Ehrhart polynomials, Hecke series, and affine buildings

Claudia Alfes ${ }^{* 1}$, Joshua Maglione ${ }^{\dagger 2}$, and Christopher Voll ${ }^{\ddagger 1}$

${ }^{1}$ Fakultüt für Mathematik, Universität Bielefeld, Germany
${ }^{2}$ School of Mathematical and Statistical Sciences, University of Galway, Ireland

Abstract

Given a lattice polytope P and a prime p, we define a function from the set of primitive symplectic p-adic lattices to the rationals that extracts the ℓ th coefficient of the Ehrhart polynomial of P relative to the given lattice. Inspired by work of Gunnells and Rodriguez Villegas in type A, we show that these functions are eigenfunctions of a suitably defined action of the spherical symplectic Hecke algebra. Although they depend significantly on the polytope P, their eigenvalues are independent of P and expressed as polynomials in p. We define local zeta functions that enumerate the values of these Hecke eigenfunctions on the vertices of the affine Bruhat-Tits buildings associated with p-adic symplectic groups. We compute these zeta functions by enumerating p-adic lattices by their elementary divisors and, simultaneously, one Hermite parameter. We report on a general functional equation satisfied by these local zeta functions, confirming a conjecture of Vankov.

Keywords: Ehrhart polynomials, Hecke series, affine buildings, Satake isomorphism, symplectic lattices

1 Introduction

Let P be a fixed full-dimensional lattice polytope in \mathbb{R}^{n}, i.e. the convex hull of finitely many points $V(P)$ in $\Lambda_{0}=\mathbb{Z}^{n}$. Given a lattice Λ such that $\Lambda_{0} \subseteq \Lambda \subseteq \mathbb{Q}^{n}$, we denote the Ehrhart polynomial of P with respect to Λ by

$$
\begin{equation*}
E^{\Lambda}(P)=\sum_{\ell=0}^{n} c_{\ell}^{\Lambda}(P) T^{n} \in \mathbb{Q}[T] \tag{1.1}
\end{equation*}
$$

It is of interest to describe the variation of the coefficients $c_{\ell}^{\Lambda}(P)$ with Λ as compared to $c_{\ell}(P)=c_{\ell}^{\Lambda_{0}}(P)$; write $E(P)$ for $E^{\Lambda_{0}}(P)$. For $g \in \mathrm{GL}_{n}(\mathbb{Q}) \cap \operatorname{Mat}_{n}(\mathbb{Z})$ we define

$$
g \cdot P=\operatorname{conv}\{g \cdot v \mid v \in V(P)\}
$$

[^0]which is again a lattice polytope. We write Λ_{g} for the lattice generated by the rows of $g \in \mathrm{GL}_{n}(\mathbb{Q})$. Thus, for every $g \in \mathrm{GL}_{n}(\mathbb{Q}) \cap \operatorname{Mat}_{n}(\mathbb{Z})$, we have
\[

$$
\begin{equation*}
E(g \cdot P)=E^{\Lambda_{g}-1}(P) \tag{1.2}
\end{equation*}
$$

\]

We note that $\Lambda_{g} \subseteq \mathbb{Z}^{n} \subseteq \Lambda_{g^{-1}} \subseteq \mathbb{Q}^{n}$ for $g \in \mathrm{GL}_{n}(\mathbb{Q}) \cap \operatorname{Mat}_{n}(\mathbb{Z})$ with $|\operatorname{det}(g)|>1$.
Gunnells and Rodriguez Villegas [3] consider how the coefficients of $E^{\Lambda}(P)$ from Equation (1.1) relate to $E(P)$ for lattices Λ such that $\Lambda_{0} \subseteq \Lambda \subseteq p^{-1} \Lambda_{0} \subseteq \mathbb{Q}^{n}$. In Section 2.1 we revisit these results from our perspective. In addition, we consider a symplectic analogue of the work of Gunnells and Rodriguez Villegas.

1.1 Zeta functions of Ehrhart coefficients

For a prime p, we write \mathbb{Z}_{p} for the ring of p-adic integers and \mathbb{Q}_{p} for its field of fractions. Below we define, for each $n \in \mathbb{N}=\{1,2, \ldots\}$ and $\ell \in[2 n]_{0}=\{0, \ldots, 2 n\}$, local zeta functions which we call Ehrhart-Hecke zeta functions. These functions are Dirichlet series in a complex variable s encoding the ratio of ℓ th coefficients of the Ehrhart polynomial of P, as the lattice Λ varies among symplectic lattices in $\mathbb{Q}_{p}^{2 n}$.

Recall the group scheme $\mathrm{GSp}_{2 n}$ of symplectic similitudes. For a ring K its K-rational points are, with $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$,

$$
\mathrm{GSp}_{2 n}(K)=\left\{A \in \mathrm{GL}_{2 n}(K) \mid A J A^{\mathrm{t}}=\mu(A) J, \text { for some } \mu(A) \in K^{\times}\right\}
$$

We set $G_{n}=\operatorname{GSp}_{2 n}\left(\mathbb{Q}_{p}\right), \Gamma_{n}=\operatorname{GSp}_{2 n}\left(\mathbb{Z}_{p}\right)$, and $G_{n}^{+}=\operatorname{GSp}_{2 n}\left(\mathbb{Q}_{p}\right) \cap \operatorname{Mat}_{2 n}\left(\mathbb{Z}_{p}\right)$. The set G_{n}^{+} / Γ_{n} is in bijection with the set of special vertices of the affine building associated with the group $\mathrm{GSp}_{2 n}\left(\mathbb{Q}_{p}\right)$, which is of type \widetilde{C}_{n}.

We define the (local) Ehrhart-Hecke zeta function (of type C) as

$$
\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}(s)=\sum_{g \in G_{n}^{+} / \Gamma_{n}} \frac{c_{\ell}^{c_{g^{-1}}}(P)}{c_{\ell}(P)}\left|\Lambda_{g^{-1}}: \mathbb{Z}_{p}^{n}\right|^{-s}
$$

Informally speaking, the zeta function $\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}(s)$ hence encodes the average ℓ th coefficient of the Ehrhart polynomial of P across certain symplectic lattices.

1.2 Symplectic Hecke series

The zeta functions of Section 1.1 are closely connected to formal power series over the Hecke algebra associated with the pair $\left(G_{n}^{+}, \Gamma_{n}\right)$. To explain this connection, we establish additional notation. For $m \in \mathbb{N}$ we define

$$
D_{n}^{\mathrm{C}}(m)=\left\{A \in G_{n}^{+} \mid A J A^{\mathrm{t}}=m J\right\}
$$

Let $\mathcal{H}_{p}^{\mathrm{C}}=\mathcal{H}^{\mathrm{C}}\left(G_{n}^{+}, \Gamma_{n}\right)$ be the spherical Hecke algebra. The Hecke operator $T_{n}^{\mathrm{C}}(m)$ is

$$
T_{n}^{\mathrm{C}}(m)=\sum_{g \in \Gamma_{n} \backslash D_{n}^{\mathrm{C}}(m) / \Gamma_{n}} \Gamma_{n} g \Gamma_{n} .
$$

The (formal) symplectic Hecke series is defined as

$$
\begin{equation*}
\sum_{\alpha \geqslant 0} T_{n}^{\mathrm{C}}\left(p^{\alpha}\right) X^{\alpha} \in \mathcal{H}_{p}^{\mathrm{C}} \llbracket X \rrbracket . \tag{1.3}
\end{equation*}
$$

Shimura's conjecture [6] that the series in (1.3) is a rational function in X was proved by Andrianov [1]. Explicit formulae, however, seem only to be known for $n \leqslant 4$; see [9].

We consider the image of the Hecke series in (1.3) under the Satake isomorphism $\Omega: \mathcal{H}_{p}^{\mathrm{C}} \rightarrow \mathbb{C}\left[x_{0}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]^{W}$ mapping onto the ring of invariants of W, the Weyl group of G_{n}. For variables $\boldsymbol{x}=\left(x_{0}, \ldots, x_{n}\right)$, we define the (local) Satake generating function as

$$
R_{n, p}(x, X)=\sum_{\alpha \geqslant 0} \Omega\left(T_{n}^{\mathrm{C}}\left(p^{\alpha}\right)\right) X^{\alpha} \in \mathbb{C}\left[\mathbf{x}^{ \pm 1}\right] \llbracket X \rrbracket .
$$

and the (local) primitive local Satake generating function as

$$
\begin{equation*}
R_{n, p}^{\mathrm{pr}}(x, X)=\left(1-x_{0} X\right)\left(1-x_{0} x_{1} \cdots x_{n} X\right) R_{n, p}(x, X) \tag{1.4}
\end{equation*}
$$

We write $V\left(\mathscr{X}_{n}\right)$ for the set of vertices of \mathscr{X}_{n}, the affine building \mathscr{X}_{n} of type $\widetilde{\mathrm{A}}_{n-1}$ associated with the group $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$, viz. homothety classes of full lattices in $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$. In [2, Section 3.3] Andrianov shows, in essence, that $R_{n, p}^{\mathrm{pr}}$ can be interpreted as a sum over $V(\mathscr{X})$; see Theorem 1.1 below.

For a lattice $\Lambda \leqslant \mathbb{Z}_{p}^{n}$, set $\boldsymbol{v}(\Lambda)=\left(v_{1} \leqslant \cdots \leqslant v_{n}\right) \in \mathbb{N}_{0}^{n}$ if $\mathbb{Z}_{p}^{n} / \Lambda \cong \mathbb{Z} / p^{\nu_{1}} \oplus \cdots \oplus$ $\mathbb{Z} / p^{v_{n}}$. Setting $v_{0}=0$, we define

$$
\boldsymbol{\mu}(\Lambda)=\left(\mu_{1}, \ldots, \mu_{n}\right)=\left(v_{n}-v_{n-1}, \ldots, v_{1}-v_{0}\right)
$$

Having chosen a \mathbb{Z}_{p}-basis of \mathbb{Z}_{p}^{n} we associate to each lattice $\Lambda \leqslant \mathbb{Z}_{p}^{n}$ a unique matrix

$$
M_{\Lambda}=\left(\begin{array}{cccc}
p^{\delta_{1}} & m_{12} & \cdots & m_{1 n} \tag{1.5}\\
& p^{\delta_{2}} & \cdots & m_{2 n} \\
& & \ddots & \vdots \\
& & & p^{\delta_{n}}
\end{array}\right) \in \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)
$$

whose rows generate Λ and with $0 \leqslant v_{p}\left(m_{i j}\right) \leqslant \delta_{j}$ for all $1 \leqslant i<j \leqslant n$. The matrix M_{Λ} in (1.5) is said to be in Hermite normal form. We set $\delta(\Lambda)=\left(\delta_{1}, \ldots, \delta_{n}\right)$. Clearly each homothety class $[\Lambda]$ contains a unique representative $\Lambda_{\mathrm{m}} \leqslant \mathbb{Z}_{p}^{n}$ such that $p^{-1} \Lambda_{\mathrm{m}} \notin \mathbb{Z}_{p}^{n}$. Theorem 1.1 (Andrianov). Let $n \in \mathbb{N}, \boldsymbol{a}=(1,2, \ldots, n) \in \mathbb{N}^{n}, \boldsymbol{d}=(n, n-1, \ldots, 1) \in \mathbb{N}^{n}$, and let \langle,$\rangle be the usual dot product. Then$

$$
R_{n, p}^{\mathrm{pr}}(x, X)=\sum_{[\Lambda] \in V\left(\mathscr{X}_{n}\right)} p^{\left\langle d, v\left(\Lambda_{\mathrm{m}}\right)\right\rangle-\left\langle a, \delta\left(\Lambda_{\mathrm{m}}\right)\right\rangle} x_{1}^{\delta_{1}\left(\Lambda_{\mathrm{m}}\right)} \cdots x_{n}^{\delta_{n}\left(\Lambda_{\mathrm{m}}\right)}\left(x_{0} X\right)^{v_{n}\left(\Lambda_{\mathrm{m}}\right)}
$$

1.3 The Hermite-Smith generating function

We define a generating function enumerating finite-index sublattices of \mathbb{Z}_{p}^{n} simultaneously by their Hermite and Smith normal forms. For $n \in \mathbb{N}$, let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be variables. The Hermite-Smith generating function is

$$
\begin{equation*}
\operatorname{HS}_{n, p}(\boldsymbol{X}, \boldsymbol{Y})=\sum_{\Lambda \leqslant \mathbb{Z}_{p}^{n}} \boldsymbol{X}^{\boldsymbol{\mu}(\Lambda)} \boldsymbol{Y}^{\boldsymbol{\delta}(\Lambda)}=\sum_{\Lambda \leqslant \mathbb{Z}_{p}^{n}} \prod_{i=1}^{n} X_{i}^{\mu_{i}(\Lambda)} Y_{i}^{\delta_{i}(\Lambda)} \in \mathbb{Z} \llbracket \boldsymbol{X}, \boldsymbol{Y} \rrbracket \tag{1.6}
\end{equation*}
$$

Clearly, if $\Lambda \leqslant \mathbb{Z}_{p}^{n}$ has finite index, then so does $p^{m} \Lambda$ for all $m \in \mathbb{N}_{0}$. This allows us to extract a "homothety factor" from the sum defining $\operatorname{HS}_{n, p}(\boldsymbol{X}, \boldsymbol{Y})$. The primitive Hermite-Smith generating function is

$$
\begin{equation*}
\mathrm{HS}_{n, p}^{\mathrm{pr}}(\boldsymbol{X}, \boldsymbol{Y})=\sum_{[\Lambda] \in V\left(\mathscr{X}_{n}\right)} \boldsymbol{X}^{\boldsymbol{\mu}\left(\Lambda_{\mathrm{m}}\right)} \boldsymbol{\gamma}^{\boldsymbol{\delta}\left(\Lambda_{\mathrm{m}}\right)}=\left(1-X_{n} Y_{1} \cdots Y_{n}\right) \mathrm{HS}_{n, p}(\boldsymbol{X}, \boldsymbol{Y}) . \tag{1.7}
\end{equation*}
$$

With this generating function we may obtain the primitive local Satake generating function of Section 1.2, as follows. We define a ring homomorphism

$$
\begin{align*}
\Phi: \mathbb{Q} \llbracket X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots \rrbracket & \longrightarrow \mathbb{Q} \llbracket x_{0}, x_{1}, \ldots, X \rrbracket \\
X_{i} & \longmapsto p^{(i+1)} 2 x_{0} X \\
Y_{i} & \longmapsto p^{-i} x_{i} \tag{1.8}
\end{align*}
$$

for all $i \in \mathbb{N}_{0}$. By design of Φ and Theorem 1.1 we have $\Phi\left(\mathrm{HS}_{n, p}^{\mathrm{pr}}\right)=R_{n, p}^{\mathrm{pr}}$.
Example 1.2. For $n=2$, the Hermite-Smith generating function is

$$
\begin{aligned}
\mathrm{HS}_{2, p}(\boldsymbol{X}, \boldsymbol{Y}) & =\frac{1-X_{1}^{2} Y_{1} Y_{2}}{\left(1-X_{1} Y_{1}\right)\left(1-p X_{1} Y_{2}\right)\left(1-X_{2} Y_{1} Y_{2}\right)} \\
R_{2, p}(x, X) & =\frac{1-p^{-1} x_{0}^{2} x_{1} x_{2} X^{2}}{\left(1-x_{0} X\right)\left(1-x_{0} x_{1} X\right)\left(1-x_{0} x_{2} X\right)\left(1-x_{0} x_{1} x_{2} X\right)}
\end{aligned}
$$

2 Main results

Interpreting the ℓ-th coefficients of the Ehrhart polynomial of the polytope P as a function on a set of (homothety classes of) p-adic lattices invites the definition of an action of the spherical Hecke algebra \mathcal{H}_{p}^{C}. The latter is generated by a set of $n+1$ generators $T_{n}^{\mathrm{C}}(p, 0), T_{n}^{\mathrm{C}}\left(p^{2}, 1\right), \ldots, T_{n}^{\mathrm{C}}\left(p^{2}, n\right)$. It suffices to explain how these generators act. For $k \in[n]$, define diagonal matrices in G_{n}^{+}as follows:

$$
D_{0}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{n}, \underbrace{p, \ldots, p}_{n}), \quad D_{k}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{n-k}, \underbrace{p, \ldots, p}_{k}, \underbrace{p^{2}, \ldots, p^{2}}_{n-k}, \underbrace{p, \ldots, p}_{k}) .
$$

Set $\mathscr{D}_{n, k}^{C}=\Gamma_{n} D_{k} \Gamma_{n} / \Gamma_{n}$. The set $\mathscr{D}_{n, k}^{C}$ can be interpreted as the set of symplectic lattices with symplectic elementary divisors equal to those of D_{k}. We define

$$
T_{n}^{\mathrm{C}}(p, 0) E(P)=\sum_{g \in \mathscr{O}_{n, 0}^{\mathrm{C}}} E(g \cdot P), \quad T_{n}^{\mathrm{C}}\left(p^{2}, k\right) E(P)=\sum_{g \in \mathscr{O}_{n, k}^{\mathrm{C}}} E(g \cdot P) .
$$

For $\ell \geqslant \mathbb{N}_{0}$, we define functions

$$
\mathscr{E}_{n, p, \ell, P}: G_{n}^{+} / \Gamma_{n} \rightarrow \mathbb{C}, \quad \Gamma_{n} g \mapsto c_{\ell}\left(E^{\Lambda_{g^{-1}}}(P)\right) .
$$

Lastly, for all $T \in \mathcal{H}_{p}^{\mathrm{C}}$ set

$$
T \mathscr{E}_{n, p, \ell, P}\left(\Gamma_{n} g\right)=c_{\ell}\left(T E_{g^{-1}}(P)\right)
$$

Recall that P is full-dimensional; for $k \in[n]$, and $\ell \in[2 n]_{0}$, we define

$$
v_{n, 0, \ell}^{\mathrm{C}}(p)=\frac{c_{\ell}\left(T_{n}^{C}(p, 0) E(P)\right)}{c_{\ell}(E(P))}, \quad \quad v_{n, k, \ell}^{C}(p)=\frac{c_{\ell}\left(T_{n}^{C}\left(p^{2}, k\right) E(P)\right)}{c_{\ell}(E(P))} .
$$

The notation suggests that the value $v_{n, k, \ell}^{C}(p)$ is independent of the polytope P, which is justified by Theorem A. General properties of the Ehrhart polynomial imply that

$$
v_{n, n, \ell}^{\mathrm{C}}(p)=p^{\ell}, \quad v_{n, k, 0}^{\mathrm{C}}(p)=\# \mathscr{D}_{n, k}^{\mathrm{C}} .
$$

Every Q -linear homomorphism $\lambda: \mathcal{H}_{p}^{C} \rightarrow \mathrm{C}$ is uniquely determined by parameters $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1}$ such that if $\psi: \mathbb{C}\left[x_{0}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \rightarrow \mathbb{C}$ is given by $x_{i}=a_{i}$ then $\lambda=$ $\psi \circ \Omega$; see [2, Proposition 3.3.36].

Theorem A. The functions $\mathscr{E}_{n, p, \ell, P}$ are Hecke eigenfunctions under the action defined above; specifically, for all $k \in[n]$, we have

$$
T_{n}^{C}(p, 0) \mathscr{E}_{n, p, \ell, P}=v_{n, 0, \ell}^{C}(p) \mathscr{E}_{n, p, \ell, P}, \quad T_{n}^{C}\left(p^{2}, k\right) \mathscr{E}_{n, p, \ell, P}=v_{n, k, \ell}^{C}(p) \mathscr{E}_{n, p, \ell, P},
$$

where the $\nu_{n, k, \ell}^{\mathrm{C}}(p)$ are polynomials in p with integer coefficients which are independent of P. Moreover, the parameters associated to $v_{n, k, \ell}^{C}(p)$ are ($p^{\ell}, p, p^{2}, \ldots, p^{n-1}, p^{n-\ell}$).

Table 1 lists the values of $v_{n, k, \ell}^{C}(p)$ for small values of n and k.
Theorem A enables us to relate $\mathcal{Z}_{n, \ell, p}^{C}(s)$ to $R_{n, p}(x, X)$. Let $\psi_{n, \ell}$ be the ring homomorphism from $\mathbb{C} \llbracket x_{0}, x_{1}, \ldots, X \rrbracket \rightarrow \mathbb{C}[t]$ given by

$$
X \mapsto t^{n} \quad x_{0} \mapsto p^{\ell}, \quad x_{n} \mapsto p^{n-\ell}, \quad x_{i} \mapsto p^{i} .
$$

Corollary B. For $n \in \mathbb{N}$ and $\ell \in[2 n]_{0}$ we have, writing $t=p^{-s}$,

$$
\left.\left(\psi_{n, \ell} \circ \Phi\right)\left(\mathrm{HS}_{n, p}^{\mathrm{pr}}(\boldsymbol{X}, \boldsymbol{Y})\right)=\psi_{n, \ell}\left(R_{n, p}^{\mathrm{pr}}\right)=\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}(s)\left(1-p^{\ell-s}\right)\left(1-p^{(n+1} 2\right)-s\right) .
$$

ℓ	$v_{2,0, \ell}^{C}(p)$	$v_{2,1, \ell}^{C}(p)$
4	$p^{5}+p^{4}+p^{3}+p^{2}$	$p^{8}+p^{7}+p^{6}+p^{5}$
3	$p^{4}+p^{3}+p^{3}+p^{2}$	$2 p^{6}+p^{5}+2 p^{4}-p^{3}$
2	$p^{3}+p^{3}+p^{2}+p^{2}$	$p^{5}+3 p^{4}+p^{3}-p^{2}$
1	$p^{3}+p^{2}+p^{2}+p^{1}$	$2 p^{4}+p^{3}+2 p^{2}-p$
0	$p^{3}+p^{2}+p+1$	$p^{4}+p^{3}+p^{2}+p$

Table 1: The polynomials $v_{2, k, \ell}^{\mathrm{C}}(p)$ for $k \in\{0,1\}$ and $\ell \in[4]_{0}$.
Thanks to Corollary B, we can work with $\mathrm{HS}_{n, p}$ to prove that $R_{n, p}$ and $\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}$ satisfy a self-reciprocity property, which proves the conjecture in [9, Remark 4].

Theorem C. Let $n \in \mathbb{N}$. Then $\operatorname{HS}_{n, p}(\boldsymbol{X}, \boldsymbol{Y})$ is a rational function in \boldsymbol{X} and \boldsymbol{Y}. Furthermore, for $\boldsymbol{X}^{-1}=\left(X_{1}^{-1}, \ldots, X_{n}^{-1}\right)$ and $\boldsymbol{Y}^{-1}=\left(Y_{1}^{-1}, \ldots, Y_{n}^{-1}\right)$, we have

$$
\left.\operatorname{HS}_{n, p}\left(\boldsymbol{X}^{-1}, \boldsymbol{Y}^{-1}\right)\right|_{p \rightarrow p^{-1}}=(-1)^{n} p^{\binom{n}{2}} X_{n} Y_{1} \cdots Y_{n} \cdot \operatorname{HS}_{n, p}(\boldsymbol{X}, \boldsymbol{Y})
$$

We prove Theorem C by writing $\mathrm{HS}_{n, p}$ as a p-adic integral and applying results of [10], where the operation of inverting p is also explained.

Corollary D. For $n \in \mathbb{N}$ and $\ell \in[2 n]_{0}$, we have

$$
\begin{aligned}
\left.\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}(s)\right|_{p \rightarrow p^{-1}} & =(-1)^{n+1} p^{n^{2}+\ell-2 n s} \cdot \mathcal{Z}_{n, \ell, p}^{\mathrm{C}}(s), \\
\left.R_{n, p}(\mathbf{x}, X)\right|_{p \rightarrow p^{-1}} & =(-1)^{n+1} p^{\binom{n}{2}} x_{0}^{2} x_{1} \ldots x_{n} X^{2} \cdot R_{n, p}(\mathbf{x}, X)
\end{aligned}
$$

In the next theorem, we determine a formula for the specialization of $\mathrm{HS}_{n, p}^{\mathrm{pr}}$ which yields $\mathcal{Z}_{n, \ell, p}^{\mathrm{C}}$ by Corollary B. To this end we define

$$
\overline{\mathrm{HS}}_{n, p}(\boldsymbol{X}, Y)=\mathrm{HS}_{n, p}^{\mathrm{pr}}(\boldsymbol{X}, 1, \ldots, 1, Y)
$$

We prove that $\overline{\mathrm{HS}}_{n, p}$ is a rational function in the $n+1$ variables X and Y and, in addition, the prime p. In order to describe the formula, we define additional notation. For $I=$ $\left\{i_{1}<\cdots<i_{\ell}\right\} \subseteq[n-1]$, with $i_{\ell+1}=n, k \in[\ell+1]$, and a variable Z, we set

$$
\begin{aligned}
I^{(k)} & =\left\{i_{j} \mid j<k\right\} \cup\left\{i_{j}-1 \mid j \geqslant k\right\} \\
\mathscr{G}_{n, I, k}(Z, X, Y) & =\left(\prod_{j=1}^{k-1} \frac{Z^{i_{j}\left(n-i_{j}-1\right)} X_{i_{j}}}{1-Z^{i_{j}\left(n-i_{j}-1\right)} X_{i_{j}}}\right)\left(\prod_{j=k}^{\ell} \frac{Z^{i_{j}\left(n-i_{j}\right)} X_{i_{j}} Y}{1-Z^{i_{j}\left(n-i_{j}\right)} X_{i_{j}} Y}\right) .
\end{aligned}
$$

Theorem E. Let $n \in \mathbb{N}$. For $I=\left\{i_{1}<\cdots<i_{\ell}\right\}<\subseteq[n-1]$, set

$$
\begin{aligned}
W_{n, I}(Z, X, Y)= & \sum_{k=1}^{\ell+1} Z^{-\left(n-i_{k}\right)}\binom{n-1}{I^{(k)}}_{Z^{-1}} \mathscr{G}_{n, I, k}(Z, X, Y) \\
& +\sum_{k=1}^{\ell} \frac{\left(1-Z^{-i_{j}}\right) \mathscr{G}_{n, I, k}(Z, X, Y)}{1-Z^{i_{j}\left(n-i_{j}-1\right)} X_{i_{j}}}\left(\sum_{m=k+1}^{\ell+1} Z^{-\left(n-i_{m}\right)}\right)\binom{n-1}{I^{(k+1)}}_{Z^{-1}} .
\end{aligned}
$$

Then

$$
\overline{\mathrm{HS}}_{n, p}(\boldsymbol{X}, Y)=\sum_{I \subseteq[n-1]} W_{n, I}(p, \boldsymbol{X}, Y) \in \mathbb{Z}(p, \boldsymbol{X}, Y) .
$$

Via the various substitutions given above, Theorem E yields explicit formulae for the functions $R_{n, p}$ and, specifically,

$$
Z_{n, \ell, p}^{\mathrm{C}}(s)=\left(1-p^{\ell-s}\right)^{-1}\left(1-p^{\binom{n+1}{2}-s}\right)^{-1} \sum_{I \subseteq[n-1]} W_{n, I}\left(p,\left(p^{\left(\frac{i+1}{2}\right)+\ell-n s}\right)_{i=1}^{n}, p^{-\ell}\right)
$$

In the next theorem we show that the primitive local Satake generating function can be viewed as a " p-analogue" of the fine Hilbert series of a Stanley-Reisner ring. Let V be a finite set. If $\Delta \subseteq 2^{V}$ is a simplicial complex on V, then the Stanley-Reisner ring of Δ over a ring K is

$$
K[\Delta]=K\left[X_{v} \mid v \in V\right] /\left(\prod_{v \in \sigma} X_{v} \mid \sigma \in 2^{V} \backslash \Delta\right)
$$

Theorem F. For all $n \in \mathbb{N}$, let Δ_{n} be the n-simplex with vertices [n] and $\Delta=\operatorname{sd}\left(\partial \Delta_{n}\right)$, the barycentric subdivision of boundary of Δ_{n}, with vertices given by the nonempty subsets of $[n]$. Let $\boldsymbol{y}=\left(y_{I}: \varnothing \neq I \subseteq[n\rfloor\right)$ and $\varphi: \mathbb{Z} \llbracket \boldsymbol{y} \rrbracket \rightarrow \mathbb{Z} \llbracket \boldsymbol{x}, X \rrbracket$ via $y_{I} \mapsto x_{0} X \prod_{i \in I} x_{i}$. Then

$$
\left.R_{n, p}^{\mathrm{pr}}(x, X)\right|_{p \rightarrow 1}=\varphi(\operatorname{Hilb}(\mathbb{Z}[\Delta] ; \boldsymbol{y}))=\sum_{\sigma \in \Delta} \prod_{J \in \sigma} \frac{\varphi\left(y_{J}\right)}{1-\varphi\left(y_{J}\right)}
$$

With Theorem F, we come full circle and relate the local Satake generating function $R_{n, p}$ to the Ehrhart series of the n-cube.

Corollary 2.1. For all $n \in \mathbb{N}$, let P be the n-cube. Then

$$
\left.R_{n, p}(\mathbf{1}, X)\right|_{p \rightarrow 1}=\operatorname{Ehr}_{P}(X)=\frac{\mathrm{E}_{n}(X)}{(1-X)^{n+1}}
$$

where $\mathrm{E}_{n}(X)=\sum_{\sigma \in S_{n}} X^{\operatorname{des}(\sigma)}$ is the Eulerian polynomial.
Proof. It follows from Theorem F that

$$
\begin{equation*}
\left.(1-X)^{2} R_{n, p}(\mathbf{1}, X)\right|_{p \rightarrow 1}=\sum_{\sigma \in \Delta} \prod_{J \in \sigma} \frac{X}{1-X^{\prime}} \tag{2.1}
\end{equation*}
$$

where Δ is the barycentric subdivision of the boundary of the n-simplex. From $[5$, Theore. 9.1] and Equation (2.1) it follows that

$$
\left.R_{n, p}(\mathbf{1}, X)\right|_{p \rightarrow 1}=\frac{\mathrm{E}_{n}(X)}{(1-X)^{n+1}}=\sum_{k \geqslant 0}(k+1)^{n} X^{k}=\operatorname{Ehr}_{P}(X)
$$

2.1 The type-A story

Our work was inspired by Gunnells and Rodriguez Villegas. In [3] they considered typeA versions of some of the questions outlined above. We paraphrase parts of [3] from the perspective of our work in type C. For a prime p we define the (local) Ehrhart-Hecke zeta function (of type A) as

$$
\begin{equation*}
\mathcal{Z}_{n, \ell, p}^{\mathrm{A}}(s)=\sum_{\substack{\mathbb{Z}_{p}^{n} \leqslant \Lambda \leqslant \mathrm{Q}_{p}^{n} \\\left|\Lambda: \mathbb{Z}_{p}^{n}\right|<\infty}} \frac{c_{\ell}^{\Lambda}(P)}{c_{\ell}(P)}\left|\Lambda: \mathbb{Z}_{p}^{n}\right|^{-s} \tag{2.2}
\end{equation*}
$$

Let $\Gamma_{n}^{\mathrm{A}}=\mathrm{GL}_{n}(\mathbb{Z})$ and $G_{n}^{\mathrm{A}}=\operatorname{Mat}_{n}(\mathbb{Z}) \cap \mathrm{GL}_{n}(\mathbb{Q})$. For $m \in \mathbb{N}$, let

$$
D_{n}^{\mathrm{A}}(m)=\left\{g \in G_{n}^{\mathrm{A}}| | \operatorname{det}(g) \mid=m\right\}
$$

so $D_{n}^{\mathrm{A}}(m)$ is a finite union of double cosets relative to Γ_{n}^{A}. We define

$$
T_{n}^{\mathrm{A}}(m)=\sum_{g \in \Gamma_{n}^{\mathrm{A}} \backslash D_{n}^{\mathrm{A}}(m) / \Gamma_{n}^{\mathrm{A}}} \Gamma_{n}^{\mathrm{A}} g \Gamma_{n}^{\mathrm{A}}
$$

where the sum runs over a set of representatives of the double cosets, which is an element of the Hecke algebra determined by $\left(\Gamma_{n}^{\mathrm{A}}, \mathrm{G}_{n}^{\mathrm{A}}\right)$. Moreover, if $\operatorname{gcd}\left(m, m^{\prime}\right)=1$, then

$$
T_{n}^{\mathrm{A}}(m) T_{n}^{\mathrm{A}}\left(m^{\prime}\right)=T_{n}^{\mathrm{A}}\left(m m^{\prime}\right)
$$

For $k \in[n]_{0}$ define $\pi_{k}(p)=\operatorname{diag}(1, \ldots, 1, \overbrace{p, \ldots, p}^{k})$ and $T_{n}^{\mathrm{A}}(p, k)=\Gamma_{n}^{\mathrm{A}} \pi_{k}(p) \Gamma_{n}^{\mathrm{A}}$, which decomposes into a finite (disjoint) union of right cosets relative to Γ_{n}^{A}.

Gunnells and Rodriguez Villegas [3] considered the following action of the Hecke algebra on the Ehrhart polynomial $E(P)=E^{\Lambda_{0}}(P)$ of P :

$$
\begin{equation*}
T_{n}^{\mathrm{A}}(p, k) E(P)=\sum_{g \in \Gamma_{n}^{A} \pi_{k}(p) \Gamma_{n}^{\mathrm{A}} / \Gamma_{n}^{\mathrm{A}}} E(g \cdot P) \tag{2.3}
\end{equation*}
$$

where the sum runs over a set of right coset representatives. The action in (2.3) is independent of the chosen representatives since Γ_{n}^{A} comprises bijections of \mathbb{Z}^{n}. Our definition in (2.3) differs from [3] only cosmetically via (1.2).

Denote by $\operatorname{Gr}(\ell, n, p)$ the set of ℓ-dimensional subspaces in \mathbb{F}_{p}^{n}. For $n \in \mathbb{N}, \ell, k \in[n]_{0}$, and $U \in \operatorname{Gr}(\ell, n, p)$, define

$$
v_{n, k, \ell}^{\mathrm{A}}(p)=\sum_{W \in \operatorname{Gr}(k, n, p)} \#(U \cap W)
$$

Let $\psi_{n, \ell}^{\mathrm{A}}: \mathbb{Q}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \rightarrow \mathbb{Q}$ be given by $x_{n} \mapsto p^{\ell}$ and $x_{i} \mapsto p^{i}$ for all $i \in[n-1]$. Let further ω denote the Satake isomorphism from the p-primary part of the Hecke algebra associated with $\left(\Gamma_{n}^{\mathrm{A}}, G_{n}^{\mathrm{A}}\right)$, written $\mathcal{H}_{p}^{\mathrm{A}}$, to the symmetric subring of $\mathbb{Q}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Let $s_{n, k}\left(x_{1}, \ldots, x_{n}\right)$ be the (homogeneous) elementary symmetric polynomial of degree k, and set $s_{n,-1}=0$.
Theorem 2.2 ([3]). For $n \in \mathbb{N}, k, \ell \in[n]_{0}$, and a prime p, we have

$$
v_{n, k, \ell}^{\mathrm{A}}(p)=p^{k}\binom{n-1}{k}_{p}+p^{\ell}\binom{n-1}{k-1}_{p}=\psi_{n, \ell}^{\mathrm{A}}\left(\omega\left(T_{n}^{\mathrm{A}}(p, k)\right)\right)
$$

Moreover,

$$
\mathcal{Z}_{n, \ell, p}^{\mathrm{A}}(s)=\left(1-p^{\ell-s}\right)^{-1} \prod_{k=1}^{n-1}\left(1-p^{k-s}\right)^{-1}
$$

Proof. First we prove the claims concerning $v_{n, k, \ell}^{\mathrm{A}}(p)$. Therefore,

$$
\begin{align*}
v_{n, k, \ell}^{\mathrm{A}}(p) & =\binom{n}{k}_{p}-\binom{n-1}{k-1}_{p}+p^{\ell}\binom{n-1}{k-1}_{p} \tag{3,Lem.3.3}\\
& =p^{k}\binom{n-1}{k}_{p}+p^{\ell}\binom{n-1}{k-1}_{p} \tag{Pascalidentity}\\
& =p^{k} s_{n-1, k}\left(1, p, \ldots, p^{n-2}\right)+p^{\ell} s_{n-1, k-1}\left(1, p, \ldots, p^{n-2}\right) \tag{4,Ex.I.2.3}\\
& =p^{-\left({ }_{2}^{k}\right)} \psi_{n, \ell}^{\mathrm{A}}\left(s_{n, k}\right) \\
& =\psi_{n, \ell}^{\mathrm{A}}\left(\omega\left(T_{n}^{\mathrm{A}}(p, k)\right)\right) . \tag{2,Lem.3.2.21}
\end{align*}
$$

We now tend to the last claim. Tamagawa [7] established the identity

$$
\begin{equation*}
\sum_{m \geqslant 0} T_{n}^{\mathrm{A}}\left(p^{m}\right) X^{m}=\left(\sum_{k=0}^{n}(-1)^{k} p^{\left({ }_{2}^{k}\right)} T_{n}^{\mathrm{A}}(p, k) X^{k}\right)^{-1} \in \mathcal{H}_{p}^{\mathrm{A}} \llbracket X \rrbracket . \tag{2.4}
\end{equation*}
$$

Applying $\psi_{n, \ell}^{\mathrm{A}} \circ \omega$ to (2.4) and setting $X=p^{-s}$, we have

$$
\sum_{m \geqslant 0} \psi_{n, \ell}^{\mathrm{A}}\left(\omega\left(T_{n}^{\mathrm{A}}\left(p^{m}\right)\right)\right) p^{-m s}=\left(\sum_{k=0}^{n} \psi_{n, \ell}^{\mathrm{A}}\left(s_{n, k}\right)(-p)^{-k s}\right)^{-1}=\left(1-p^{\ell-s}\right)^{-1} \prod_{k=1}^{n-1}\left(1-p^{k-s}\right)^{-1}
$$

Since $v_{n, k, \ell}^{\mathrm{A}}(p)$ is an eigenvalue for $T_{n}(p, k)$, it follows that

$$
\mathcal{Z}_{n, \ell, p}^{\mathrm{A}}(s)=\sum_{m \geqslant 0} \psi_{n, \ell}^{\mathrm{A}}\left(\omega\left(T_{n}^{\mathrm{A}}\left(p^{m}\right)\right)\right) p^{-m s}
$$

Corollary 2.3. Let $\zeta(s)$ be the Riemann zeta function. For $n \in \mathbb{N}$ and $\ell \in[n]_{0}$, we have

$$
\prod_{\text {prime } p} \mathcal{Z}_{n, \ell, p}^{\mathrm{A}}(s)=\zeta(s-\ell) \prod_{k=1}^{n-1} \zeta(s-k)
$$

3 Examples

3.1 Hecke eigenfunctions

We give some explicit examples, showing in Figure 3.1 that the eigenfunctions of Theorem A depend significantly on the polytope. We do this by displaying a graph whose vertices correspond to homothety classes of lattices. We evaluate the functions $\mathscr{E}_{n, p \ell, P}$ on Λ_{m} for each homothety class $[\Lambda]$.

3.2 Local Ehrhart-Hecke zeta functions

For $n \in[3]$ and $\ell \in[2 n]_{0}$, we record the rational functions $W_{n, \ell}(X, Y) \in \mathbb{Q}(X, Y)$ where, for all primes, $\mathcal{Z}_{n, \ell, p}^{C}(s)=W_{n, \ell}\left(p, p^{-n s}\right)$. We computed these with SageMath [8].

$$
\begin{aligned}
& W_{1, \ell}(X, Y)=\frac{1}{(1-X Y)\left(1-X^{\ell} Y\right)} \\
& W_{2, \ell}(X, Y)=\frac{1-X^{2+\ell} Y^{2}}{\left(1-X^{2} Y\right)\left(1-X^{3} Y\right)\left(1-X^{\ell} Y\right)\left(1-X^{\ell+1} Y\right)} \\
& W_{3, \ell}(X, Y)=\frac{1+\left(X^{1+\ell}+X^{4}\right) Y-A_{\ell}(X) Y^{2}+\left(X^{6+2 \ell}+X^{9+\ell}\right) Y^{3}+X^{10+2 \ell} Y^{4}}{\left(1-X^{3} Y\right)\left(1-X^{5} Y\right)\left(1-X^{6} Y\right)\left(1-X^{\ell} Y\right)\left(1-X^{2+\ell} Y\right)\left(1-X^{3+\ell} Y\right)} \\
& W_{4, \ell}(X, Y)=\frac{N_{4, \ell}(X, Y)}{D_{4, \ell}(X, Y)}
\end{aligned}
$$

where $A_{\ell}(X)=X^{7+\ell}+2 X^{6+\ell}+2 X^{4+\ell}+X^{3+\ell}$,

$$
\begin{aligned}
N_{4, \ell}(X, Y)=1 & +\left(X^{5}+X^{6}+X^{7}+X^{8}+X^{1+\ell}+X^{2+\ell}+X^{3+\ell}+X^{4+\ell}\right) Y+\left(X^{13}\right. \\
& -X^{4+\ell}-2 X^{5+\ell}-2 X^{6+\ell}-2 X^{7+\ell}-2 X^{8+\ell}-2 X^{9+\ell}-3 X^{10+\ell} \\
& \left.-2 X^{11+\ell}-2 X^{12+\ell}-2 X^{13+\ell}-X^{14+\ell}+X^{5+2 \ell}\right) Y^{2}+\left(X^{14+\ell}\right. \\
& \left.-X^{18+\ell}+X^{10+2 \ell}-X^{14+2 \ell}\right) Y^{3}-\left(X^{23+\ell}-X^{14+2 \ell}-2 X^{15+2 \ell}\right. \\
& -2 X^{16+2 \ell}-2 X^{17+2 \ell}-3 X^{18+2 \ell}-2 X^{19+2 \ell}-2 X^{20+2 \ell}-2 X^{21+2 \ell} \\
& \left.-2 X^{22+2 \ell}-2 X^{23+2 \ell}-X^{24+2 \ell}+X^{15+3 \ell}\right) Y^{4}-\left(X^{24+2 \ell}+X^{25+2 \ell}\right. \\
& \left.+X^{26+2 \ell}+X^{27+2 \ell}+X^{20+3 \ell}+X^{21+3 \ell}+X^{22+3 \ell}+X^{23+3 \ell}\right) Y^{5} \\
& -X^{28+3 \ell} Y^{6},
\end{aligned}
$$

$$
\begin{aligned}
D_{4, \ell}(X, Y)= & \left(1-X^{4} Y\right)\left(1-X^{7} Y\right)\left(1-X^{9} Y\right)\left(1-X^{10} Y\right) \\
& \times\left(1-X^{\ell} Y\right)\left(1-X^{3+\ell} Y\right)\left(1-X^{5+\ell} Y\right)\left(1-X^{6+\ell} Y\right)
\end{aligned}
$$

P

P^{\prime}

$\mathscr{E}_{2,2,1, P}$

Figure 3.1: Polytopes and some values of $\mathscr{E}_{2,2,1, p}$ displayed on lattices in the affine building of type $\widetilde{\mathrm{A}}_{1}$ associated with the group $\mathrm{GSp}_{2}\left(\mathrm{Q}_{p}\right) \cong \mathrm{GL}_{2}\left(\mathrm{Q}_{p}\right)$. The center vertex corresponds to the homothety class of the identity, and the values are the linear coefficients of the Ehrhart polynomials with respect to the corresponding lattices.

References

[1] A. N. Andrianov. "Rationality theorems for Hecke series and Zeta functions of the groups GL_{n} and Sp_{n} over local fields". Izv. Akad. Nauk SSSR Ser. Mat. (1969), pp. 466-505.
[2] A. N. Andrianov. Quadratic forms and Hecke operators. Vol. 286. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, 1987, pp. xii+374. Dor.
[3] P. E. Gunnells and F. Rodriguez Villegas. "Lattice polytopes, Hecke operators, and the Ehrhart polynomial". Selecta Math. (N.S.) 13.2 (2007), pp. 253-276.
[4] I. G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1995, pp. x+475.
[5] T. K. Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, 2015, pp. xviii+456. DOI.
[6] G. Shimura. "On modular correspondences for $\operatorname{Sp}(n, Z)$ and their congruence relations". Proc. Nat. Acad. Sci. U.S.A. 49 (1963), pp. 824-828. Doi.
[7] T. Tamagawa. "On the ζ-functions of a division algebra". Ann. of Math. (2) 77 (1963), pp. 387-405. DOI.
[8] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2). https: //www. sagemath . org. 2020.
[9] K. Vankov. "Explicit Hecke series for symplectic group of genus 4". J. Théor. Nombres Bordeaux 23.1 (2011), pp. 279-298.
[10] C. Voll. "Functional equations for zeta functions of groups and rings". Ann. of Math. (2) 172.2 (2010), pp. 1181-1218. Doi.

[^0]: *alfes@math.uni-bielefeld.de. Alfes was supported by the Daimler and Benz Foundation.
 †joshua.maglione@universityofgalway.ie. Maglione was supported by the DFG-GRK 2297.
 \ddagger C.Voll.98@cantab.net. Alfes and Voll are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — SFB-TRR 358/1 2023 - 491392403.

