as follows:

∆′
en−k−1

en = Θek∇en−k = ∑
D∈LD(n)∗k

qdinv(D)tarea(D)xD (5.1)

?
= ∑

D∈LD(n)•k

qdinv(D)tarea(D)xD. (5.2)

The sets LD(n)∗k and LD(n)•k denote labelled Dyck paths of size n with k decorations on
rises or valleys, respectively; and the statistics dinv and area depend on the decorations. So
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(5.1) is referred to as the rise version and (5.2) as the valley version of the Delta conjecture.
The rise version was recently proved in [4].

Let us make some of the combinatorics explicit. A Dyck path of size n is a lattice
path starting at (0, 0), ending at (n, n), using only unit North (N) and East (E) steps, and
staying weakly above the line x = y. A labelled Dyck path is a Dyck path together with a
positive integer label on each of its vertical steps such that labels on consecutive vertical
steps must be strictly increasing (from bottom to top).

A rise of a labelled Dyck path is a North step that is preceded by another North step.
A (contractible) valley of a labelled Dyck path is a vertical step v that is preceded either
by two horizontal steps, or by a horizontal step that is preceded by a vertical step whose
label is strictly smaller than v’s label.

A decorated labelled Dyck path D is a labelled Dyck path, together with a choice of rises
and (contractible) valleys, which are decorated. Let DRise(D), resp. DValley(D), be the
set of i ∈ [n] such that the i-th vertical step of D is a decorated rise, resp. a decorated
valley. We decorate rises with a ∗ and valleys with a •. The set of decorated labelled
Dyck paths with k decorated rises and l decorated valleys, is denoted by LD(n)∗k,•l. The
sets LD(n)∗k, resp. and LD(n)•l, above correspond to setting l, resp. k, to 0.

∗

∗

∗

∗

∗

∗

2

3

4

1

2

4

3

2

1

2

4

3

2

4

1

4

Figure 1: Elements of LD(8)∗2,•2 (left) and LD0(8)∗4,•2 (right).

Given a decorated labelled Dyck path D of size n, its area word is the word of non-
negative integers whose i-th letter equals the number of whole squares between the i-th
vertical step of the path and the line x = y. If a is the area word of D, the area of D is

area(D) := ∑
i∈[n]\DRise(D)

ai. (5.3)

Take D to be the left path in Figure 1. We have DRise(D) = {2, 6}, DValley = {3, 7}. Its
area word of D is 01112320, and so its area equals 6.
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The statistic dinv(D) counts “diagonal inversions” minus the number of decorated
valleys; we omit its precise definition in this abstract.

In [3], the authors conjectured a partial formula for a possible unified Delta conjecture,
for which they have significant computational evidence:

Θek Θel∇en−k−l|q=1
?
= ∑

D∈LD(n)∗k,•l

tarea(D)xD, (5.4)

The goal would thus be to find a statistic qstat : LD(n)∗k,•l → N so that

Θek Θel∇en−k−l
?
= ∑

D∈LD(n)∗k,•l

qqstat(D)tarea(D)xD; (5.5)

and such that when k = 0 or l = 0, the formula reduces to (5.1) or (5.2), respectively.

Let us now come back to our setting. Comparing our main Theorem 2.5 at q = 1
with (5.4) at t = 0, we get the conjectural existence of a bijection between labelled Dyck
paths of area zero and segmented Smirnov words. This bijection exists indeed: Let
LD0(n)∗k,•l be the subset of area zero Dyck paths in LD(n)∗k,•l.

Theorem 5.1. For any n, k, l, there is a bijection ϕ between SW(n, k, l) and LD0(n)∗k,•l such
that xw = xϕ(w).

Sketch of the proof. Paths in LD0(n)∗k,•l have a very specific shape: they are the concate-
nation of paths of the form NiEi, where all rises are decorated; see Figure 1, right. This
precisely ensures that the area is zero, cf. Formula (5.3).

For µ ⊨0 n, and let LD0(µ)
∗k,•l be the subset of LD0(n)∗k,•l such that xD = xµ. Using

the special structure detailed above, one can then show bijectively that the cardinalities
of the sets of LD0(µ)

∗k,•l decompose as SWq=1(µ, k, l): namely, they satisfy (3.1) at q =
1. By matching with the bijective decomposition of SW(µ, k, l) in Section 3, we can
obtain a recursively defined bijection ϕ between the two sets. We omit the details in this
abstract.

What about q ? By transporting the sminv statistic through the bijection ϕ, we get a q-
statistic on LD0(n)∗k,•l. Now this statistic will not satisfy the unified Delta conjecture (5.5)
at t = 0, because it does not match the dinv-statistic coming from the rise Delta conjecture.

It is however possible to fix this –thus we do have a unified Delta conjecture at t = 0–
by recursively defining a different q-statistic on SW(n). Roughly put, this is done by
ordering segments in ad hoc ways when proving the recursion for SW(µ, k, l) (for sminv

we simply order segments right to left).
Added in revision: this is done explicitly in the long version of this work.
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