Kromatic quasisymmetric functions

Eric Marberg* ${ }^{* 1}$
${ }^{1}$ Department of Mathematics, Hong Kong University of Science and Technology

Abstract

We provide a construction for the kromatic symmetric function \bar{X}_{G} of a graph introduced by Crew, Pechenik, and Spirkl using combinatorial (linearly compact) Hopf algebras. As an application, we show that \bar{X}_{G} has a positive expansion into multifundamental quasisymmetric functions. We also study two related quasisymmetric q-analogues of \bar{X}_{G}, which are K-theoretic generalizations of the quasisymmetric chromatic function of Shareshian and Wachs. We classify exactly when one of these analogues is symmetric. For the other, we derive a positive expansion into symmetric Grothendieck functions for graphs G that are natural unit interval orders.

Keywords: Chromatic symmetric functions, combinatorial Hopf algebras, linearly compact modules, multifundamental quasisymmetric functions

1 Introduction

The purpose of this note is to re-examine the algebraic origins of the kromatic symmetric function of a graph that was recently introduced by Crew, Pechenik, and Spirkl [3], and to study two quasisymmetric analogues of this power series.

Let $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{P}=\{1,2,3, \ldots\}$, and $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$. All graphs are undirected by default, and are assumed to be simple with a finite set of vertices. We do not distinguish between isomorphic graphs.

If G is any graph then we write $V(G)$ for its set of vertices and $E(G)$ its set of edges. A proper coloring of G is a map $\kappa: V(G) \rightarrow \mathbb{P}$ with $\kappa(u) \neq \kappa(v)$ for all $\{u, v\} \in E(G)$. For maps $\kappa: V \rightarrow \mathbb{P}$ let $x^{\kappa}=\prod_{i \in V} x_{\kappa(i)}$ where x_{1}, x_{2}, \ldots are commuting variables.

Definition 1.1 (Stanley [12]). The chromatic symmetric function of G is the symmetric power series $X_{G}:=\sum_{\kappa} x^{\kappa}$ where the sum is over all proper colorings κ of G.

Example 1.2. If $G=K_{n}$ is the complete graph with $V(G)=[n]$ then $X_{G}=n!e_{n}$ for the elementary symmetric function $e_{n}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$.

A poset is $(3+1)$-free if it does not contain a 3-element chain $a<b<c$ whose elements are all incomparable to some fourth element d. The Stanley-Stembridge conjecture [13] proposes that if G is the incomparability graph of a $(3+1)$-free poset then X_{G} has a

[^0]positive expansion into elementary symmetric functions. This conjecture has several refinements and generalizations, and has been resolved in a number of interesting special cases, but remains open in general.

Let G be an ordered graph, that is, a graph with a total order $<$ on its vertex set $V(G)$. An ascent (resp., descent) of a map $\kappa: V(G) \rightarrow \mathbb{P}$ is an edge $\{u, v\} \in E(G)$ with $u<v$ and $\kappa(u)<\kappa(v)$ (resp., $\kappa(u)>\kappa(v)$). Let $\operatorname{asc}_{G}(\kappa)$ and $\operatorname{des}_{G}(\kappa)$ be the number of ascents and descents. Shareshian and Wachs [10] introduced the following q-analogue of X_{G} :

Definition 1.3 ([10]). The chromatic quasisymmetric function of an ordered graph G is $X_{G}(q)=\sum_{\kappa} q^{\operatorname{asc}_{G}(\kappa)} x^{\kappa} \in \mathbb{N}[q] \llbracket x_{1}, x_{2}, \ldots \rrbracket$ where the sum is over all proper colorings.
Example 1.4. If $G=K_{n}$ then $X_{G}(q)=[n]_{q}!e_{n}$ where $[i]_{q}=\frac{1-q^{i}}{1-q}$ and $[n]_{q}!=\prod_{i=1}^{n}[i]_{q}$.
Let $\operatorname{Set}(\mathbb{P})$ be the set of finite nonempty subsets of \mathbb{P}. For a map $\kappa: V \rightarrow \operatorname{Set}(\mathbb{P})$ define $x^{\kappa}=\prod_{i \in V} \prod_{j \in \kappa(i)} x_{j}$. A proper set-valued coloring is a map $\kappa: V(G) \rightarrow \operatorname{Set}(\mathbb{P})$ with $\kappa(u) \cap \kappa(v)=\varnothing$ for all $\{u, v\} \in E(G)$. There is also a "K-theoretic" analogue of X_{G} :

Definition 1.5 (Crew, Pechenik, and Spirkl [3]). The kromatic symmetric function of a graph G is the sum $\bar{X}_{G}=\sum_{\kappa} x^{\kappa} \in \mathbb{Z} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ over all proper set-valued colorings of G.
Example 1.6. $\bar{X}_{K_{n}}=n!\sum_{r=n}^{\infty}\left\{\begin{array}{l}r \\ n\end{array}\right\} e_{r}$ where $\left\{\begin{array}{l}r \\ n\end{array}\right\}$ is the Stirling number of the second kind.
Remark 1.7. Given $\alpha: V \rightarrow \mathbb{N}$, let $\mathrm{Cl}_{\alpha}(V)$ be the set of pairs (v, i) with $v \in V$ and $i \in[\alpha(v)]$. If G is a graph and $\alpha: V(G) \rightarrow \mathbb{N}$ is any map, then the α-clan graph $\mathrm{Cl}_{\alpha}(G)$ has vertex set $\mathrm{Cl}_{\alpha}(V(G))$ and edges $\{(v, i),(w, j)\}$ whenever $\{v, w\} \in E(G)$ or both $v=w$ and $i \neq j$. As observed in [3], one has $\bar{X}_{G}=\sum_{\alpha: V(G) \rightarrow \mathbb{P}} \frac{1}{\alpha!} X_{\mathrm{Cl}_{\alpha}(G)}$ where $\alpha!:=\prod_{v} \alpha(v)$!. Many properties of X_{G} extend to \bar{X}_{G} via this identity, but some interesting features of \bar{X}_{G} cannot be explained by this formula alone.

Our main results provide a natural construction for \bar{X}_{G} using the theory of combinatorial Hopf algebras. This approach requires some care, as \bar{X}_{G} is not a symmetric function of bounded degree. We explain things precisely in terms of linearly compact Hopf algebras after reviewing a similar, simpler construction of X_{G} in Section 2, following [1].

As an application of our approach, we show that \bar{X}_{G} has a positive expansion into multifundamental quasisymmetric functions. We also study two related q-analogues of \bar{X}_{G}, which give K-theoretic generalizations of $X_{G}(q)$. We classify exactly when one of these analogues is symmetric. For the other, we extend a theorem of Crew, Pechenik, and Spirkl (also lifting a theorem of Shareshian and Wachs) to derive a positive expansion into symmetric Grothendieck functions for graphs G that are natural unit interval orders.

2 Background

Let \mathbb{K} be an integral domain; in practice, one can assume this is $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}[q]$, or $\mathbb{Q}(q)$.

2.1 Hopf algebras

Write $\otimes=\otimes_{\mathbb{K}}$ for the tensor product over \mathbb{K}. A \mathbb{K}-algebra is a \mathbb{K}-module A with \mathbb{K}-linear product $\nabla: A \otimes A \rightarrow A$ and unit $\iota: \mathbb{K} \rightarrow A$ maps. Dually, a \mathbb{K}-coalgebra is a \mathbb{K}-module A with \mathbb{K}-linear coproduct $\Delta: A \rightarrow A \otimes A$ and counit $\epsilon: A \rightarrow \mathbb{K}$ maps. The (co)product and (co)unit maps must satisfy several associativity axioms; see [5, §1].

A \mathbb{K}-module A that is both a \mathbb{K}-algebra and a \mathbb{K}-coalgebra is a \mathbb{K}-bialgebra if the coproduct and counit maps are algebra morphisms. A bialgebra $A=\bigoplus_{n \in \mathbb{N}} A_{n}$ is graded if its (co)product and (co)unit are graded maps; in this case A is connected if $A_{0}=\mathbb{K}$.

Let $\operatorname{End}(A)$ denote the set of \mathbb{K}-linear maps $A \rightarrow A$. This set is a \mathbb{K}-algebra for the product $f * g:=\nabla \circ(f \otimes g) \circ \Delta$. The unit of this convolution algebra is the composition $\iota \epsilon$ of the unit and counit of A. A bialgebra A is a Hopf algebra if id : $A \rightarrow A$ has a two-sided inverse $\mathrm{S}: A \rightarrow A$ in $\operatorname{End}(A)$. When it exists, we call S the antipode of A.

Example 2.1. Let Graphs_{n} for $n \in \mathbb{N}$ be the free \mathbb{K}-module spanned by all isomorphism classes of undirected graphs with n vertices, and set Graphs $=\bigoplus_{n \in \mathbb{N}}$ Graphs $_{n}$. One views Graphs as a connected, graded Hopf algebra with product $\nabla(G \otimes H)=G \sqcup H$ and coproduct $\Delta(G)=\left.\left.\sum_{S \sqcup T=V(G)} G\right|_{S} \otimes G\right|_{T}$ for graphs G and H, where \sqcup denotes disjoint union and $\left.G\right|_{S}$ denotes the subgraph of G induced on S.

A lower set in a directed acyclic graph $D=(V, E)$ is a set $S \subseteq V$ such that if a directed path connects $v \in V$ to $s \in S$ then $v \in S$. An upper set is the complement of a lower set.

Example 2.2. Let DAGs_{n} for $n \in \mathbb{N}$ be the free \mathbb{K}-module spanned by all isomorphism classes of directed acyclic graphs with n vertices, and set DAGs $=\bigoplus_{n \in \mathbb{N}} \mathrm{DAGs}_{n}$. One views DAGs as a connected, graded Hopf algebra with product $\nabla(C \otimes D)=C \sqcup D$ and coproduct $\Delta(D)=\left.\left.\sum D\right|_{S} \otimes D\right|_{T}$ for directed acyclic graphs graphs C and D, where the sum is over all disjoint unions $S \sqcup T=V(D)$ with S a lower set and T an upper set.

A labeled poset is a pair (D, γ) consisting of a directed acyclic graph D and an injective map $\gamma: V(D) \rightarrow \mathbb{Z}$. We consider $(D, \gamma)=\left(D^{\prime}, \gamma^{\prime}\right)$ if there is an isomorphism $D \xrightarrow{\sim} D^{\prime}$, written $v \mapsto v^{\prime}$, such that $\gamma(u)-\gamma(v)$ and $\gamma^{\prime}\left(u^{\prime}\right)-\gamma^{\prime}\left(v^{\prime}\right)$ have the same sign for all edges $u \rightarrow v \in E(D)$. If $\left(D_{1}, \gamma_{1}\right)$ and $\left(D_{2}, \gamma_{2}\right)$ are labeled posets then let $\gamma_{1} \sqcup \gamma_{2}$: $V\left(D_{1} \sqcup D_{2}\right) \rightarrow \mathbb{Z}$ be any injective map such that $\left(\gamma_{1} \sqcup \gamma_{2}\right)(u)-\left(\gamma_{1} \sqcup \gamma_{2}\right)(v)$ has the same sign as $\gamma_{i}(u)-\gamma_{i}(v)$ for all $u, v \in V\left(D_{i}\right)$.
Example 2.3. Let LPosets ${ }_{n}$ be the free \mathbb{K}-module spanned by all labeled poset with n vertices, and set LPosets $=\bigoplus_{n \in \mathbb{N}}$ LPosets $_{n}$. This is a connected, graded Hopf algebra with product $\nabla\left(\left(D_{1}, \gamma_{1}\right) \otimes\left(D_{2}, \gamma_{2}\right)\right)=\left(D_{1} \sqcup D_{2}, \gamma_{1} \sqcup \gamma_{2}\right)$ and coproduct $\Delta((D, \gamma))=$ $\sum\left(\left.D\right|_{S},\left.\gamma\right|_{S}\right) \otimes\left(\left.D\right|_{T},\left.\gamma\right|_{T}\right)$ where the sum is over all disjoint decompositions $S \sqcup T=V(D)$ with S a lower set and T an upper set.

A (strict) composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$ is a finite sequence of positive integers, called its parts. We say that α is a composition of $|\alpha|:=\sum_{i} \alpha_{i} \in \mathbb{N}$.

Example 2.4. Fix a composition α and let x_{1}, x_{2}, \ldots be a countable sequence of commuting variables. The monomial quasisymmetric function of α is the power series $M_{\alpha}=$ $\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{l}}^{\alpha_{l}}$. Let QSym $=\mathbb{K}$-span $\left\{M_{\alpha}: \alpha\right.$ any composition $\}$ be the ring of quasisymmetric functions of bounded degree. This ring is a graded connected Hopf algebras for the coproduct $\Delta\left(M_{\alpha}\right)=\sum_{\alpha=\alpha^{\prime} \alpha^{\prime \prime}} M_{\alpha^{\prime}} \otimes M_{\alpha^{\prime \prime}}$ where $\alpha^{\prime} \alpha^{\prime \prime}$ denotes concatenation of compositions, and the counit that acts on power series by setting $x_{1}=x_{2}=\cdots=0$.

A partition is a composition sorted into decreasing order. We write $\lambda=1^{m_{1}} 2^{m_{2}} \cdots$ to denote the partition with exactly m_{i} parts equal to i.

Example 2.5. The elementary symmetric function of a partition λ is the product $e_{\lambda}:=$ $e_{\lambda_{1}} e_{\lambda_{2}} \cdots$ where $e_{n}:=M_{1^{n}}$. These power series are a basis for the Hopf subalgebra Sym \subset QSym of symmetric functions of bounded degree.

2.2 Combinatorial Hopf algebras

Following [1], a combinatorial Hopf algebra (H, ζ) is a graded, connected Hopf algebra H of finite graded dimension with an algebra homomorphism $\zeta: H \rightarrow \mathbb{K}$.

Example 2.6. The pair $\left(\mathrm{QSym}, \zeta_{Q}\right)$ is an example of a combinatorial Hopf algebra, where $\zeta_{Q}: \operatorname{QSym} \rightarrow \mathbb{K}$ is the map $\zeta_{Q}(f)=f(1,0,0, \ldots)$, which sends $M_{(n)} \mapsto 1$ and $M_{\alpha} \mapsto 0$ for all α with at least two parts.

For a graph G define $\zeta_{G r a p h s}(G)=0^{|E(G)|}$ where throughout we interpret $0^{0}:=1$. For a directed acyclic graph D likewise set $\zeta_{\text {DAGs }}(D)=0^{|E(D)|}$ for each directed acyclic graph D. These formulas extend to linear maps on Graphs and DAGs. Finally let $\zeta_{\text {LPosets }}$: LPosets $\rightarrow \mathbb{K}$ be the linear map with $\zeta_{\text {LPosets }}((D, \gamma))=1$ if $\gamma(u)<\gamma(v)$ for all edges $u \rightarrow v \in E(D)$ with $\zeta_{\text {LPosets }}((D, \gamma))=0$ otherwise.

Example 2.7. The pairs (Graphs, $\zeta_{\text {Graphs }}$), (DAGs, $\left.\zeta_{\text {DAGs }}\right)$, and (LPosets, $\left.\zeta_{\text {LPosets }}\right)$ are all combinatorial Hopf algebras.

A morphism $\Psi:(H, \zeta) \rightarrow\left(H^{\prime}, \zeta^{\prime}\right)$ is a graded Hopf algebra morphism $\Psi: H \rightarrow H^{\prime}$ with $\zeta=\zeta^{\prime} \circ \Psi$. Results in [1] show that there exists a unique morphism from any combinatorial Hopf algebra to $\left(\mathrm{QSym}, \zeta_{Q}\right)$. Moreover, the image of Ψ is contained in the Hopf subalgebra Sym \subset QSym if H is cocommutative. There is an explicit formula for this morphism in [1], which translates to the following maps for our examples above.

For a graph G, let $A O(G)$ be its set of acyclic orientations. For a directed acyclic graph D, let $\left(D, \gamma^{\mathrm{op}}\right)$ be the labeled poset with $\gamma^{\mathrm{op}}(u)>\gamma^{\mathrm{op}}(v)$ for all edges $u \rightarrow v \in E(D)$. Also set $\Gamma(D)=\sum_{\kappa} x^{\kappa} \in \mathbb{N} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ where the sum is over all maps $\kappa: V(D) \rightarrow \mathbb{P}$ with $\kappa(u)<\kappa(v)$ whenever $u \rightarrow v \in E(D)$.

More generally, for a labeled poset (D, γ) define $\Gamma(D, \gamma)=\sum_{\kappa} x^{\kappa}$ where the sum is over all maps $\kappa: V(D) \rightarrow \mathbb{P}$ with $\kappa(u) \leq \kappa(v)$ whenever $u \rightarrow v \in E(D)$ and $\gamma(u)<\gamma(v)$,
and with $\kappa(u)<\kappa(v)$ whenever $u \rightarrow v \in E(D)$ and $\gamma(u)>\gamma(v)$. Such maps κ are called P-partitions for $P=(D, \gamma)$ [11].
Proposition 2.8. There is a commutative diagram of combinatorial Hopf algebras

in which the horizontal maps send $G \mapsto \sum_{D \in \mathrm{AO}(G)} D$ and $D \mapsto\left(D, \gamma^{\mathrm{op}}\right)$, and the QSymvalued maps send $G \mapsto X_{G}, D \mapsto \Gamma(D)$, and $(D, \gamma) \mapsto \Gamma(D, \gamma)$, respectively.

3 K-theoretic generalizations

We now explain how the results in the previous can be extended " K-theoretically" to construct interesting quasisymmetric functions of unbounded degree, including \bar{X}_{G}. This requires a brief discussion of monoidal structures on linearly compact modules.

3.1 Linearly compact modules

Let A and B be \mathbb{K}-modules with a \mathbb{K}-bilinear form $\langle\cdot, \cdot\rangle: A \times B \rightarrow \mathbb{K}$. Assume A is free and $\langle\cdot, \cdot\rangle$ is nondegenerate in the sense that $b \mapsto\langle\cdot, b\rangle$ is a bijection $B \rightarrow \operatorname{Hom}_{\mathbb{K}}(A, \mathbb{K})$.

Fix a basis $\left\{a_{i}\right\}_{i \in I}$ for A. For each $i \in I$, there exists a unique $b_{i} \in B$ with $\left\langle a_{i}, b_{j}\right\rangle=\delta_{i j}$ for all $i, j \in I$, and we identify $b \in B$ with the formal linear combination $\sum_{i \in I}\left\langle a_{i}, b\right\rangle b_{i}$. We call $\left\{b_{i}\right\}_{i \in I}$ a pseudobasis for B.

We give \mathbb{K} the discrete topology. Then the linearly compact topology $[4, \S 1.2]$ on B is the coarsest topology in which the maps $\left\langle a_{i}, \cdot\right\rangle: B \rightarrow \mathbb{K}$ are all continuous. This topology depends on $\langle\cdot, \cdot\rangle$ but not on the choice of basis for A. For a basis of open sets in the linearly compact topology, see [9, Eq. (3.1)].
Definition 3.1. A linearly compact (or $L C$ for short) \mathbb{K}-module is a \mathbb{K}-module B with a nondegenerate bilinear form $A \times B \rightarrow \mathbb{K}$ for some free \mathbb{K}-module A, given the linearly compact topology; in this case we say that B is the dual of A. Morphisms between such modules are continuous \mathbb{K}-linear maps.

Let B and B^{\prime} be linearly compact \mathbb{K}-modules dual to free \mathbb{K}-modules A and A^{\prime}. Let $\langle\cdot, \cdot\rangle$ denote both of the associated forms. Every linear map $\phi: A^{\prime} \rightarrow A$ has a unique adjoint $\psi: B \rightarrow B^{\prime}$ such that $\langle\phi(a), b\rangle=\langle a, \psi(b)\rangle$. A linear map $B \rightarrow B^{\prime}$ is continuous when it is the adjoint of some linear map $A^{\prime} \rightarrow A$.

Definition 3.2. Define $B \bar{\otimes} B^{\prime}:=\operatorname{Hom}_{\mathbb{K}}\left(A \otimes A^{\prime}, \mathbb{K}\right)$ and give this the LC-topology from the pairing $\left(A \otimes A^{\prime}\right) \times \operatorname{Hom}_{\mathbb{K}}\left(A \otimes A^{\prime}, \mathbb{K}\right) \rightarrow \mathbb{K}$.

If $\left\{b_{i}\right\}_{i \in I}$ and $\left\{b_{j}^{\prime}\right\}_{j \in J}$ are pseudobases for B and B^{\prime}, then we can realize the completed tensor product $B \bar{\otimes} B^{\prime}$ concretely as the linearly compact \mathbb{K}-module with the set of tensors $\left\{b_{i} \otimes b_{j}^{\prime}\right\}_{(i, j) \in I \times J}$ as a pseudobasis.

Suppose $\nabla: B \bar{\otimes} B \rightarrow B$ and $\iota: B \rightarrow \mathbb{K}$ are continuous linear maps which are the adjoints of linear maps $\epsilon: \mathbb{K} \rightarrow A$ and $\Delta: A \rightarrow A \otimes A$. We say that (B, ∇, ι) is an $L C$ algebra if (A, Δ, ϵ) is a \mathbb{K}-coalgebra. Similarly, we say that $\Delta: B \rightarrow B \bar{\otimes} B$ and $\epsilon: B \rightarrow \mathbb{K}$ make B into an LC-coalgebra if Δ and ϵ are the adjoints of the product and unit maps of a \mathbb{K}-algebra on A. We define LC-bialgebras and LC-Hopf algebras analogously; see [9]. If B is an LC-Hopf algebra then its antipode is the adjoint of the antipode of A.

3.2 Combinatorial LC-Hopf algebras

Following [9], we define a combinatorial LC-Hopf algebra to be a pair (H, ζ) consisting of an LC-Hopf algebra H with a continuous linear map $\zeta: H \rightarrow \mathbb{K} \llbracket t \rrbracket$ such that $\left.\zeta(\cdot)\right|_{t \mapsto 0}$ is the counit of H. A morphism of combinatorial LC-Hopf algebras $\Psi:(H, \zeta) \rightarrow\left(H^{\prime}, \zeta^{\prime}\right)$ is a LC-Hopf algebra morphism $\Psi: H \rightarrow H^{\prime}$ with $\zeta=\zeta^{\prime} \circ \Psi$.

Example 3.3. Let $\mathfrak{m Q S y m}$ be the set of all quasisymmetric power series in $\mathbb{K} \llbracket x_{1}, x_{2}, \ldots, \rrbracket$ of possibly unbounded degree. The (co)product, (co)unit, and antipode QSym all extend to continuous \mathbb{K}-linear maps that make $\mathfrak{m Q S y m}$ into an LC-Hopf algebra, with $\left\{M_{\alpha}\right\}$ as a pseudobasis. Then $\left(\mathfrak{m Q S y m}, \bar{\zeta}_{Q}\right)$ is a combinatorial LC-Hopf algebra when $\bar{\zeta}_{Q}$ is the $\operatorname{map} \bar{\zeta}_{Q}: f \mapsto f(t, 0,0, \ldots)$.

The preceding example is an instance of a general construction. If A is a free \mathbb{K} module with basis S, then its completion \bar{A} is the set of arbitrary \mathbb{K}-linear combinations of S. We view \bar{A} as a linearly compact \mathbb{K}-module with S as a pseudobasis, relative to the nondegenerate bilinear form $A \times \bar{A} \rightarrow \mathbb{K}$ making S orthonormal.

If (H, ζ) is a combinatorial Hopf algebra then then there is a unique way of extending its (co)unit and (co)product to continuous linear maps on \bar{H}. As the Hopf algebra $H=$ $\bigoplus_{n \in \mathbb{N}}$ is graded, we can also extend $\zeta: H \rightarrow \mathbb{K}$ to a continuous linear map $\bar{\zeta}: \bar{H} \rightarrow \mathbb{K} \llbracket t \rrbracket$ by the formula $\bar{\zeta}(h)=\zeta(h) t^{n}$ for $n \in \mathbb{N}$ and $h \in H_{n}$.

Proposition 3.4. If (H, ζ) is combinatorial Hopf algebra then the extended structures just given make $(\bar{H}, \bar{\zeta})$ into a combinatorial LC-Hopf algebra, and the unique morphism $(H, \zeta) \rightarrow\left(\mathrm{QSym}, \zeta_{\mathrm{Q}}\right)$ extends to a morphism $(\bar{H}, \bar{\zeta}) \rightarrow\left(\mathfrak{m Q S y m}, \bar{\zeta}_{\mathrm{Q}}\right)$.

The pair $\left(\mathfrak{m Q S y m}, \bar{\zeta}_{Q}\right)$ is a final object in the category of combinatorial LC-Hopf algebras, meaning there is a unique morphism $(H, \zeta) \rightarrow\left(\mathfrak{m Q S y m}, \bar{\zeta}_{Q}\right)$ for any combinatorial LC-Hopf algebra. More specifically, if H has coproduct Δ, then define $\Delta^{(0)}=\mathrm{id}_{H}$ and $\Delta^{(k)}=\left(\Delta^{(k-1)} \bar{\otimes} \mathrm{id}\right) \circ \Delta: H \rightarrow H^{\bar{\otimes}(k+1)}$ for $k \in \mathbb{P}$. For compositions $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, let $\zeta_{\alpha}: H \rightarrow \mathbb{K}$ be the map sending $h \in H$ to the coefficient of $t^{\alpha_{1}} \otimes t^{\alpha_{2}} \otimes \cdots \otimes t^{\alpha_{k}}$ in $\zeta^{\otimes k} \circ \Delta^{(k-1)}(h) \in \mathbb{K} \llbracket t \rrbracket$. When $\alpha=\varnothing$ is empty let $\zeta \varnothing=\left.\zeta(\cdot)\right|_{t \mapsto 0}$ be the counit of H.

Theorem 3.5 ([8]). If (H, ζ) is a combinatorial LC-Hopf algebra then the map $\Psi_{H, \zeta}: h \mapsto$ $\sum_{\alpha} \zeta_{\alpha}(h) M_{\alpha}$ is the unique morphism $(H, \zeta) \rightarrow\left(\mathfrak{m Q S y m}, \bar{\zeta}_{Q}\right)$.

Let $\mathfrak{m S y m}$ be the LC-Hopf subalgebra of symmetric functions in $\mathfrak{m Q S y m}$. When H cocommutative, the morphism $\Psi_{H, \zeta}$ evidently has its image in $\mathfrak{m S y m}$.

3.3 Set-valued P-partitions

For a directed acyclic graph D, let $\bar{\Gamma}(D)=\sum_{\kappa} x^{\kappa}$ where the sum is over all maps κ : $V(D) \rightarrow \operatorname{Set}(\mathbb{P})$ with $\kappa(u) \prec \kappa(v)$ whenever $u \rightarrow v \in E(D)$.

Example 3.6. If $D=(1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow n)$ is an n-element chain then define $\bar{e}_{n}:=\bar{\Gamma}(D)=\sum_{k=0}^{\infty}\binom{n-1+k}{n-1} e_{n+k}$. For each partition λ let $\bar{e}_{\lambda}:=\bar{e}_{\lambda_{1}} \bar{e}_{\lambda_{2}} \cdots$. These functions are a pseudobasis for $\mathfrak{m S y m}$.

For a labeled poset (D, γ) define $\bar{\Gamma}(D, \gamma)=\sum_{\kappa} x^{\kappa}$ where the sum is over all maps $\kappa: V(D) \rightarrow \operatorname{Set}(\mathbb{P})$ with $\kappa(u) \preceq \kappa(v)$ whenever $u \rightarrow v \in E(D)$ and $\gamma(u)<\gamma(v)$, and with $\kappa(u) \prec \kappa(v)$ whenever $u \rightarrow v \in E(D)$ and $\gamma(u)>\gamma(v)$. Such maps κ are called set-valued P-partitions for $P=(D, \gamma)$ in $[7,8]$.

Example 3.7. If $D=(1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow n)$ is an n-element chain and S is the set of $i \in[n-1]$ with $\gamma(i)>\gamma(i+1)$ then the we define $\bar{L}_{n, S}:=\bar{\Gamma}(D, \gamma)$. Following [7], the multifundamental quasisymmetric function of a composition α is defined by $\bar{L}_{\alpha}:=\bar{L}_{n, S}$ where $n=|\alpha|$ and $S=I(\alpha):=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots\right\} \backslash\{n\}$. These power series form another pseudobasis for $\mathfrak{m Q S y m}$ [7]. An element of $\mathfrak{m Q S y m}$ is multifundamental positive if its expansion in this pseudobasis involves only nonnegative coefficients.

A multilinear extension of a directed acyclic graph D with n vertices is a sequence $w=\left(w_{1}, w_{2}, \ldots, w_{N}\right)$ with $V(D)=\left\{w_{1}, w_{2}, \ldots, w_{N}\right\}$ such that $i<j$ whenever $w_{i} \rightarrow$ $w_{j} \in E(D)$, and $w_{i} \neq w_{i+1}$ for all $i \in[N-1]$. If $\mathcal{M}(D)$ is the set of all multilinear extensions of D and $\gamma: V(D) \rightarrow \mathbb{Z}$ is injective, then $\bar{\Gamma}(D, \gamma)=\sum_{w \in \mathcal{M}(D)} \bar{L}_{\ell(w), \operatorname{Des}(w, \gamma)}$ where $\operatorname{Des}(w, \gamma):=\left\{i \in[\ell(w)-1]: \gamma\left(w_{i}\right)>\gamma\left(w_{i+1}\right)\right\}$ for $w \in \mathcal{M}(D)[7]$.

3.4 Acyclic multi-orientations

Let G be a graph. An acyclic multi-orientation G is an acyclic orientation of the α-clan graph $\mathrm{Cl}_{\alpha}(G)$ from Remark 1.7 for some $\alpha: V(G) \rightarrow \mathbb{P}$, such that for each $v \in V(G)$ both (a) if $i, j \in[\alpha(v)]$ have $i>j$ then $(v, i) \rightarrow(v, j)$ is a directed edge; and (b) if $i \in[\alpha(v)-1]$ then there exists a directed path involving no edges of the form $(v, j) \rightarrow(v, k)$ that connects $(v, i+1)$ to (v, i). Let $\mathfrak{m A O}(G)$ be the set of all acyclic multi-orientations of G.

One can relate the \bar{e}-expansion of the symmetric function \bar{X}_{G} to the source counts of its acyclic multi-orientations, generalizing a result of Stanley [12, Thm. 3.3].

Theorem 3.8. Let G be a graph and suppose $\bar{X}_{G}=\sum_{\lambda} c_{\lambda} \bar{e}_{\lambda}$ for some coefficients $c_{\lambda} \in \mathbb{Z}$. Then the number of acyclic multi-orientations of G with exactly j sources and k vertices is $\sum_{\ell(\lambda)=j,|\lambda|=k} c_{\lambda} \in \mathbb{N}$.

As noted in [3], in general, the coefficients c_{λ} appearing in $\bar{X}_{G}=\sum_{\lambda} c_{\lambda} \bar{e}_{\lambda}$ can be negative, even when $G=\operatorname{inc}(P)$ is the incomparability graph of a $(3+1)$-free poset P.

3.5 Morphisms

For each graph G let $\boldsymbol{\Delta}(G)=\left.\left.\sum_{S \cup T=V(G)} G\right|_{S} \otimes G\right|_{T}$. This only differs from our other coproduct in allowing vertex decompositions that are not disjoint. Likewise, for each directed acyclic graph D and labeled poset $P=(D, \Gamma)$, define $\boldsymbol{\Delta}(D)=\left.\left.\sum D\right|_{S} \otimes D\right|_{T}$ and $\boldsymbol{\Delta}(P)=\sum\left(\left.D\right|_{S},\left.\gamma\right|_{S}\right) \otimes\left(\left.D\right|_{T},\left.\gamma\right|_{T}\right)$, where both sums are over all (not necessarily disjoint) vertex decompositions $S \cup T=V(D)$ in which S is a lower set, T is an upper set, and $S \cap T$ is an antichain.

Use the continuous linear extensions of these operations to replace the coproducts in the completions of Graphs, DAGs, and LPosets, and denote the resulting structures as $\mathfrak{m G r a p h s}, \mathfrak{m D A G s}$, and $\mathfrak{m L P o s e t s}$ to distinguish them from $\overline{\text { Graphs }}, \overline{\mathrm{DAGs}}$, and $\overline{\text { LPosets }}$.
Theorem 3.9. The pairs ($\mathfrak{m G r a p h s}, \bar{\zeta}_{\text {Graphs }}$), ($\mathfrak{m D A G s}, \bar{\zeta}_{\text {DAGs }}$), and ($\mathfrak{m L P o s e t s ,} \bar{\zeta}_{\text {LPosets }}$) are all combinatorial LC-Hopf algebras, and there is a commutative diagram

in which the horizontal maps send $G \mapsto \sum_{D \in \mathfrak{m A O}(G)} D$ and $D \mapsto\left(D, \gamma^{\text {op }}\right)$, and the $\mathfrak{m Q S y m}$-valued maps send $G \mapsto \bar{X}_{G}, D \mapsto \bar{\Gamma}(D)$, and $(D, \gamma) \mapsto \bar{\Gamma}(D, \gamma)$.
Corollary 3.10. The unique morphism (mGraphs, $\left.\bar{\zeta}_{\text {Graphs }}\right) \rightarrow\left(\mathfrak{m Q S y m}, \bar{\zeta}_{Q}\right)$ assigns a graph G to its kromatic symmetric function, which is symmetric as $\mathfrak{m G r a p h s}$ is cocommutative. One can express $\bar{X}_{G}=\sum_{D \in \mathfrak{m A O}(G)} \bar{\Gamma}(D)$ and thus \bar{X}_{G} is multifundamental positive.

Fix a directed acyclic graph D. When $\alpha: V(D) \rightarrow \mathbb{N}$ is any map, define $\mathrm{Cl}_{\alpha}^{\mathrm{dag}}(D)$ to be the directed acyclic graph with vertices $\mathrm{Cl}_{\alpha}(V(D))$ and with edges $(v, i) \rightarrow(w, j)$ whenever $v \rightarrow w \in E(D)$ or both $v=w$ and $i<j$. When $\gamma: V(D) \rightarrow \mathbb{Z}$ is injective, so that (D, γ) is a labeled poset, define $\mathrm{Cl}_{\alpha}^{\mathrm{dag}}(D, \gamma)=\left(\mathrm{Cl}_{\alpha}^{\mathrm{dag}}(D), \tilde{\gamma}\right)$ to be the labeled poset where $\tilde{\gamma}(v, i)<\tilde{\gamma}(w, j)$ if and only if $\gamma(v)<\gamma(w)$ or both $v=w$ and $i>j$.
Theorem 3.11. Assume $Q \subseteq \mathbb{K}$. Then there is a commutative diagram

with horizontal maps extending Proposition 2.8 and Theorem 3.9, where the vertical isomorphisms are the continuous linear maps sending $G \mapsto \sum_{\alpha: V(G) \rightarrow \mathbb{P}} \frac{1}{\alpha!} \mathrm{Cl}_{\alpha}(G), D \mapsto$ $\sum_{\alpha: V(D) \rightarrow \mathbb{P}} \mathrm{Cl}_{\alpha}^{\mathrm{dag}}(D)$, and $(D, \gamma) \mapsto \sum_{\alpha: V(D) \rightarrow \mathbb{P}} \mathrm{Cl}_{\alpha}^{\mathrm{dag}}(D, \gamma)$, respectively.

3.6 Kromatic quasisymmetric functions

For the rest of this note we assume $\mathbb{K} \supseteq \mathbb{Z}$ and let q be a formal parameter. We will consider the polynomial and power series rings $\operatorname{Sym}[q] \subset \mathfrak{m Q S y m}[q] \subset \mathfrak{m Q S y m} \llbracket q \rrbracket$.

Let G be an ordered graph, that is, a graph with a total order $<$ on its vertex set $V(G)$. One can think of the ordering on $V(G)$ as defining an acyclic orientation on the edges of G, and we do not distinguish between G and another ordered graph H if the corresponding directed acyclic graphs are isomorphic. The following power series is a K-theoretic generalization of $X_{G}(q)$ and q-analogue of \bar{X}_{G} :
Definition 3.12. For an ordered graph G define $\bar{L}_{G}(q)=\sum_{\kappa} q^{\operatorname{asc}_{G}(\max \circ \kappa)} x^{\kappa} \in \mathfrak{m Q S y m}[q]$ where the sum is over all proper set-valued colorings.
Example 3.13. If $G=K_{n}$ is the complete graph on the vertex set $[n]$ then $\bar{L}_{G}(q)=$ $[n]_{q}!\sum_{r=n}^{\infty}\left\{{ }_{n}^{r}\right\} e_{r}=[n]_{q}!\sum_{r=n}^{\infty}\left\{\begin{array}{l}r-1 \\ n-1\end{array}\right\} \bar{e}_{r}$ where $\left\{\begin{array}{l}r \\ n\end{array}\right\}$ is the Stirling number of the second kind.

Let us clarify the apparent asymmetry in Definition 3.12. Define $\bar{L}_{G}^{\text {des,min }}(q)$ by replacing "asc" by "des" and "max" by "min" in Definition 3.12. Construct $\bar{L}_{G}^{\text {asc,min }}(q)$ and $\bar{L}_{G}^{\text {des,max }}(q)$ analogously. Let ρ be the continuous involution of $\mathfrak{m Q S y m}[q]$ sending $M_{\left(\alpha_{1}, \ldots, \alpha_{k}\right)} \mapsto M_{\left(\alpha_{k}, \ldots, \alpha_{1}\right)}$. Let τ be the involution of $\mathfrak{m Q S y m}[q]$ sending $f \mapsto q^{\operatorname{deg}_{q}(f)} f\left(q^{-1}\right)$. Proposition 3.14. We have $\bar{L}_{G}(q)=\rho\left(\bar{L}_{G}^{\text {des,min }}(q)\right)=\tau\left(\bar{L}_{G}^{\text {des,max }}(q)\right)=\rho \circ \tau\left(\bar{L}_{G}^{\text {asc,min }}(q)\right)$.

Recall that a cluster graph is a disjoint union of complete graphs.
Theorem 3.15. We have $\bar{L}_{G}(q) \in \mathfrak{m} \operatorname{Sym}[q]$ if and only if G is a cluster graph.
Fix $D \in \mathfrak{m A O}(G)$. Each vertex in D has the form (v, i) for some $v \in V(G)$ and $i \in \mathbb{P}$. Define align $(D):=\mid\{(u, i) \rightarrow(v, j) \in E(D): u<v$ and $i=j=1\} \mid$.
Proposition 3.16. If G is an ordered graph then $\bar{L}_{G}(q)=\sum_{D \in \operatorname{mAO}(G)} q^{\text {align }(D)} \bar{\Gamma}(D)$. This power series is multifundamental positive in the sense of being a possibly infinite $\mathbb{N}[q]$ linear combination of multifundamental quasisymmetric functions.

We can make this more explicit, generalizing a result in [10]. Following [7], a multipermutation of $n \in \mathbb{N}$ is a word $w=w_{1} w_{2} \cdots w_{m}$ with $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=\{1,2, \ldots, n\}$ and $w_{i} \neq w_{i+1}$ for all $i \in[m-1]$. Let \bar{S}_{n} be the set of all multipermutations of n.

For each $w=w_{1} w_{2} \cdots w_{m} \in \bar{S}_{n}$ let $\operatorname{Inv}(w)$ be the set of pairs $\left(w_{i}, w_{j}\right)$ with $i<j$ and $w_{i}>w_{j}$ and $\left\{w_{1}, w_{2}, \ldots, w_{i-1}\right\} \cap\left\{w_{i}\right\}=\left\{w_{1}, w_{2}, \ldots, w_{j-1}\right\} \cap\left\{w_{j}\right\}=\varnothing$. If P is a poset on $[n]$ and $G=\operatorname{inc}(P)$ is its incomparability graph, then we set $\operatorname{inv}_{G}(w):=\mid\{(a, b) \in$ $\operatorname{Inv}(w):\{a, b\} \in E(G)\} \mid$ and $S(w, P):=\left\{m-i: i \in[m-1]\right.$ and $\left.w_{i} \ngtr_{P} w_{i+1}\right\}$.

Theorem 3.17. If $G=\operatorname{inc}(P)$ for a poset P on $[n]$ then $\bar{L}_{G}(q)=\sum_{w \in \bar{S}_{n}} q^{\operatorname{inv}_{G}(w)} \bar{L}_{\ell(w), S(w, P)}$.
The homogeneous component of $\bar{L}_{G}(q)$ of lowest x-degree recovers $X_{G}(q)$. The latter power series, like X_{G}, naturally arises as the image of a morphism of combinatorial Hopf algebras. In detail, assume $\mathbb{K}=\mathbb{Z}[q]$ and let OGraphs ${ }_{n}$ be the free \mathbb{K}-module spanned by all isomorphism classes of ordered graphs with n vertices. Then the direct sum OGraphs $:=\bigoplus_{n \in \mathbb{N}} \mathrm{OGraphs}_{n}$ has a graded connected Hopf algebra structure in which the product is disjoint union and the coproduct Δ_{q} satisfies

$$
\begin{equation*}
\Delta_{q}(G)=\left.\left.\sum_{S \sqcup T=V(G)} q^{\operatorname{asc}_{G}(S, T)} G\right|_{S} \otimes G\right|_{T} \quad \text { for each ordered graph } G, \tag{3.1}
\end{equation*}
$$

where $\operatorname{asc}_{G}(S, T):=|\{(s, t) \in S \times T:\{s<t\} \in E(G)\}|$. If $\zeta_{\text {OGraphs }}$ is the algebra morphism OGraphs $\rightarrow \mathbb{K}$ sending $G \mapsto 0^{|E(G)|}$, then (OGraphs, $\zeta_{\text {OGraphs }}$) is a combinatorial Hopf algebra and the morphism (OGraphs, $\left.\zeta_{\text {OGraphs }}\right) \rightarrow\left(\mathrm{QSym}, \zeta_{\mathrm{Q}}\right)$ sends $G \mapsto X_{G}(q)$.

We do not know how to give the completion $\mathfrak{m O G r a p h s} \supset$ OGraphs a combinatorial LC-Hopf algebra structure that lets us construct $\bar{L}_{G}(q)$ in a similar way. In particular, we have not been able to find a K-theoretic generalization of the coproduct Δ_{q}. Unlike the $q=1$ case, simply replacing \sqcup in (3.1) by arbitrary union \cup does not lead to a coassociative map. This problem remains if we change the q-power exponent $\operatorname{asc}_{G}(S, T)$ to other forms like $\operatorname{asc}_{G}(S-T, T), \operatorname{asc}_{G}(S, T-S)$, or $\operatorname{asc}_{G}(S-T, T-S)$.

3.7 Another quasisymmetric analogue

The preceding results indicate that $\bar{L}_{G}(q)$ is an interesting quasisymmetric q-analogue of \bar{X}_{G} and K-theoretic extension of $X_{G}(q)$. However, there is another natural candidate for such a generalization. Continue to let G be an ordered graph. Following [6], an ascent of a set-valued map $\kappa: V(G) \rightarrow \operatorname{Set}(\mathbb{P})$ is a tuple (u, v, i, j) with $\{u, v\} \in E(G), i \in \kappa(u)$, $j \in \kappa(v)$, and both $u<v$ and $i<j$. Let $\operatorname{asc}_{G}(\kappa)$ denote the number of such ascents.

Definition 3.18. For an ordered graph G, define $\bar{X}_{G}(q)=\sum_{\kappa} q^{\operatorname{asc}_{G}(\kappa)} x^{\kappa} \in \mathfrak{m Q S y m} \llbracket q \rrbracket$ where the sum is over all proper set-valued colorings $\kappa: V(G) \rightarrow \operatorname{Set}(\mathbb{P})$.

This definition is closely related to the quasisymmetric functions $X_{G}(\mathbf{x}, q, \mu)$ studied in [6]. For each map $\mu: V(G) \rightarrow \mathbb{N}$, Hwang [6] defines $X_{G}(\mathbf{x}, q, \mu):=\sum_{\kappa} q^{\operatorname{asc}_{G}(\kappa)} x^{\kappa}$ where the sum is over all proper set-valued colorings κ of G with $|\kappa(v)|=\mu(v)$. Evidently $\bar{X}_{G}(q)=\sum_{\mu: V(G) \rightarrow \mathbb{P}} X_{G}(\mathbf{x}, q, \mu)$, and as noted in [6, Rem. 2.2] one has $X_{G}(\mathbf{x}, q, \mu)=$ $\frac{1}{[\mu]_{q}!} X_{\mathrm{Cl}_{\mu}(G)}(q)$ where $[\mu]_{q}!:=\prod_{v \in V(G)}[\mu(v)]_{q}!$. Here, we view $\mathrm{Cl}_{\mu}(G)$ as an ordered graph with $(v, i)<(w, j)$ if either $v<w$ or $v=w$ and $i<j$.

Using these observations, various positive or alternating expansions of $X_{G}(q)$ (e.g., into fundamental quasisymmetric functions [10, Thm. 3.1], Schur functions [10, Thm. 6.3], power sum symmetric functions [2, Thm. 3.1], or elementary symmetric functions [10,

Conj. 5.1]) can be extended in a straightforward way to $X_{G}(\mathbf{x}, q, \mu)$ and $\bar{X}_{G}(q)$. See Hwang's results [6, Thms. 3.3, 4.10, and 4.19] and his conjecture [6, Conj. 3.10].

Some of these statements require G to be isomorphic to the incomparability graph of a natural unit interval order, meaning a poset P on a finite subset of \mathbb{P} such that if $x<_{p} z$ then $x<z$ and every y incomparable in P to both x and z has $x<y<z\left[10\right.$, Prop. 4.1]. ${ }^{1}$ If G has this property, then so do all of its α-clans. Therefore $\bar{X}_{G}(q)$ is symmetric if G is the incomparability graph of a natural unit order interval [6, Thm. 3.8].
Example 3.19. If K_{n} is the complete graph on $[n]$ then $\bar{X}_{K_{n}}(q)=\sum_{r=n}^{\infty} F_{r}^{(n)} e_{r}$ for $F_{r}^{(n)}:=$ $\sum_{k_{1}+k_{2}, \ldots, k_{n} \in \mathbb{P}}^{k_{1}+\cdots+k_{n}=r}\binom{r}{k_{1}, k_{2}, \ldots, k_{n}}$ quere $(q)_{n}:=\prod_{i \in[n]}\left(1-q^{i}\right)$ and $\binom{r}{k_{1}, k_{2}, \ldots, k_{n}}_{q}=\frac{(q)_{r}}{(q)_{k_{1}}(q)_{k_{2}} \cdots(q)_{k_{n}}}$.

When q is a prime power, $F_{r}^{(n)}$ counts the strictly increasing flags of \mathbb{F}_{q}-subspaces $0=V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{n}=\mathbb{F}_{q}^{r}$. Vinroot [14] derived a recurrence for the generalized Galois numbers $G_{r}^{(n)}:=\sum_{i=0}^{n}\binom{n}{i} F_{r}^{(i)}$. This can be used to show (setting $F_{r}^{(n)}=0$ if $r<0$) that:
Proposition 3.20. One has $F_{r+1}^{(n)}=\sum_{i=0}^{n-1} \sum_{j=n-1-i}^{n}\binom{n}{j}\binom{j}{n-1-i}(-1)^{i} \frac{(q)_{r}}{(q)_{r-i}} F_{r-i}^{(j)}$.
Like $\bar{L}_{G}(q)$, the power series $\bar{X}_{G}(q)$ also does not seem to arise naturally as the image in $\mathfrak{m Q S y m}$ of a combinatorial LC-Hopf algebra. Unlike $\bar{L}_{G}(q)$, however, $\bar{X}_{G}(q)$ is not generally multifundamental-positive (or \bar{e}-positive). However, $\bar{X}_{G}(q)$ does have a nontrivial positivity property that is not shared by $X_{G}(\mathbf{x}, q, \mu)$ or $\bar{L}_{G}(q)$.

A set-valued tableau T of shape λ is an assignment of sets $T_{i j} \in \operatorname{Set}(\mathbb{P})$ to the cells (i, j) in $\mathrm{D}_{\lambda}=\left\{(i, j) \in \mathbb{P} \times \mathbb{P}: 1 \leq j \leq \lambda_{i}\right\}$ of a partition λ. We write $(i, j) \in T$ to indicate that (i, j) belongs to the shape of T. A set-valued tableau T is semistandard if $T_{i j} \preceq T_{i, j+1}$ and $T_{i j} \prec T_{i+1, j}$ for all relevant positions. Let $x^{T}:=\prod_{(i, j) \in T} \prod_{k \in T_{i j}} x_{k}$ and $|T|:=\sum_{(i, j) \in T}\left|T_{i j}\right|$.
Definition 3.21. The symmetric Grothendieck function of a partition λ is the power series $\bar{s}_{\lambda}:=\sum_{T \in \operatorname{SetSSYT}(\lambda)}(-1)^{|T|-|\lambda|} x^{T} \in \mathbb{Z} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ where $\operatorname{SetSSYT}(\lambda)$ is the set of all semistandard set-valued tableaux of shape λ.

Each \bar{s}_{λ} is in $\mathfrak{m S y m}$ and the set of all symmetric Grothendieck functions is another pseudobasis for $\mathfrak{m S y m}$. We write $\mu \subseteq \lambda$ for two partitions with $\mathrm{D}_{\mu} \subseteq \mathrm{D}_{\lambda}$ and set $\mathrm{D}_{\lambda / \mu}:=$ $D_{\lambda} \backslash D_{\mu}$. A semistandard tableau of shape λ / μ is a filling of $D_{\lambda / \mu}$ by positive integers such that each row is weakly increasing and each column is strict increasing.
Definition 3.22 ([3, Def. 3.8]). Suppose P is a finite poset and λ is a partition. A Grothendieck P-tableau of shape λ is a pair $T=(U, V)$ with these two properties: (a) U is a filling of D_{μ} by elements of P for some partition $\mu \subseteq \lambda$, such that each element of P is in at least one cell, and for each $(i, j) \in \mathrm{D}_{\mu}$ one has $U_{i j}<{ }_{P} U_{i, j+1}$ if $(i, j+1) \in \mathrm{D}_{\mu}$ and $U_{i j} \ngtr_{P} U_{i+1, j}$ if $(i+1, j) \in \mathrm{D}_{\mu}$; and (b) V is a semistandard tableau of shape λ / μ, whose entries in each row i are all less than i (so $D_{\lambda / \mu}$ must have no cells in the first row).

[^1]Let \mathscr{G}_{P} be the set of Grothendieck P-tableaux. Let $\lambda(T)$ be the shape of $T \in \mathscr{G}_{P}$. One of the main results of [3] establishes that if $G=\operatorname{inc}(P)$ is the incomparability graph a $(3+1)$-free poset P then $\bar{X}_{G}=\sum_{T \in \mathscr{G}_{P}} \bar{s}_{\lambda(T)}$. This theorem has a q-analogue.

Suppose P is a finite poset on a subset of \mathbb{P}, and let $G=\operatorname{inc}(P)$. Choose some $T=(U, V) \in \mathscr{G}_{P}$ and let μ be the partition shape of the tableau U. Define a G-inversion of T to be a pair of cells $(i, j),(k, l) \in \mathrm{D}_{\mu}$ with $i>k$ such that $U_{i j}<U_{k l}$ but $U_{i j} \nless p U_{k l}$ and $U_{i j} \ngtr_{P} U_{k l}$. Finally, let $\operatorname{inv}_{G}(T)$ be the number of all G-inversions of T.
Theorem 3.23. If P is a natural unit interval order then $\bar{X}_{G}=\sum_{T \in \mathscr{G}_{P}} q^{\operatorname{inv}{ }_{G}(T)} \bar{S}_{\lambda(T)}$.

References

[1] M. Aguiar, N. Bergeron, and F. Sottile. "Combinatorial Hopf algebras and generalized Dehn-Sommerville relations". Compos. Math. 142 (2006), pp. 1-30.
[2] C. Athanasiadis. "Power sum expansion of chromatic quasisymmetric functions". Electron. J. Combin. 22 (2015), P2.7.
[3] L. Crew, O. Pechenik, and S. Spirkl. "The Kromatic symmetric function: a K-theoretic analogue of $X_{G}{ }^{\prime \prime}$. arXiv:2301.02177.
[4] J. Dieudonné. Introduction to the theory of formal groups. Marcel Dekker, New York, 1973.
[5] D. Grinberg and V. Reiner. "Hopf algebras in combinatorics". arXiv:1409.8356.
[6] B.-H. Hwang. "Chromatic quasisymmetric functions and noncommutative P-symmetric functions". 2022. arXiv:2208.09857.
[7] T. Lam and P. Pylyavskyy. "Combinatorial Hopf algebras and K-homology of Grassmannians". IMRN (2007), rnm125.
[8] J. B. Lewis and E. Marberg. "Enriched set-valued P-partitions and shifted stable Grothendieck polynomials". Math. Z. 299 (2021), pp. 1929-1972.
[9] E. Marberg. "Linear compactness and combinatorial bialgebras". Electron. J. Combin. 28 (2021), P3.9.
[10] J. Shareshian and M. L. Wachs. "Chromatic quasisymmetric functions". Advances in Mathematics 295 (2016), pp. 497-551.
[11] R. P. Stanley. "Ordered structures and partitions". Mem. Amer. Math. Soc. 119 (1972).
[12] R. P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". Advances in Mathematics 111.1 (1995), pp. 166-194.
[13] R. P. Stanley and J. R. Stembridge. "On immanants of Jacobi-Trudi matrices and permutations with restricted position". Journal of Combinatorial Theory. Series A 62.2 (1993), pp. 261279.
[14] C. R. Vinroot. "An enumeration of flags in finite vector spaces". Electron. J. Combin. 19 (2012), P3.5.

[^0]: *emarberg@ust.hk. This work was supported by Hong Kong RGC grants 16306120 and 16304122.

[^1]: ${ }^{1}$ A finite poset has these properties if and only if it is $(3+1)$ - and $(2+2)$-free $[10, \S 4]$.

