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Abstract. It is broadly known that any parallelepiped tiles space by translating copies
of itself along its edges. In earlier work relating to higher-dimensional sandpile groups,
the second author discovered a novel construction which fragments the parallelpiped
into a collection of smaller tiles. These tiles fill space with the same symmetry as the
larger parallelepiped. Their volumes are equal to the components of the multi-row
Laplace determinant expansion, so this construction only works when all these signs
are non-negative (or non-positive).

In this work, we extend the construction to work for all parallelepipeds, without re-
quiring the non-negative condition. This naturally gives tiles with negative volume,
which we understand to mean canceling out tiles with positive volume. In fact, with
this cancellation, we prove that every point in space is contained in exactly one more
tile with positive volume than tile with negative volume. This is a natural definition
for a signed tiling.

Our main technique is to show that the net number of signed tiles doesn’t change
as a point moves through space. This is a relatively indirect proof method, and the
underlying structure of these tilings remains mysterious.
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1 Introduction

To motivate our work, we begin with an illustrative two-dimensional example of our
main construction. Consider the matrices

K =
[

1 2
−1 3

]
, S{1}(K) =

[
1 0
0 −3

]
, and S{2}(K) =

[
0 2
1 0

]
.
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Figure 1: On the left is the tiling given by translations of the parallelepiped ∏(K). On
the right is the tiling given by translations of the fundamental parallelepipeds of the
fragment matrices S{1}(K) and S{2}(K).

The matrices S{1}(K) and S{2}(K) are called the fragment matrices of K. They are
obtained by negating the second row and then zeroing out a diagonal. Directly from the
Laplace expansion for determinants, we can see that

−det(K) = det(S{1}(K)) + det(S{2}(K)).

Given a matrix N, let Π(N) be the (half-open) fundamental parallelepiped of N (see
Definition 2.2 for details). It is broadly known that for any nonsingular matrix N, copies
of Π(N) can be used to form a periodic tiling of space. For example, the tiling on the
left of Figure 1 is formed by copies of the parallelepiped Π(K) that are translated by the
integer linear combinations of columns of K (see Lemma 2.4).

Curiously, there also exists a tiling on the same lattice that is formed by the paral-
lelepipeds Π(S{1}(K)), and Π(S{2}(K)). In particular, the tiling on the right of Figure 1
is formed by Π(S{1}(K)) and Π(S{2}(K)), along with their translates by all of the integer
combinations of columns of K.

This tiling is a two dimensional example of a construction which was introduced
by the second author to define matrix-tree multijections [4, 5]. This construction can be
applied to any invertible (r + k) × (r + k) matrix M, and produces a collection of (r+k

r )
fragment matrices of M. When the determinants of the fragment matrices are all non-
negative (or all non-positive), translating them by integer linear combinations of the
columns of M produces a periodic tiling of Rr+k.

In this paper, we prove that the elegant tiling structure of the fragment matrices is
still present even without the restriction on M that all the fragment matrices have non-
negative determinant. In particular, while the translates do not always form a traditional
tiling with no overlap or gaps, they always produce a signed tiling.
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Figure 2: On the left is the tiling obtained by translating the fundamental paral-
lelepipeds of S{1}(L) by integer combinations of columns of L. The darker regions
indicate where two parallelepipeds overlap, while the lighter region is the portion cov-
ered by a single parallelepiped. On the right is the tiling obtained by translating the
fundamental parallelepipeds of S{2}(L) by integer combinations of columns of L. This
time, there are no overlaps, but the white region is formed by gaps between paral-
lelepipeds. By Theorem 2.9, the shaded region on the right precisely corresponds to
the darker region on the left.

To illustrate this signed version of the tiling, we give another 2-dimensional example.
This time, the determinants of the fragment matrices have opposite signs.

Let

L =
[

1 2
1 5

]
, S{1}(L) =

[
1 0
0 −5

]
, and S{2}(L) =

[
0 2
−1 0

]
.

As in the previous example, the fragment matrices S{1}(L) and S{2}(L) are formed
by negating the second row and zeroing a diagonal. Next, we consider translates of the
fragment matrices by integer linear combinations of the columns of L. In this case, the
tiles no longer perfectly fill space, and instead overlap, see Figure 2.

In our previous example, the determinants of S{1}(K) and S{2}(K) were both negative.
In this example, S{1}(L) is negative, but S{2}(L) is positive. Moreover, the positively
signed tiles overlap. Nevertheless, an elegant tiling structure can still be found.

Consider the two partial tilings given in Figure 2. Every point in the plane is covered
by either one translate of Π(S{1}(L)) or two translates of Π(S{1}(L)) and one translate of
Π(S{2}(L)). This means that if we define translates of Π(S{1}(L)) to be positive tiles and
translates of Π(S{2}(L)) to be negative tiles, then for any point p ∈ R2, the signed total of
all tiles containing p is always 1.

This surprising alignment of positive and negative tiles works in general. Reiterating
the previous setting, we let M be an invertible (r + k) × (r + k) matrix. We break this
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matrix into two parts, the first r rows and the last k rows. The two tiles from the two
dimensional case become (r+k

r ) many tiles, indexed by which r columns are preserved in
the top r rows (see Definition 2.5 for details).

We generalize the cancellation observed in the example with L by introducing a
function f . This function counts the number of positively signed tiles at a point, minus
the number of negatively signed tiles at that point. Our main result is the following.

Theorem 2.9. The function f : Rr+k → Z, defined by

f (p) :=

(
∑

T∈T+(M)
1T(p)

)
−
(

∑
T∈T−(M)

1T(p)

)
,

is constant with value (−1)k sgn(det(M)).

In Section 2, we describe the general construction and introduce the notation nec-
essary to understand the statement of Theorem 2.9. In Section 3, we give a high level
description of the general proof argument. In Section 4, we give an example of a four
dimensional signed tiling, which we visualize in 2 dimensions. Finally, in Section 5, we
consider future extensions and pose questions we think will be interesting to explore.
For more details, see our full paper on ArXiv [3].

2 Signed Tiling Construction

Fix positive integers r and k as well as an (r + k) × (r + k) matrix M with real entries.
Additionally, fix a generic direction vector w ∈ Rr+k. More precisely, w can be anything
but a set of measure 0 that depends on N.

Remark 2.1. Even more precisely, w is sufficiently generic for our purposes if it is not
spanned by any collection of r + k− 1 column vectors of any of the (r + k)× (r + k) matrices
we will be working with. Specifically, these matrices are M along with Sσ(M) for σ ∈
([r+k]

r ) (See Definition 2.5).

In this paper, we work extensively with parallelepipeds. The vector w gives a consis-
tent way to define half-open parallelepipeds.

Definition 2.2. Let N be an (r + k) × (r + k) matrix with real entries. Define Π(N) to be
the set of p ∈ Rr+k such that for all sufficiently small ϵ > 0, the point p + ϵw is in

∑
i∈[r+k]

{xiNi : 0 ≤ xi ≤ 1} .

The set Π(N) is called the (half-open) parallelepiped of N (with respect to w).
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Although Definition 2.2 depends on w, we omit it in our notation for conciseness.

Remark 2.3. The genericity conditions for w (which are discussed in Remark 2.1) are
precisely the conditions necessary to ensure the following condition. For all matrices
N that we will be working with and all points p ∈ Rr+k, there exists some ϵ > 0 such
that the segment from p to p + ϵw does not intersect the boundary of the fundamental
parallelepiped of N (except possibly at p).

Before we get to our first lemma, let us quickly clarify some confusing notation. The
term disjoint union can be used in two different ways in mathematics, so we will denote
these with two different symbols. For sets A and B, we write A

⊔
B for the set A ∪ B

with the added restriction that A ∩ B = ∅. We use the notation A
⊎

B to indicate the
other kind of disjoint union, where A and B are considered as separate objects.

We now present a simple observation about translating parallelepipeds, which will
be the foundation of our construction.

Lemma 2.4. For any choice of M, we have

Rr+k =
⊔

z∈Zr+k

(Π(M) + Mz) .

This lemma follows from the fact that the unit cube tiles space, and the displacement
between cubes in this tiling is all Z-valued vectors. The lemma describes this same
tiling, after applying M as a linear transformation. Our main construction is of a more
complicated tiling under the same translation lattice, which is formed by fragmenting M.

Definition 2.5. Let σ ∈ ([r+k]
r ), i.e., σ ⊂ [r + k] with |σ|= r. The σ-fragment matrix of M,

written Sσ(M), is the matrix obtained from M by the following 3 step process:

1. For each i ̸∈ σ, replace the first r entries of column i with 0.

2. For each i ∈ σ, replace the last k entries of column i with 0.

3. Negate all of the entries in the last k rows.

Example 2.6. Let r = k = 2. Any (r + k) × (r + k) matrix M has 6 associated fragment
matrices corresponding to the subsets of ([4]

2 ). For example, if

M =


3 2 −4 1
1 0 2 2
2 0 −1 1
0 1 −2 3

 and σ = {1, 4}, then Sσ(M) =


3 0 0 1
1 0 0 2
0 0 1 0
0 −1 2 0

 .

To form a signed tiling, we parameterize tiles formed by translating the fundamental
parallelepiped of fragment matrices by integer combinations of the columns of M.
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Definition 2.7. For any z ∈ Zr+k and σ ∈ ([r+k]
r ), the tile parameterized by the pair (z, σ)

is defined as
T (z, σ) := Π(Sσ(M)) + Mz.

Note that since Π(Sσ(M)) depends on w, the tile T (z, σ) will depend on w as well.
Nevertheless, the precise choice of w is not important for our results as long as it remains
fixed (and sufficiently generic, see Remark 2.1). Also, note that we usually think of a tile
T (z, σ) as a polytope made up of a collection of points, not the points themselves. With
this perspective in mind, we introduce the following definition.

Definition 2.8. Consider the sets of tiles

T+(M) : =
⊎

z∈Zr+k

 ⊎
σ∈([r+k]

r ), det(Sσ(M))>0

T (z, σ)

 ,

and T−(M) : =
⊎

z∈Zr+k

 ⊎
σ∈([r+k]

r ), det(Sσ(M))<0

T (z, σ)

 .

The set T+(M) is called the set of positive tiles, while T−(M) is called the set of negative
tiles. We also write T(M) := T+(M)

⊎
T−(M). Note that we don’t include the tiles where

det(Sσ(M)) = 0, but in this case, Sσ(M) is not invertible, and Π(Sσ(M)) is empty.

Definition 2.8 allows us to cleanly state our main result. Note that we write 1T for
the indicator function of a tile T.

Theorem 2.9. The function f : Rr+k → Z, defined by

f (p) :=

(
∑

T∈T+(M)
1T(p)

)
−
(

∑
T∈T−(M)

1T(p)

)
,

is constant with value (−1)k sgn(det(M)).

When one of T+(M) or T−(M) is empty, Theorem 2.9 specializes to a result about
more traditional tilings. For this result, we will treat each T (z, σ) as a collection of
points in Rr+k. We state only the version where T−(M) is empty, but the same statement
holds if “non-negative” is replaced with “non-positive”.

Corollary 2.10. [5, Corollary 9.2.8] If the sign of det(Sσ(M)) is non-negative for each σ ∈
([r+k]

r ), then

Rr+k =
⊔

z∈Z

 ⊔
σ∈([r+k]

r )

T (z, σ)

 .
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Remark 2.11. The conditions required on M for Corollary 2.10 to apply are discussed
in [5, Section 6.7]. The original proof of the corollary relies on these properties, so we
needed different methods to prove the more general Theorem 2.9. A special case of
Corollary 2.10 was used in [4] to define a family of multijections between the sandpile
group and cellular spanning forests for a large class of cell complexes. This generalizes a
construction of Backman Baker and Yuen which used zonotopal tilings to answer ques-
tions about chip-firing on regular matroids[1].

3 An Outline of the Proof

Our proof of Theorem 2.9 is structured in the following way.

1. First, we show that the average value of f is (−1)k sgn(det(M)).

2. Next, we group the facets of the tiles into collections that lie in the same hyper-
plane.

3. After this, we imagine a particle crossing a point contained in one of these collec-
tions of facets. We show that when doing so, it crosses exactly two facets. Further-
more, in one crossing it enters a positive tile or exits a negative tile, while in the other
crossing, it exits a positive tile or enters a negative tile.

4. From these observations, we conclude that f is constant. Theorem 2.9 then follows
from our first observation.

To find the average value of f , we use the multiple row version of Laplace’s deter-
minant expansion formula as well as some basic calculus techniques. One important
observation is the following chain of equalities, which holds for any σ ∈ ([r+k]

r ).

∑
z∈Zr+k

∫
Π(M)

1T (z,σ)(x)dx =
∫

Rr+k
1T (0,σ)(x)dx =

∫
Rr+k

1Π(Sσ(M))(x)dx = |det(Sσ(M))|.

The longest and most technical part of our proof is the facet grouping result. This
argument required careful bookkeeping and several applications of Cramer’s rule.

4 Lower Dimensional Slices

While Theorem 2.9 gives a signed tiling of Rr+k, it is also possible to visualize the tiling in
Rk or Rr by fixing the first r or last k entries respectively. We conclude with an example
of a 2-dimensional slice of a 4-dimensional signed tiling.
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Example 4.1. For the matrix M from Example 2.6, the set T(M) consists of 6 families of
4-dimensional parallelepipeds, where each family contains infinitely many translations
of a single fragment.

By taking the determinant of each fragment, we find that

T+(M) =
⊔

z∈Zr+k

 ⊔
σ∈{(1,2),(1,3),(1,4),(2,3),(2,4)}

T (z, σ)

 , and

T−(M) =
⊔

z∈Zr+k

T (z, {3, 4}).

Confirming that Theorem 2.9 holds for this example is not a completely straightfor-
ward task, even with the help of a computer. Nevertheless, regardless of the choice of
w, one can show that each p ∈ R4 is contained in

• one tile in T+(M) and no tiles in T−(M),

• two tiles in T+(M) and one tile in T−(M), or

• three tiles in T+(M) and two tiles in T−(M).

In each case, the value of f (p) is 1, which is also the sign of det(M).
It is possible to visualize this tiling by taking a 2-dimensional slice which fixes the

last 2 coordinates in R4. Each of the six families of tiles are given in Figure 3. In Figure 4,
we combine the positive tiles and the negative tiles. Notice that if the negative tiles are
“subtracted” from the positive tiles, the region formed by the difference covers the plane.
This demonstrates Theorem 2.9.

5 Open Problems

The main motivation for this project was an attempt to gain a deeper understanding
of a curious phenomenon (in particular Corollary 2.10). While we were successful at
generalizing this statement to Theorem 2.9, this new result is just as surprising. We
expect that a deeper exploration of this problem will lead more surprises in the future,
and we have several specific directions in mind the explore.

Our initial approach when attempting to prove Theorem 2.9 was to consider an arbi-
trary point in Rr+k (or Π(M)) and compute which tiles contain this point. A direct proof
of this form would give additional insight about the tiling, since it would allow us to
calculate the number and type of tiles containing a given point. However, this method
was more challenging than we expected, and we ended up relying on an indirect method
by focusing on the facets and proving that f is constant.
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det(S{1,2}(M)) = 2 det(S{1,3}(M)) = 10 det(S{1,4}(M)) = 5

det(S{2,3}(M)) = 24 det(S{2,4}(M)) = 16 det(S{3,4}(M)) = −20

Figure 3: Here we show the contributions of each of the six classes of tiles in Exam-
ple 4.1 to a 2-dimensional slice of the tiling. Notice that the proportion of the plane
that is covered by a specific class of tiles (with multiplicity for any overlapping tiles)
is proportional to the magnitude of the determinant of the corresponding fragment
matrix.
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Figure 4: This image on the left is formed by overlapping the 5 positive tiles in Figure 3
while the image on the right is given by the single negative tile. By Theorem 2.9, each
point is covered by exactly one more positive tile than negative tile.

Open 5.1. What is the best algorithm to determine which tiles contain a given point? Can such
an algorithm be used to give a more direct proof of Theorem 2.9?

Another promising method to prove Theorem 2.9 is to use Fourier analysis, applying
similar methods to those used in [2] (see also [6]). Perhaps these ideas could lead to a
more elegant proof once the background is established.

Open 5.2. Is there a proof for Theorem 2.9 using Fourier analysis?

In addition to an alternate proof of the main theorem, we would also be interested in
generalizing this result. As written, our construction relies on a choice of coordinates.
While it should be possible to translate the statement into coordinate-free language, this
is not a trivial task. Nevertheless, such a generalization would likely provide additional
insight into the underlying phenomenon behind our construction.

Open 5.3. Is there a coordinate-free analogue to Theorem 2.9 or Corollary 2.10?
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