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Abstract. The product of a Schur polynomial and Demazure atom or character ex-
pands positively in Demazure atoms or characters, respectively. The structure coeffi-
cients in these expansions have known combinatorial rules in terms of skyline tableaux.
We develop alternative rules using the theory of integrable vertex models, inspired by
a technique introduced by Zinn-Justin. We apply this method to coloured vertex mod-
els for atoms and characters obtained from Borodin and Wheeler’s models for non-
symmetric Macdonald polynomials. The structure coefficients are then obtained as
partition functions of vertex models that are compatible with both Schur (uncoloured)
and Demazure (coloured) vertex models.

Keywords: Demazure atoms, Demazure characters, Schur polynomials, vertex models,
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1 Introduction

Demazure atoms, also called standard bases, are a family of non-symmetric polynomials
indexed by weak compositions. Demazure characters, also called key polynomials, are
a closely related family of polynomials which are also indexed by weak compositions;
they may be written as a sum of Demazure atoms. Denote the Demazure atom and
character on a weak composition α = (α1, . . . , αn) in the variables x = (x1, . . . , xn) by
Aα(x) and Kα(x), respectively. The set of Demazure atoms or characters over all weak
compositions of length n are a basis for Z[x1, . . . , xn]. It is known that the products of a
Schur polynomial sλ(x) and a Demazure polynomial have positive expansions:

sλ(x)Aα(x) = ∑
β

cβ
λ,αAβ(x),

sλ(x)Kα(x) = ∑
β

dβ
λ,αKβ(x),

where the structure coefficients cβ
λ,α and dβ

λ,α are non-negative integers.
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In [3], Haglund, Luoto, Mason and van Willigenburg give formulas to calculate cβ
λ,α

and dβ
λ,α in terms of skyline tableaux. Here, we use the theory of integrable vertex models

to derive alternative rules where the structure coefficients are calculated as the number
of fillings of “diamond” vertex models. We emulate the technique developed in [11]
where Zinn-Justin reproves the puzzle rule of [4, 5] for the product of two double Schur
polynomials. Wheeler and Zinn-Justin later use the same technique to find structure
coefficients for double Grothendieck polynomials [10]. Knutson and Zinn-Justin also
employ techniques from integrability in a series of papers computing puzzle rules for
products of Schubert classes in d-step flag varieties (for d ≤ 4) [6, 7, 8].

The proofs in [10, 11] are completely combinatorial, gluing vertex models together in
two different ways and showing both are equivalent. One side of the equation is mani-
festly a product and the other side is manifestly a summation. Applying a Yang–Baxter
equation to the model for the product transforms it into the model for the summation.
Both of these results concern products of symmetric polynomials, whereas our results
involve the non-symmetric Demazure polynomials. Our results follow from a variant of
the Yang–Baxter equation stated in Lemma 1.

In this extended abstract, we define Demazure atoms and characters as the parti-
tion function of a vertex model. Our conventions for atoms match those of Mason [9]
who defines Aα(x) in terms of semi-skyline augmented fillings; reversing the order of
the composition and basement in Mason’s diagrams yields Kα(x). Our model is derived
from setting q = t = 0 in Borodin and Wheeler’s [1] vertex model for permuted basement
non-symmetric Macdonald polynomials f ρ

α (x; q, t), where ρ is a permutation. In our con-
ventions, we have Aα(x) = f id

(αn,...,α1)
(xn, . . . , x1; 0, 0) and Kα(x) = f w0

α (xn, . . . , x1; 0, 0).
Significant modifications are made to make the vertices compatible with the Schur poly-
nomial model in [11]. Our model for Aα(x) bears more resemblance to that of Brubaker,
Buciumas, Bump and Gustafsson [2] with differing weights and boundary.

A benefit of this approach is that vertex models may be developed independently
and then fit into this framework, allowing one to test rules assuming an analogue of
Lemma 1 holds. Our results are suggestive of further applications such as extensions to
the Grothendieck model in [10].

2 Vertex models for Schur and Demazure polynomials

A weak composition α = (α1, . . . , αn) is a sequence of non-negative integers. The integer
αi is the part of α at index i and the length of α is its number of parts; the largest part
in α is denoted max(α). A partition λ = (λ1, . . . , λn) is a weak composition sorted in
descending order. Throughout this extended abstract, α and β are weak compositions, λ

is a partition and all weak compositions have length n.
We describe two strings, αA and αK, that re-encode a weak composition α. Let λ =
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sort(α) be the partition with the same parts as α sorted in descending order. Enclose the
Young diagram of λ between the top left corner of a rectangle and a North-East lattice
path as depicted in Example 1. East steps are labelled 0 and North steps are labelled
with the integers 1 through n so that i occurs after precisely αi East steps. If North steps
occur in the same vertical, then moving North, we label them in descending order for αA
and ascending order for αK. We then obtain either string by reading labels off the lattice
path from South-West to North-East.

We also specify two strings, λ− and λ+, that re-encode a partition λ. For λ−, East
steps are labelled 0 and North steps are labelled 1. For λ+, East steps are labelled with
the symbol + and North steps are labelled 0. Strings are read off the lattice path as
before.

Example 1. We depict our labelling procedure below with α = (0, 3, 0, 1, 3) and λ = sort(α) =
(3, 3, 1, 0, 0), assigning each label a colour as a visual aid. Darker shades of blue correspond to
larger integers.

3
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2

0

0 0

αA

1

3

4

2

5

0

0 0

αK

1

1

1

1

1

0

0 0

λ−

0

0

0

0

0

+

+ +

λ+

Reading the labels from South-West to North-East produces the strings:

αA = = 31040052
αK = = 13040025
λ− = = 11010011
λ+ = = 00+0++00

The model for Demazure atoms consists of a lattice filled with the tiles in Figure 1.
This is a coloured vertex model where the tiles are “vertices” much like those in [2].
Labels of tiles must match along adjacent edges and along the boundary of the lattice.
We label the left boundary with the string αA and label the bottom edges 1 through
n from left to right; the other boundary edges are labelled 0. All tiles in the model
have weight 1 except for the tiles of weight xc where c is the column number where the
tile occurs; columns are numbered 1 through n from left to right. A filling’s weight is
the product of its tile weights and the sum of all filling weights is called the partition
function.



4 Timothy C. Miller

0

0

0

0

0

i

i

0

i

0

0

i

i

i

i

i

j

i

i

j

i

j

i

j

i

0

i

0

weight: xc

Figure 1: Tiles for the Demazure atom vertex model where 1 ≤ i < j. The rightmost
tile has weight xc where c is the column number where the tile occurs.

The partition function of this vertex model is the Demazure atom on n variables,
depicted diagrammatically:

αA

1 2 3 · · · n

Aα(x) =

Example 2. Let α = (0, 2, 2, 0), so that αA = 410032 = labels the left boundary.
There are three fillings of the atom model, showing Aα(x1, x2, x3, x4) = x1x2

2x3 + x1x2x2
3 + x2

2x2
3.

1 2 3 4
4

1

3
2

1 2 3 4
4

1

3
2

1 2 3 4
4

1

3
2

x1x2
2x3 x1x2x2

3 x2
2x2

3

+ +

Zinn-Justin considers a similar model for Schur polynomials in [11] which may be
thought of as the “uncoloured” version of the model for atoms. Using the same tiles
with only colour 1, we label the left boundary with the string λ− and label all bottom
edges with 1, which we denote as n = 1n:

λ−

n

sλ(x) =
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Example 3. Let λ = (2, 2, 1). There are three fillings of the Schur model, showing that
sλ(x1, x2, x3) = x2

1x2
2x3 + x2

1x2x2
3 + x1x2

2x2
3.

1

1
1

1 1 1

1

1
1

1 1 1

1

1
1

1 1 1

x2
1x2

2x3 x2
1x2x2

3 x1x2
2x2

3

+ +

Lastly, as noted in [2], Remark 4.5, the model for Demazure characters uses the same
tiles rotated 180 degrees, which only alters the fifth tile in Figure 1. We can obtain
Demazure characters as a partition function for the following vertex model filled with
these new tiles:

αK

1 2 3 · · · n

Kα(x) =

3 Vertex models for cβ
λ,α and dβ

λ,α

In this section we build two “diamond” vertex models filled with the tiles below where
1 ≤ i < j < k. If a blue line of shade b shares an edge with a red line, the edge is labelled
b+. Two shades of blue a and b with a < b may share an edge labelled ab. All tiles have
weight 1.

0 i

0i

+ i+

0i

0 i

+i+

+ i+

+i+

ij j

ijj

ik k

ijj

ij j

ikk

0 i

ijj

ij j

0i

0 0

00

+ 0

+0

i+ i

+0

+ 0

i+i

i+ i

i+i

j+ j

i+i

i+ i

j+j

+ i+

ijj

ij j

+i+

Further, we do not allow two adjacent tiles to form an internal banned rhombus as
depicted in Figure 2. These restrictions are still local and can be imposed with additional
labels, but we exclude them to avoid clutter. We may now state our theorem.
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i j i+ j+

(a) Banned rhombi for atom model.

j i j+ i+

(b) Banned rhombi for character model.

Figure 2: Restrictions on adjacent diamond tiles where 1 ≤ i < j.

Theorem 1. The structure coefficients cβ
λ,α and dβ

λ,α respectively count the number of fillings of
the vertex models

cβ
λ,α

αA

βAλ+

k n

dβ
λ,α

αK

βKλ+

k n

where k = max(β) and the restrictions in Figure 2a and Figure 2b apply respectively within each
model.

Example 4. For α = (1, 3, 1, 0), λ = (3, 1, 0, 0) and β = (1, 4, 3, 1), we have that k =

max(β) = 4. There are two fillings of the corresponding Schur–atom model and thus cβ
λ,α = 2.
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We call the vertex model for cβ
λ,α the Schur–atom model and the vertex model for dβ

λ,α
the Schur–character model. Recall that we assume α, β and λ all have length n, but we
may append zeros to make their lengths match if needed. Similarly, we may append
zeros to the end of the strings αA, αK and λ− and append + symbols to the end of λ+

so that these strings all have length n + k and fit in the diagram.

4 Proof of Theorem 1

In this section, we only explain the proof of the Schur–atom model, but the proof of the
Schur–character model is analogous. In Figure 3, we have tiles in three orientations with
a new orientation in the second row containing a tile of weight −xc. We call the tiles in
the first row right-sheared and the tiles in the second row left-sheared. We again depict
vertex models with grey diagrams where tiles must have the same orientation as the
grey region they are placed within. In our configurations, right- and left-sheared tiles
are in the same column, say c, if one is on top of the other; hence these tiles may have
weight xc or −xc, respectively.

Note red lines may now share the same path as blue lines; these tiles facilitate the
proof and do not appear in the final Schur–atom model. We still ban rhombi between
diamond tiles as in Figure 2a, but there are no such restrictions between tiles that are not
both diamonds. The key to the proof is the following lemma equating columns of tiles.

Lemma 1. Let q1, . . . , qm, r, s, t1, . . . , tm, u and v be fixed labels where u and r are in { , } =
{0,+}. The following column configurations have the same weight:

q1

q2

qm

t1

t2

tm

v

s

r

u

q1

q2

qm

t1

t2

tm

v

s

r

u

=

Proof. Proving this lemma is the main difficulty of this work. The proof is by induction
with manual checking of several edge cases.

Remark 1. In [10, 11] the authors proceed similarly with a Yang–Baxter equation that equates
unit hexagons with unrestricted boundaries. In contrast, our equation requires that we restrict
the labels on the South-West and North-East edges, suggesting a more general framework to
explore.
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Figure 3: The full set of tiles where 1 ≤ i < j < k.
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Example 5. We consider two examples of Lemma 1. In the first example, both sides of the
equation have weight xc. In the second example, there are two ways to fill the column on the
left-hand side which sum to a weight of 0 and there is no way to fill the column on the right-hand
side.

2+

3+5+

1

1

2

4 4
3

5

+

xc

=

2+

3+5+

1

1

2

4 4
3

5

+
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3+

3+

1

1

2
2

4 4

+

+

x3
c

+
3+

3+

1

1

2
2

4 4

+

+

−x3
c

= 0

Note that rotating columns 180 degrees gives an analogous column lemma used to
prove correctness of the Schur–character model. Interpreting the next lemma proves our
result.

Lemma 2. Set k = max(α) + max(λ). The configurations below have the same weight:

αA

λ+

1 2 3 · · · n

n

k n

k n
αA

λ+

1 2 3 · · · n

n

k n

k n=

Proof. Repeatedly applying Lemma 1 to internal columns transforms the left-hand side
into the right-hand side. First apply the lemma to the column of length 2(k + n) contain-
ing the left-sheared tile most to the North-East and then repeat with the next left-sheared
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Figure 4: Two fillings of weight x3
1x2

2x4
3 from the configurations in Lemma 2 where

λ = (2, 2, 1) and α = (2, 1, 2), so that n = 3 and k = 4. Regions are labelled to facilitate
exposition.

tile, moving right-to-left and top-to-bottom. The boundary conditions ensure that the
South-West and North-East labels of columns we equate are always in { , } at every
stage in this process.

The proof now follows from examining both sides of the equation in Lemma 2. In
short, the left-hand side is manifestly the product sλ(x)Aα(x) and the right-hand side
is manifestly the summation ∑β cβ

λ,αAα(x) where cβ
λ,α counts fillings of the Schur–atom

model.

Proof of Theorem 1. We examine both sides of the equation in Lemma 2, which is better
illustrated with the example fillings in Figure 4. Within region A, all red lines must
move East and blue lines must move North-West. Those red lines must move straight
North-East through B, transmitting the string λ+ to the South-West boundary of C.
From Lemma 9 in [11], there is only one way to fill C, which forces the shared boundary
between C and E to be the string λ− upside-down. Thus, regions A, B and C have
weight 1.

Next, we recognize region D as our vertex model for the Demazure atom Aα(x).
From the previous paragraph, we have that λ− is upside-down on the South-East bound-
ary of E. Rotating region E by 180 degrees, we see that it is the vertex model for sλ(x)
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with the variables in reverse order; since sλ(x) is symmetric, the weight of the left-hand
side is the product sλ(x)Aα(x). We summarize pictorially:

αA

λ+

1 2 3 · · · n

n

k n

k n

1

1

1
=

αA

1 2 3 · · · n

n

λ−sλ

Aα

= sλ(x)Aα(x)

Considering the right-hand side, we have that regions G, H and I always have weight
1 and follow the same pattern as in Figure 4, transmitting the string k n to the North-
East boundary of region K. Within region J, all blue lines must exit the North-West
boundary if they are to reach the North-West boundary of K. This follows from our
choice of k = max(λ) + max(α). The blue lines then travel through the boundary be-
tween J and K, varying over strings βA that encode weak compositions. Fixing a par-
ticular βA along this boundary, we recognize region J as Aβ(x) and region K as the
Schur–atom model from Theorem 1. Thus, the right-hand side is a summation over
compositions β where each summand is a product of our Schur–atom model and Aβ(x).
We give another pictorial summary:

αA

λ+

1 2 3 · · · n

n

k n

k n

1

1

1 = ∑
β

αA

λ+

1 2 3 · · · n

k n

Aβ

∑
β

αA

λ+

k n

βA

cβ
λ,α

Aβ(x)=

By Lemma 2, we can equate both sides, completing the proof. As a final note, we used
that k = max(λ) + max(α) in our proof, but when considering the filling of a particular
diamond where β is given, it suffices to set k = max(β) as we do in Theorem 1.
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