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Abstract. We provide a construction for the kromatic symmetric function XG of a
graph introduced by Crew, Pechenik, and Spirkl using combinatorial (linearly com-
pact) Hopf algebras. As an application, we show that XG has a positive expansion into
multifundamental quasisymmetric functions. We also study two related quasisym-
metric q-analogues of XG, which are K-theoretic generalizations of the quasisymmetric
chromatic function of Shareshian and Wachs. We classify exactly when one of these
analogues is symmetric. For the other, we derive a positive expansion into symmetric
Grothendieck functions for graphs G that are natural unit interval orders.
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1 Introduction

The purpose of this note is to re-examine the algebraic origins of the kromatic symmetric
function of a graph that was recently introduced by Crew, Pechenik, and Spirkl [3], and
to study two quasisymmetric analogues of this power series.

Let N = {0, 1, 2, . . . }, P = {1, 2, 3, . . . }, and [n] = {1, 2, . . . , n} for n ∈ N. All graphs
are undirected by default, and are assumed to be simple with a finite set of vertices. We
do not distinguish between isomorphic graphs.

If G is any graph then we write V(G) for its set of vertices and E(G) its set of edges.
A proper coloring of G is a map κ : V(G) → P with κ(u) ̸= κ(v) for all {u, v} ∈ E(G). For
maps κ : V → P let xκ = ∏i∈V xκ(i) where x1, x2, . . . are commuting variables.

Definition 1.1 (Stanley [12]). The chromatic symmetric function of G is the symmetric
power series XG := ∑κ xκ where the sum is over all proper colorings κ of G.

Example 1.2. If G = Kn is the complete graph with V(G) = [n] then XG = n!en for the
elementary symmetric function en := ∑1≤i1<i2<···<in xi1 xi2 · · · xin .

A poset is (3 + 1)-free if it does not contain a 3-element chain a < b < c whose ele-
ments are all incomparable to some fourth element d. The Stanley–Stembridge conjecture
[13] proposes that if G is the incomparability graph of a (3 + 1)-free poset then XG has a
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positive expansion into elementary symmetric functions. This conjecture has several re-
finements and generalizations, and has been resolved in a number of interesting special
cases, but remains open in general.

Let G be an ordered graph, that is, a graph with a total order < on its vertex set V(G).
An ascent (resp., descent) of a map κ : V(G) → P is an edge {u, v} ∈ E(G) with u < v
and κ(u) < κ(v) (resp., κ(u) > κ(v)). Let ascG(κ) and desG(κ) be the number of ascents
and descents. Shareshian and Wachs [10] introduced the following q-analogue of XG:

Definition 1.3 ([10]). The chromatic quasisymmetric function of an ordered graph G is
XG(q) = ∑κ qascG(κ)xκ ∈ N[q]Jx1, x2, . . .K where the sum is over all proper colorings.

Example 1.4. If G = Kn then XG(q) = [n]q!en where [i]q =
1−qi

1−q and [n]q! = ∏n
i=1[i]q.

Let Set(P) be the set of finite nonempty subsets of P. For a map κ : V → Set(P)
define xκ = ∏i∈V ∏j∈κ(i) xj. A proper set-valued coloring is a map κ : V(G) → Set(P) with
κ(u) ∩ κ(v) = ∅ for all {u, v} ∈ E(G). There is also a “K-theoretic” analogue of XG:

Definition 1.5 (Crew, Pechenik, and Spirkl [3]). The kromatic symmetric function of a graph
G is the sum XG = ∑κ xκ ∈ ZJx1, x2, . . .K over all proper set-valued colorings of G.

Example 1.6. XKn = n! ∑∞
r=n {r

n}er where {r
n} is the Stirling number of the second kind.

Remark 1.7. Given α : V → N, let Clα(V) be the set of pairs (v, i) with v ∈ V and
i ∈ [α(v)]. If G is a graph and α : V(G) → N is any map, then the α-clan graph Clα(G)
has vertex set Clα(V(G)) and edges {(v, i), (w, j)} whenever {v, w} ∈ E(G) or both v = w
and i ̸= j. As observed in [3], one has XG = ∑α:V(G)→P

1
α! XClα(G) where α! := ∏v α(v)!.

Many properties of XG extend to XG via this identity, but some interesting features of
XG cannot be explained by this formula alone.

Our main results provide a natural construction for XG using the theory of combina-
torial Hopf algebras. This approach requires some care, as XG is not a symmetric function
of bounded degree. We explain things precisely in terms of linearly compact Hopf algebras
after reviewing a similar, simpler construction of XG in Section 2, following [1].

As an application of our approach, we show that XG has a positive expansion into
multifundamental quasisymmetric functions. We also study two related q-analogues of XG,
which give K-theoretic generalizations of XG(q). We classify exactly when one of these
analogues is symmetric. For the other, we extend a theorem of Crew, Pechenik, and
Spirkl (also lifting a theorem of Shareshian and Wachs) to derive a positive expansion
into symmetric Grothendieck functions for graphs G that are natural unit interval orders.

2 Background

Let K be an integral domain; in practice, one can assume this is Z, Q, Z[q], or Q(q).
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2.1 Hopf algebras

Write ⊗ = ⊗K for the tensor product over K. A K-algebra is a K-module A with K-linear
product ∇ : A ⊗ A → A and unit ι : K → A maps. Dually, a K-coalgebra is a K-module
A with K-linear coproduct ∆ : A → A ⊗ A and counit ϵ : A → K maps. The (co)product
and (co)unit maps must satisfy several associativity axioms; see [5, §1].

A K-module A that is both a K-algebra and a K-coalgebra is a K-bialgebra if the
coproduct and counit maps are algebra morphisms. A bialgebra A =

⊕
n∈N An is graded

if its (co)product and (co)unit are graded maps; in this case A is connected if A0 = K.
Let End(A) denote the set of K-linear maps A → A. This set is a K-algebra for the

product f ∗ g := ∇ ◦ ( f ⊗ g) ◦ ∆. The unit of this convolution algebra is the composition
ι ◦ ϵ of the unit and counit of A. A bialgebra A is a Hopf algebra if id : A → A has a
two-sided inverse S : A → A in End(A). When it exists, we call S the antipode of A.

Example 2.1. Let Graphsn for n ∈ N be the free K-module spanned by all isomorphism
classes of undirected graphs with n vertices, and set Graphs =

⊕
n∈N Graphsn. One views

Graphs as a connected, graded Hopf algebra with product ∇(G ⊗ H) = G ⊔ H and
coproduct ∆(G) = ∑S⊔T=V(G) G|S ⊗ G|T for graphs G and H, where ⊔ denotes disjoint
union and G|S denotes the subgraph of G induced on S.

A lower set in a directed acyclic graph D = (V, E) is a set S ⊆ V such that if a directed
path connects v ∈ V to s ∈ S then v ∈ S. An upper set is the complement of a lower set.

Example 2.2. Let DAGsn for n ∈ N be the free K-module spanned by all isomorphism
classes of directed acyclic graphs with n vertices, and set DAGs =

⊕
n∈N DAGsn. One

views DAGs as a connected, graded Hopf algebra with product ∇(C ⊗ D) = C ⊔ D and
coproduct ∆(D) = ∑ D|S ⊗ D|T for directed acyclic graphs graphs C and D, where the
sum is over all disjoint unions S ⊔ T = V(D) with S a lower set and T an upper set.

A labeled poset is a pair (D, γ) consisting of a directed acyclic graph D and an injective
map γ : V(D) → Z. We consider (D, γ) = (D′, γ′) if there is an isomorphism D ∼−→ D′,
written v 7→ v′, such that γ(u) − γ(v) and γ′(u′) − γ′(v′) have the same sign for all
edges u → v ∈ E(D). If (D1, γ1) and (D2, γ2) are labeled posets then let γ1 ⊔ γ2 :
V(D1 ⊔ D2) → Z be any injective map such that (γ1 ⊔ γ2)(u) − (γ1 ⊔ γ2)(v) has the
same sign as γi(u)− γi(v) for all u, v ∈ V(Di).

Example 2.3. Let LPosetsn be the free K-module spanned by all labeled poset with n
vertices, and set LPosets =

⊕
n∈N LPosetsn. This is a connected, graded Hopf algebra

with product ∇((D1, γ1) ⊗ (D2, γ2)) = (D1 ⊔ D2, γ1 ⊔ γ2) and coproduct ∆((D, γ)) =

∑(D|S, γ|S)⊗ (D|T, γ|T) where the sum is over all disjoint decompositions S⊔ T = V(D)
with S a lower set and T an upper set.

A (strict) composition α = (α1, α2, . . . , αl) is a finite sequence of positive integers, called
its parts. We say that α is a composition of |α| := ∑i αi ∈ N.
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Example 2.4. Fix a composition α and let x1, x2, . . . be a countable sequence of com-
muting variables. The monomial quasisymmetric function of α is the power series Mα =

∑1≤i1<i2<···<il xα1
i1

xα2
i2
· · · xαl

il
. Let QSym = K-span{Mα : α any composition} be the ring of

quasisymmetric functions of bounded degree. This ring is a graded connected Hopf al-
gebras for the coproduct ∆(Mα) = ∑α=α′α′′ Mα′ ⊗ Mα′′ where α′α′′ denotes concatenation
of compositions, and the counit that acts on power series by setting x1 = x2 = · · · = 0.

A partition is a composition sorted into decreasing order. We write λ = 1m12m2 · · · to
denote the partition with exactly mi parts equal to i.

Example 2.5. The elementary symmetric function of a partition λ is the product eλ :=
eλ1eλ2 · · · where en := M1n . These power series are a basis for the Hopf subalgebra
Sym ⊂ QSym of symmetric functions of bounded degree.

2.2 Combinatorial Hopf algebras

Following [1], a combinatorial Hopf algebra (H, ζ) is a graded, connected Hopf algebra H
of finite graded dimension with an algebra homomorphism ζ : H → K.

Example 2.6. The pair (QSym, ζQ) is an example of a combinatorial Hopf algebra, where
ζQ : QSym → K is the map ζQ( f ) = f (1, 0, 0, . . . ), which sends M(n) 7→ 1 and Mα 7→ 0
for all α with at least two parts.

For a graph G define ζGraphs(G) = 0|E(G)| where throughout we interpret 00 := 1.
For a directed acyclic graph D likewise set ζDAGs(D) = 0|E(D)| for each directed acyclic
graph D. These formulas extend to linear maps on Graphs and DAGs. Finally let ζLPosets :
LPosets → K be the linear map with ζLPosets((D, γ)) = 1 if γ(u) < γ(v) for all edges
u → v ∈ E(D) with ζLPosets((D, γ)) = 0 otherwise.

Example 2.7. The pairs (Graphs, ζGraphs), (DAGs, ζDAGs), and (LPosets, ζLPosets) are all com-
binatorial Hopf algebras.

A morphism Ψ : (H, ζ) → (H′, ζ ′) is a graded Hopf algebra morphism Ψ : H → H′

with ζ = ζ ′ ◦ Ψ. Results in [1] show that there exists a unique morphism from any
combinatorial Hopf algebra to (QSym, ζQ). Moreover, the image of Ψ is contained in the
Hopf subalgebra Sym ⊂ QSym if H is cocommutative. There is an explicit formula for
this morphism in [1], which translates to the following maps for our examples above.

For a graph G, let AO(G) be its set of acyclic orientations. For a directed acyclic graph
D, let (D, γop) be the labeled poset with γop(u) > γop(v) for all edges u → v ∈ E(D).
Also set Γ(D) = ∑κ xκ ∈ NJx1, x2, . . .K where the sum is over all maps κ : V(D) → P

with κ(u) < κ(v) whenever u → v ∈ E(D).
More generally, for a labeled poset (D, γ) define Γ(D, γ) = ∑κ xκ where the sum is

over all maps κ : V(D) → P with κ(u) ≤ κ(v) whenever u → v ∈ E(D) and γ(u) < γ(v),
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and with κ(u) < κ(v) whenever u → v ∈ E(D) and γ(u) > γ(v). Such maps κ are called
P-partitions for P = (D, γ) [11].

Proposition 2.8. There is a commutative diagram of combinatorial Hopf algebras

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

(QSym, ζQ)

in which the horizontal maps send G 7→ ∑D∈AO(G) D and D 7→ (D, γop), and the QSym-
valued maps send G 7→ XG, D 7→ Γ(D), and (D, γ) 7→ Γ(D, γ), respectively.

3 K-theoretic generalizations

We now explain how the results in the previous can be extended “K-theoretically” to con-
struct interesting quasisymmetric functions of unbounded degree, including XG. This
requires a brief discussion of monoidal structures on linearly compact modules.

3.1 Linearly compact modules

Let A and B be K-modules with a K-bilinear form ⟨·, ·⟩ : A × B → K. Assume A is free
and ⟨·, ·⟩ is nondegenerate in the sense that b 7→ ⟨·, b⟩ is a bijection B → HomK(A, K).

Fix a basis {ai}i∈I for A. For each i ∈ I, there exists a unique bi ∈ B with ⟨ai, bj⟩ = δij
for all i, j ∈ I, and we identify b ∈ B with the formal linear combination ∑i∈I⟨ai, b⟩bi. We
call {bi}i∈I a pseudobasis for B.

We give K the discrete topology. Then the linearly compact topology [4, §I.2] on B is the
coarsest topology in which the maps ⟨ai, ·⟩ : B → K are all continuous. This topology
depends on ⟨·, ·⟩ but not on the choice of basis for A. For a basis of open sets in the
linearly compact topology, see [9, Eq. (3.1)].

Definition 3.1. A linearly compact (or LC for short) K-module is a K-module B with a
nondegenerate bilinear form A × B → K for some free K-module A, given the linearly
compact topology; in this case we say that B is the dual of A. Morphisms between such
modules are continuous K-linear maps.

Let B and B′ be linearly compact K-modules dual to free K-modules A and A′. Let
⟨·, ·⟩ denote both of the associated forms. Every linear map ϕ : A′ → A has a unique
adjoint ψ : B → B′ such that ⟨ϕ(a), b⟩ = ⟨a, ψ(b)⟩. A linear map B → B′ is continuous
when it is the adjoint of some linear map A′ → A.

Definition 3.2. Define B ⊗ B′ := HomK(A ⊗ A′, K) and give this the LC-topology from
the pairing (A ⊗ A′)× HomK(A ⊗ A′, K) → K.
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If {bi}i∈I and {b′j}j∈J are pseudobases for B and B′, then we can realize the completed
tensor product B ⊗ B′ concretely as the linearly compact K-module with the set of tensors
{bi ⊗ b′j}(i,j)∈I×J as a pseudobasis.

Suppose ∇ : B ⊗ B → B and ι : B → K are continuous linear maps which are the
adjoints of linear maps ϵ : K → A and ∆ : A → A ⊗ A. We say that (B,∇, ι) is an LC-
algebra if (A, ∆, ϵ) is a K-coalgebra. Similarly, we say that ∆ : B → B ⊗ B and ϵ : B → K

make B into an LC-coalgebra if ∆ and ϵ are the adjoints of the product and unit maps of
a K-algebra on A. We define LC-bialgebras and LC-Hopf algebras analogously; see [9]. If
B is an LC-Hopf algebra then its antipode is the adjoint of the antipode of A.

3.2 Combinatorial LC-Hopf algebras

Following [9], we define a combinatorial LC-Hopf algebra to be a pair (H, ζ) consisting of
an LC-Hopf algebra H with a continuous linear map ζ : H → KJtK such that ζ(·)|t 7→0 is
the counit of H. A morphism of combinatorial LC-Hopf algebras Ψ : (H, ζ) → (H′, ζ ′)
is a LC-Hopf algebra morphism Ψ : H → H′ with ζ = ζ ′ ◦ Ψ.

Example 3.3. Let mQSym be the set of all quasisymmetric power series in KJx1, x2, . . . , K
of possibly unbounded degree. The (co)product, (co)unit, and antipode QSym all extend
to continuous K-linear maps that make mQSym into an LC-Hopf algebra, with {Mα} as
a pseudobasis. Then (mQSym, ζQ) is a combinatorial LC-Hopf algebra when ζQ is the
map ζQ : f 7→ f (t, 0, 0, . . . ).

The preceding example is an instance of a general construction. If A is a free K-
module with basis S, then its completion A is the set of arbitrary K-linear combinations
of S. We view A as a linearly compact K-module with S as a pseudobasis, relative to the
nondegenerate bilinear form A × A → K making S orthonormal.

If (H, ζ) is a combinatorial Hopf algebra then then there is a unique way of extending
its (co)unit and (co)product to continuous linear maps on H. As the Hopf algebra H =⊕

n∈N is graded, we can also extend ζ : H → K to a continuous linear map ζ : H → KJtK
by the formula ζ(h) = ζ(h)tn for n ∈ N and h ∈ Hn.

Proposition 3.4. If (H, ζ) is combinatorial Hopf algebra then the extended structures
just given make (H, ζ) into a combinatorial LC-Hopf algebra, and the unique morphism
(H, ζ) → (QSym, ζQ) extends to a morphism (H, ζ) → (mQSym, ζQ).

The pair (mQSym, ζQ) is a final object in the category of combinatorial LC-Hopf alge-
bras, meaning there is a unique morphism (H, ζ) → (mQSym, ζQ) for any combinatorial
LC-Hopf algebra. More specifically, if H has coproduct ∆, then define ∆(0) = idH and
∆(k) = (∆(k−1) ⊗ id) ◦ ∆ : H → H⊗(k+1) for k ∈ P. For compositions α = (α1, α2, . . . , αk),
let ζα : H → K be the map sending h ∈ H to the coefficient of tα1 ⊗ tα2 ⊗ · · · ⊗ tαk in
ζ⊗k ◦ ∆(k−1)(h) ∈ KJtK. When α = ∅ is empty let ζ∅ = ζ(·)|t 7→0 be the counit of H.
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Theorem 3.5 ([8]). If (H, ζ) is a combinatorial LC-Hopf algebra then the map ΨH,ζ : h 7→
∑α ζα(h)Mα is the unique morphism (H, ζ) → (mQSym, ζQ).

Let mSym be the LC-Hopf subalgebra of symmetric functions in mQSym. When H
cocommutative, the morphism ΨH,ζ evidently has its image in mSym.

3.3 Set-valued P-partitions

For a directed acyclic graph D, let Γ(D) = ∑κ xκ where the sum is over all maps κ :
V(D) → Set(P) with κ(u) ≺ κ(v) whenever u → v ∈ E(D).

Example 3.6. If D = (1 → 2 → 3 → · · · → n) is an n-element chain then define
en := Γ(D) = ∑∞

k=0 (
n−1+k

n−1 )en+k. For each partition λ let eλ := eλ1eλ2 · · · . These functions
are a pseudobasis for mSym.

For a labeled poset (D, γ) define Γ(D, γ) = ∑κ xκ where the sum is over all maps
κ : V(D) → Set(P) with κ(u) ⪯ κ(v) whenever u → v ∈ E(D) and γ(u) < γ(v), and
with κ(u) ≺ κ(v) whenever u → v ∈ E(D) and γ(u) > γ(v). Such maps κ are called
set-valued P-partitions for P = (D, γ) in [7, 8].

Example 3.7. If D = (1 → 2 → 3 → · · · → n) is an n-element chain and S is the set
of i ∈ [n − 1] with γ(i) > γ(i + 1) then the we define Ln,S := Γ(D, γ). Following [7],
the multifundamental quasisymmetric function of a composition α is defined by Lα := Ln,S
where n = |α| and S = I(α) := {α1, α1 + α2, α1 + α2 + α3, . . . } \ {n}. These power series
form another pseudobasis for mQSym [7]. An element of mQSym is multifundamental
positive if its expansion in this pseudobasis involves only nonnegative coefficients.

A multilinear extension of a directed acyclic graph D with n vertices is a sequence
w = (w1, w2, . . . , wN) with V(D) = {w1, w2, . . . , wN} such that i < j whenever wi →
wj ∈ E(D), and wi ̸= wi+1 for all i ∈ [N − 1]. If M(D) is the set of all multilinear
extensions of D and γ : V(D) → Z is injective, then Γ(D, γ) = ∑w∈M(D) Lℓ(w),Des(w,γ)
where Des(w, γ) := {i ∈ [ℓ(w)− 1] : γ(wi) > γ(wi+1)} for w ∈ M(D) [7].

3.4 Acyclic multi-orientations

Let G be a graph. An acyclic multi-orientation of G is an acyclic orientation of the α-clan
graph Clα(G) from Remark 1.7 for some α : V(G) → P, such that for each v ∈ V(G) both
(a) if i, j ∈ [α(v)] have i > j then (v, i) → (v, j) is a directed edge; and (b) if i ∈ [α(v)− 1]
then there exists a directed path involving no edges of the form (v, j) → (v, k) that
connects (v, i + 1) to (v, i). Let mAO(G) be the set of all acyclic multi-orientations of G.

One can relate the e-expansion of the symmetric function XG to the source counts of
its acyclic multi-orientations, generalizing a result of Stanley [12, Thm. 3.3].
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Theorem 3.8. Let G be a graph and suppose XG = ∑λ cλeλ for some coefficients cλ ∈ Z.
Then the number of acyclic multi-orientations of G with exactly j sources and k vertices
is ∑ℓ(λ)=j,|λ|=k cλ ∈ N.

As noted in [3], in general, the coefficients cλ appearing in XG = ∑λ cλeλ can be
negative, even when G = inc(P) is the incomparability graph of a (3 + 1)-free poset P.

3.5 Morphisms

For each graph G let ▲(G) = ∑S∪T=V(G) G|S ⊗ G|T. This only differs from our other
coproduct in allowing vertex decompositions that are not disjoint. Likewise, for each
directed acyclic graph D and labeled poset P = (D, Γ), define ▲(D) = ∑ D|S ⊗ D|T and
▲(P) = ∑(D|S, γ|S)⊗ (D|T, γ|T), where both sums are over all (not necessarily disjoint)
vertex decompositions S ∪ T = V(D) in which S is a lower set, T is an upper set, and
S ∩ T is an antichain.

Use the continuous linear extensions of these operations to replace the coproducts
in the completions of Graphs, DAGs, and LPosets, and denote the resulting structures as
mGraphs, mDAGs, and mLPosets to distinguish them from Graphs, DAGs, and LPosets.

Theorem 3.9. The pairs (mGraphs, ζGraphs), (mDAGs, ζDAGs), and (mLPosets, ζLPosets) are
all combinatorial LC-Hopf algebras, and there is a commutative diagram

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(mQSym, ζQ)

in which the horizontal maps send G 7→ ∑D∈mAO(G) D and D 7→ (D, γop), and the
mQSym-valued maps send G 7→ XG, D 7→ Γ(D), and (D, γ) 7→ Γ(D, γ).

Corollary 3.10. The unique morphism (mGraphs, ζGraphs) → (mQSym, ζQ) assigns a graph
G to its kromatic symmetric function, which is symmetric as mGraphs is cocommutative.
One can express XG = ∑D∈mAO(G) Γ(D) and thus XG is multifundamental positive.

Fix a directed acyclic graph D. When α : V(D) → N is any map, define Cldagα (D)
to be the directed acyclic graph with vertices Clα(V(D)) and with edges (v, i) → (w, j)
whenever v → w ∈ E(D) or both v = w and i < j. When γ : V(D) → Z is injective, so
that (D, γ) is a labeled poset, define Cldagα (D, γ) = (Cldagα (D), γ̃) to be the labeled poset
where γ̃(v, i) < γ̃(w, j) if and only if γ(v) < γ(w) or both v = w and i > j.
Theorem 3.11. Assume Q ⊆ K. Then there is a commutative diagram

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

∼= ∼= ∼=
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with horizontal maps extending Proposition 2.8 and Theorem 3.9, where the vertical
isomorphisms are the continuous linear maps sending G 7→ ∑α:V(G)→P

1
α!Clα(G), D 7→

∑α:V(D)→P Cldagα (D), and (D, γ) 7→ ∑α:V(D)→P Cldagα (D, γ), respectively.

3.6 Kromatic quasisymmetric functions

For the rest of this note we assume K ⊇ Z and let q be a formal parameter. We will
consider the polynomial and power series rings Sym[q] ⊂ mQSym[q] ⊂ mQSymJqK.

Let G be an ordered graph, that is, a graph with a total order < on its vertex set
V(G). One can think of the ordering on V(G) as defining an acyclic orientation on the
edges of G, and we do not distinguish between G and another ordered graph H if the
corresponding directed acyclic graphs are isomorphic. The following power series is a
K-theoretic generalization of XG(q) and q-analogue of XG:

Definition 3.12. For an ordered graph G define LG(q) = ∑κ qascG(max ◦κ)xκ ∈ mQSym[q]
where the sum is over all proper set-valued colorings.

Example 3.13. If G = Kn is the complete graph on the vertex set [n] then LG(q) =
[n]q! ∑∞

r=n {r
n}er = [n]q! ∑∞

r=n {r−1
n−1}er where {r

n} is the Stirling number of the second kind.

Let us clarify the apparent asymmetry in Definition 3.12. Define Ldes,min
G (q) by re-

placing “asc” by “des” and “max” by “min” in Definition 3.12. Construct Lasc,min
G (q)

and Ldes,max
G (q) analogously. Let ρ be the continuous involution of mQSym[q] sending

M(α1,...,αk)
7→ M(αk,...,α1)

. Let τ be the involution of mQSym[q] sending f 7→ qdegq( f ) f (q−1).

Proposition 3.14. We have LG(q) = ρ
(

Ldes,min
G (q)

)
= τ

(
Ldes,max

G (q)
)
= ρ ◦ τ

(
Lasc,min

G (q)
)

.

Recall that a cluster graph is a disjoint union of complete graphs.

Theorem 3.15. We have LG(q) ∈ mSym[q] if and only if G is a cluster graph.

Fix D ∈ mAO(G). Each vertex in D has the form (v, i) for some v ∈ V(G) and i ∈ P.
Define align(D) := |{(u, i) → (v, j) ∈ E(D) : u < v and i = j = 1}|.
Proposition 3.16. If G is an ordered graph then LG(q) = ∑D∈mAO(G) qalign(D)Γ(D). This
power series is multifundamental positive in the sense of being a possibly infinite N[q]-
linear combination of multifundamental quasisymmetric functions.

We can make this more explicit, generalizing a result in [10]. Following [7], a multi-
permutation of n ∈ N is a word w = w1w2 · · ·wm with {w1, w2, . . . , wm} = {1, 2, . . . , n}
and wi ̸= wi+1 for all i ∈ [m − 1]. Let Sn be the set of all multipermutations of n.

For each w = w1w2 · · ·wm ∈ Sn let Inv(w) be the set of pairs (wi, wj) with i < j and
wi > wj and {w1, w2, . . . , wi−1} ∩ {wi} = {w1, w2, . . . , wj−1} ∩ {wj} = ∅. If P is a poset
on [n] and G = inc(P) is its incomparability graph, then we set invG(w) := |{(a, b) ∈
Inv(w) : {a, b} ∈ E(G)}| and S(w, P) := {m − i : i ∈ [m − 1] and wi ̸>P wi+1}.
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Theorem 3.17. If G = inc(P) for a poset P on [n] then LG(q) = ∑
w∈Sn

qinvG(w)Lℓ(w),S(w,P).

The homogeneous component of LG(q) of lowest x-degree recovers XG(q). The latter
power series, like XG, naturally arises as the image of a morphism of combinatorial Hopf
algebras. In detail, assume K = Z[q] and let OGraphsn be the free K-module spanned
by all isomorphism classes of ordered graphs with n vertices. Then the direct sum
OGraphs :=

⊕
n∈N OGraphsn has a graded connected Hopf algebra structure in which the

product is disjoint union and the coproduct ∆q satisfies

∆q(G) = ∑S⊔T=V(G) qascG(S,T)G|S ⊗ G|T for each ordered graph G, (3.1)

where ascG(S, T) := |{(s, t) ∈ S × T : {s < t} ∈ E(G)}|. If ζOGraphs is the algebra
morphism OGraphs → K sending G 7→ 0|E(G)|, then (OGraphs, ζOGraphs) is a combinatorial
Hopf algebra and the morphism (OGraphs, ζOGraphs) → (QSym, ζQ) sends G 7→ XG(q).

We do not know how to give the completion mOGraphs ⊃ OGraphs a combinatorial
LC-Hopf algebra structure that lets us construct LG(q) in a similar way. In particular,
we have not been able to find a K-theoretic generalization of the coproduct ∆q. Unlike
the q = 1 case, simply replacing ⊔ in (3.1) by arbitrary union ∪ does not lead to a co-
associative map. This problem remains if we change the q-power exponent ascG(S, T) to
other forms like ascG(S − T, T), ascG(S, T − S), or ascG(S − T, T − S).

3.7 Another quasisymmetric analogue

The preceding results indicate that LG(q) is an interesting quasisymmetric q-analogue of
XG and K-theoretic extension of XG(q). However, there is another natural candidate for
such a generalization. Continue to let G be an ordered graph. Following [6], an ascent
of a set-valued map κ : V(G) → Set(P) is a tuple (u, v, i, j) with {u, v} ∈ E(G), i ∈ κ(u),
j ∈ κ(v), and both u < v and i < j. Let ascG(κ) denote the number of such ascents.

Definition 3.18. For an ordered graph G, define XG(q) = ∑κ qascG(κ)xκ ∈ mQSymJqK
where the sum is over all proper set-valued colorings κ : V(G) → Set(P).

This definition is closely related to the quasisymmetric functions XG(x, q, µ) studied
in [6]. For each map µ : V(G) → N, Hwang [6] defines XG(x, q, µ) := ∑κ qascG(κ)xκ where
the sum is over all proper set-valued colorings κ of G with |κ(v)| = µ(v). Evidently
XG(q) = ∑µ:V(G)→P XG(x, q, µ), and as noted in [6, Rem. 2.2] one has XG(x, q, µ) =

1
[µ]q! XClµ(G)(q) where [µ]q! := ∏v∈V(G)[µ(v)]q!. Here, we view Clµ(G) as an ordered

graph with (v, i) < (w, j) if either v < w or v = w and i < j.
Using these observations, various positive or alternating expansions of XG(q) (e.g.,

into fundamental quasisymmetric functions [10, Thm. 3.1], Schur functions [10, Thm. 6.3],
power sum symmetric functions [2, Thm. 3.1], or elementary symmetric functions [10,
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Conj. 5.1]) can be extended in a straightforward way to XG(x, q, µ) and XG(q). See
Hwang’s results [6, Thms. 3.3, 4.10, and 4.19] and his conjecture [6, Conj. 3.10].

Some of these statements require G to be isomorphic to the incomparability graph of
a natural unit interval order, meaning a poset P on a finite subset of P such that if x <P z
then x < z and every y incomparable in P to both x and z has x < y < z [10, Prop. 4.1].1

If G has this property, then so do all of its α-clans. Therefore XG(q) is symmetric if G is
the incomparability graph of a natural unit order interval [6, Thm. 3.8].

Example 3.19. If Kn is the complete graph on [n] then XKn(q) = ∑∞
r=n F(n)

r er for F(n)
r :=

∑ k1,k2,...,kn∈P
k1+k2+···+kn=r

( r
k1,k2,...,kn

)
q

where (q)n := ∏i∈[n](1 − qi) and ( r
k1,k2,...,kn

)
q
= (q)r

(q)k1
(q)k2

···(q)kn
.

When q is a prime power, F(n)
r counts the strictly increasing flags of Fq-subspaces

0 = V0 ⊊ V1 ⊊ · · · ⊊ Vn = Fr
q. Vinroot [14] derived a recurrence for the generalized Galois

numbers G(n)
r := ∑n

i=0 (
n
i )F(i)

r . This can be used to show (setting F(n)
r = 0 if r < 0) that:

Proposition 3.20. One has F(n)
r+1 = ∑n−1

i=0 ∑n
j=n−1−i (

n
j)(

j
n−1−i)(−1)i (q)r

(q)r−i
F(j)

r−i.

Like LG(q), the power series XG(q) also does not seem to arise naturally as the image
in mQSym of a combinatorial LC-Hopf algebra. Unlike LG(q), however, XG(q) is not gen-
erally multifundamental-positive (or e-positive). However, XG(q) does have a nontrivial
positivity property that is not shared by XG(x, q, µ) or LG(q).

A set-valued tableau T of shape λ is an assignment of sets Tij ∈ Set(P) to the cells (i, j)
in Dλ = {(i, j) ∈ P × P : 1 ≤ j ≤ λi} of a partition λ. We write (i, j) ∈ T to indicate that
(i, j) belongs to the shape of T. A set-valued tableau T is semistandard if Tij ⪯ Ti,j+1 and
Tij ≺ Ti+1,j for all relevant positions. Let xT := ∏(i,j)∈T ∏k∈Tij

xk and |T| := ∑(i,j)∈T |Tij|.

Definition 3.21. The symmetric Grothendieck function of a partition λ is the power series
sλ := ∑T∈SetSSYT(λ)(−1)|T|−|λ|xT ∈ ZJx1, x2, . . .K where SetSSYT(λ) is the set of all semi-
standard set-valued tableaux of shape λ.

Each sλ is in mSym and the set of all symmetric Grothendieck functions is another
pseudobasis for mSym. We write µ ⊆ λ for two partitions with Dµ ⊆ Dλ and set Dλ/µ :=
Dλ \Dµ. A semistandard tableau of shape λ/µ is a filling of Dλ/µ by positive integers such
that each row is weakly increasing and each column is strict increasing.

Definition 3.22 ([3, Def. 3.8]). Suppose P is a finite poset and λ is a partition. A
Grothendieck P-tableau of shape λ is a pair T = (U, V) with these two properties: (a)
U is a filling of Dµ by elements of P for some partition µ ⊆ λ, such that each element of
P is in at least one cell, and for each (i, j) ∈ Dµ one has Uij <P Ui,j+1 if (i, j+ 1) ∈ Dµ and
Uij ̸>P Ui+1,j if (i + 1, j) ∈ Dµ; and (b) V is a semistandard tableau of shape λ/µ, whose
entries in each row i are all less than i (so Dλ/µ must have no cells in the first row).

1A finite poset has these properties if and only if it is (3 + 1)- and (2 + 2)-free [10, §4].
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Let GP be the set of Grothendieck P-tableaux. Let λ(T) be the shape of T ∈ GP. One
of the main results of [3] establishes that if G = inc(P) is the incomparability graph a
(3 + 1)-free poset P then XG = ∑T∈GP

sλ(T). This theorem has a q-analogue.
Suppose P is a finite poset on a subset of P, and let G = inc(P). Choose some

T = (U, V) ∈ GP and let µ be the partition shape of the tableau U. Define a G-inversion
of T to be a pair of cells (i, j), (k, l) ∈ Dµ with i > k such that Uij < Ukl but Uij ̸<P Ukl
and Uij ̸>P Ukl. Finally, let invG(T) be the number of all G-inversions of T.

Theorem 3.23. If P is a natural unit interval order then XG = ∑T∈GP
qinvG(T)sλ(T).
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