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Abstract. We define a birational map between labelings of a rectangular poset and its
associated trapezoidal poset. This map tropicalizes to a bijection between the plane
partitions of these posets of fixed height, giving a new bijective proof of a result by
Proctor. We also show that this map is equivariant with respect to birational rowmo-
tion, resolving a conjecture of Williams and implying that birational rowmotion on
trapezoidal posets has finite order.
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1 Introduction

For a finite poset P, a plane partition of P (also known as a P-partition) is an order-
preserving labeling of P with nonnegative integers. When P is the rectangular poset Rr,s,
the Cartesian product of two chains of r and s elements, an elegant product formula
for the number of plane partitions of P with maximum label at most ℓ was given by
MacMahon [16]. Surprisingly, Proctor [19] showed that there is another poset, namely
the trapezoidal poset Tr,s, that has the same number of plane partitions with maximum
label at most ℓ for all ℓ. (See Figure 1 for a depiction of R4,3 and T4,3.)

Proctor’s proof relies on a branching rule for Lie algebra representations and is not
bijective. Partial bijections were later constructed by Stembridge [22] and Reiner [20] for
ℓ = 1, and Elizalde [5] for ℓ = 2, but a full bijection for all ℓ was not given until work of
Hamaker, Patrias, Pechenik, and Williams [10] using K-theoretic jeu de taquin.

Although the bijection given in [10] has many nice properties, it also has some short-
comings. First, it cannot be extended in a natural way to a continuous piecewise-linear
map on real-valued labelings of the rectangle and trapezoid. As a result, it cannot be
written using expressions in the tropical semiring (that is, using the operations addition,
subtraction, and maximum). Second, it does not appear to be generally well-behaved
with respect to a certain map on posets called rowmotion.
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(Combinatorial) rowmotion is a term coined by Striker and Williams [23] to describe
a map first studied by Brouwer and Schrijver [1] that permutes the set of order ideals
of a poset, sending an order ideal I ⊆ P to the order ideal generated by the minimal
elements of P \ I. It was shown in [1] that the action of rowmotion on order ideals
of the rectangle Rr,s has order exactly r + s. Einstein and Propp [4] observed that one
can generalize combinatorial rowmotion to a piecewise-linear map or birational map.
Results about birational rowmotion then descend to results for piecewise-linear rowmo-
tion (via tropicalization) and further to combinatorial rowmotion. Birational rowmotion
on rectangular posets is closely related to the birational Robinson–Schensted–Knuth (RSK)
correspondence, also known as tropical or geometric RSK—see [18] for some discussion.

For rectangular posets, birational rowmotion maintains many of the important dy-
namical properties of combinatorial rowmotion. For example, Grinberg and Roby [7]
showed that birational rowmotion on Rr,s still has finite order r + s, which was observed
by Glick and Grinberg [9, 17] to be equivalent to a phenomenon from discrete dynam-
ics known as type AA Zamolodchikov periodicity (see Volkov [24]). However, the class of
posets for which birational rowmotion is known to have finite order is very small [7, 8].
Grinberg and Roby conjecture that birational rowmotion on Tr,s likewise has finite order
r + s. (See also [6] for more on conjectured good behavior of the related R-systems.)

Given the apparent close relationship between the rectangular and trapezoidal posets,
Williams conjectures (as noted in [7], based on work in [25]) that there should exist a
birational map between labelings of Rr,s and Tr,s that intertwines with the action of row-
motion (see also Hopkins [11] for further discussion). In particular, such a map would
prove that birational rowmotion on Tr,s has finite order r + s. In work of Dao, Wellman,
Yost-Wolff, and Zhang [3], it was shown that the bijection given in [10] does intertwine
with combinatorial rowmotion on plane partitions of height 1, thereby showing that
combinatorial rowmotion on Tr,s has the correct order. However, they also note that it
does not respect piecewise-linear or birational rowmotion, so it cannot be used to prove
periodicity on Tr,s in these cases.

Our main result is to settle these questions. We construct a birational map between
labelings of Rr,s and Tr,s using birational toggles [2, 4]. We then show that this map:

• tropicalizes to a continuous, piecewise-linear map that restricts to a bijection be-
tween plane partitions of Rr,s and Tr,s of height at most ℓ, and

• is equivariant with respect to rowmotion on Rr,s and Tr,s, implying that birational
(as well as piecewise-linear and combinatorial) rowmotion on Tr,s has order r + s.

We also generalize the chain shifting lemma proved by the current authors in [12] (see also
the noncommutative conversion lemma by Grinberg–Roby [9]), which is closely related
to Schützenberger promotion on semistandard Young tableaux [13]. In particular, we
derive a new, simple proof of this lemma based on the duality of plane trees.

The full version of this paper, which includes proofs, can be found at [14].
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Figure 1: The right trapezoid RT4,3, the rectangle R4,3, and the trapezoid T4,3.

2 Background

We begin with some background on posets and rowmotion. Fix positive integers r ≥ s.

Definition 2.1. The rectangle poset Rr,s is the Cartesian product of chains [r]× [s].
The right trapezoid poset RTr,s is the induced subposet {(i, j) | i − j < r} ⊆ Rr+s−1,s.
The trapezoid poset Tr,s is the induced subposet {(i, j) | i + j > s} ⊆ RTr,s.

See Figure 1. We draw our posets oriented in the plane so that the first coordinate
increases to the northwest and the second coordinate increases to the northeast.

We can augment a poset P to a poset P̂ by adding minimum and maximum elements 0̂
and 1̂. Throughout, we will identify the labelings in RP

+ with the corresponding labelings
in RP̂

+, where the labels at 0̂ and 1̂ are both 1.

Definition 2.2. For any p ∈ P, the (birational) toggle tp : RP
+ → RP

+ is the map that acts

on y ∈ RP
+ by fixing all coordinates except yp and sending yp 7→

(
∑

q⋗p

1
yq

)−1(
∑

q⋖p
yq

)
1

yp
.

The rowmotion map ρ : RP
+ → RP

+ is the composition ρ = tL−1(1) ◦ tL−1(2) ◦ · · · ◦ tL−1(n)
for any linear extension L : P → [n].

Definition 2.3. The transfer map ψ−1 : RP
+ → RP

+ is defined coordinatewise by ψ−1(y)p =

yp
∑

q⋖p
yq

. Its inverse ψ acts by ψ(x)p = ∑
0̂⋖q1⋖···⋖qn=p

n

∏
i=1

xqi .

It will be convenient for us to work with the conjugate of rowmotion under the
transfer map, ρ̃ = ψ−1 ◦ ρ ◦ ψ. (This map was called birational antichain rowmotion or
barmotion by Joseph and Roby [15].) An important property of ρ̃ is the following identity.

Proposition 2.4. Let x ∈ RP
+, y = ψ(x), and z = ρ̃−1(x). Then for p ∈ P,

x−1
p = ∑

q⋖p

yq

yp
and z−1

p = ∑
q⋗p

yp

yq
.

See Figure 2 for some example calculations involving these maps on RT3,2.
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Figure 2: Labelings of RT3,2: x, y = ψ(x), ρ−1(y), and z = ρ̃−1(x) = ψ−1(ρ−1(y)).

3 Chain Shifting in Skew Shapes

Let P be a poset and x ∈ RP
+. For a subset S ⊆ P, define the weight of S to be wS(x) =

∏p∈S xp. We first show how to relate weights of certain subsets of P to weights of certain
arborescences with respect to y = ψ(x). (Recall that we set y0̂ = y1̂ = 1.)

Definition 3.1. An upward arborescence of P is a subgraph of P̂ \ {1̂} such that every
element of P has down degree 1. Similarly, a downward arborescence of P is a subgraph of
P̂ \ {0̂} such that every element of P has up degree 1. We denote the set of upward and
downward arborescences of P by UP and DP, respectively.

Define the weight (with respect to y) of the edge e corresponding to the cover relation
p ⋖ q to be ωe(y) =

yp
yq

and the weight of an arborescence T to be ωT(y) = ∏e∈E(T) ωe(y).
(Note: The weight ωT of an arborescence is different from the weight wS of a subset.)

Example 3.2. The upward and downward arborescences of RT3,2 are shown in Figure 3
with their weights. The weight of the first upward arborescence can be computed as

1
y11

· y11

y21
· y11

y12
· y21

y31
· y21

y22
· y31

y32
· y32

y42
=

y11y21

y12y22y42
.

For any y ∈ RP
+, we can use ωT(y) to define probability measures on UP and DP: for

subsets U ⊆ UP and D ⊆ DP, define

µy(U) =
∑T∈U ωT(y)
∑T∈UP

ωT(y)
, µy(D) =

∑T∈D ωT(y)
∑T∈DP

ωT(y)
.

Given a collection of saturated chains C , let UP(C ) and DP(C ) denote the sets of all
upward and downward arborescences that contain (the edges of) some chain in C , and
let wC (x) denote the total weight of all chains in C (as subsets of P).

One can exploit the symmetry of Proposition 2.4 to compute the following result.

Corollary 3.3. Let P be a poset, x ∈ RP
+, and z = ρ̃−1(x). Let m, m′, M, M′ ∈ P such that

m′ is the unique element covered by m and M is the unique element covering M′. Let C be any
collection of saturated chains from m to M, and similarly define C ′. Then µy(UP(C ))

wC (x) =
µy(DP(C

′))
wC ′ (z)

.
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y11
y31y42

y11y21y31
y22y32

y11y12y31
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y11y21
y32
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Figure 3: The four upward arborescences in URT3,2 and the four downward arbores-
cences in DRT3,2 , together with their weights.

Let S be a skew shape poset as in Figure 4. Note that if q ∈ S only covers a single
element p, then any element of US must contain the edge p ⋖ q, so we call this edge
forced for US. Likewise, the edge p ⋖ q is forced for DS if q is the only element covering p.

We define a bijection ℵ : US → DS as follows. Translate T ∈ US in the plane by the
vector (−1

2 ,−1
2) (i.e., downward) to T. Then form ℵ(T) by taking all edges of S that do

not intersect T, together with all forced edges for DS. See Figure 4 for an example.
We show that ℵ affects the weight of each arborescence in a uniform way.

Lemma 3.4. Let T ∈ US and y ∈ RS
+. Then there exists a Laurent monomial yα(S) depending

only on S such that ωℵ(T)(y) = ωT(y) · yα(S) for all T ∈ US.

Corollary 3.5. The bijection ℵ : US → DS is measure-preserving: µy(U) = µy(ℵ(U)) for all
y ∈ RS

+ and subsets U ⊆ US.

Example 3.6. Consider again the arborescences for RT3,2 in Figure 3. The bijection ℵ
sends each upward arborescence to the downward arborescence directly below it. In
each case, ℵ multiplies the weight by y42 · y12y31

y32
, as predicted by Lemma 3.4.

We are now ready to prove a chain shifting lemma for skew shapes. Our first form is
a generalization of the chain shifting lemma for rectangles proven by the current authors
in [12] (and in the noncommutative setting by Grinberg and Roby [9]) to skew shapes S.

For p ∈ S, write se(p) ̸= ∅ if p has a southeast neighbor and se(p) = ∅ otherwise.
Given elements p < q in S, let Cp,q denote the set of all saturated chains from p to q, and
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m

M

m′

M′

Figure 4: An upward arborescence T (in red) and its image ℵ(T) (in blue).

let C se
p,q ⊆ Cp,q denote the subset consisting of those chains C for which se(r) ̸= ∅ for all

r ∈ C. (Also define the analogous notation for the directions sw, ne, and nw.)

Lemma 3.7. Let m′ ⋖ m and M′ ⋖ M be elements of S such that sw(m) = ne(M′) = ∅.

(a) The bijection ℵ restricts to a bijection from US(C
se
m,M) to DS(C

nw
m′,M′).

(b) Let x ∈ RS
+ and z = ρ̃−1(x). Then wC se

m,M
(x) = wC nw

m′ ,M′ (z).

Proof sketch. Let T ∈ US(C
se
m,M), and let C be the chain in T from m to M. By the con-

struction of ℵ, ℵ(T) ∈ DS contains a saturated chain upward from m′ that does not cross
C, so it must pass through M′. It follows that ℵ(T) ∈ DS(C

nw
m′,M′). The reverse argument

shows that ℵ is a bijection, and (b) then follows from Corollaries 3.5 and 3.3.

Example 3.8. Let S = RT32 and take m = (2, 1), M = (3, 2), m′ = (1, 1), and M′ = (2, 2).
We can verify that Lemma 3.7(b) holds in this case using the labels in Figure 2:

z11z21z22 + z11z12z22 = bcd f
b+c + b(bd+be+ce) f

b+c = bd f + be f = x21x31x32 + x21x22x32.

We can also verify Lemma 3.7(a) using Figure 3 by noting that US(C
se
m,M) and DS(C

nw
m′,M′)

are the arborescences in the leftmost three columns, which are in bijection via ℵ.

The bijection ℵ is a powerful tool for relating weights of subsets of P with respect to
x and z = ρ̃(x). The general strategy is simple: relate the quantities of interest to the
weights of certain subsets of UP and DP, then show that these subsets are in bijection
via ℵ. In this way, one can easily prove many previously established results about
rowmotion on rectangles as well as further generalizations.

For another example of this, define the left border of the right trapezoid RTr,s to be the
set of elements of the form L = {(ℓ+ r − 1, ℓ) | 1 ≤ ℓ ≤ s}. For p, q ∈ RTr,s, let C L

p,q be
the subset of Cp,q consisting of chains that intersect L.
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Figure 5: The four intermediate posets I4, . . . , I1 lying inside of RT4,4 with M2 high-
lighted in red. The map ζ2 acts on labelings of I3 by applying ρ̃−1

2 inside M2 and
shifting the other entries parallel to the sides.

Lemma 3.9. Let S = RTr,s, and let m′ ⋖ m and M′ ⋖ M such that se(m) = ne(M′) = ∅.

(a) The bijection ℵ restricts to a bijection from US(C
L

m,M) to DS(C
L

m′,M′).
(b) Let x ∈ RS

+ and z = ρ̃−1(x). Then wC L
m,M

(x) = wC L
m′ ,M′

(z).

4 A map between the rectangle and trapezoid

In this section, we use the chain shifting lemmas (Lemmas 3.7 and 3.9) to define a bira-
tional map ζ between labelings of the rectangle Rr,s and trapezoid Tr,s. In the tropical
setting, this map will become a continuous, piecewise-linear, volume-preserving map
between the chain polytopes of these two posets, which can be used to give a bijection
between the plane partitions of Rr,s and Tr,s of height ℓ. To construct ζ, we need to
construct certain intermediate posets as induced subposets of the right trapezoid RTr,s.

Definition 4.1. Let k ≤ s ≤ r be positive integers. The kth intermediate poset Ik = Ir,s,k is
the induced subposet of RTr,s on Tr,k ∪ [(k, k + 1), (r + k − 1, s)].

See Figure 5. Note that the leftmost minimal element of Ik is (k, 1). One can easily
verify that I1 = Rr,s, Is = Tr,s, and |Ik| = rs for all k.

We now define maps ζk : R
Ik+1
+ → R

Ik
+ as follows. Consider the interval Mk =

[(k, 1), (r + k, k + 1)] ⊆ RTr,s. For any x ∈ R
Ik+1
+ , let x̄ ∈ R

Mk
+ be obtained by restrict-

ing x to Mk \ {(k, 1)} ⊆ Ik+1 and setting x̄k,1 to be an arbitrary a ∈ R+ (say, 1). Let
ρ̃k : R

Mk
+ → R

Mk
+ be the antichain rowmotion map on Mk. Then we define ζk(x) ∈ R

Ik
+ by

ζk(x)ij =


ρ̃−1

k (x̄)ij if (i, j) ∈ Ik ∩ Mk = Mk \ {(r + k, k + 1)},
xi+1,j if (i, j) ∈ Ik \ Mk and j > k + 1,
xi,j+1 if (i, j) ∈ Ik \ Mk and i < k.
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Figure 6: Applying ζ2 and then ζ1 to a labeling x of T3,3, resulting in ζ(x).

See Figure 5. One can show that ζk does not depend on the choice of a.
We then define the birational map ζ = ζ1 ◦ ζ2 ◦ · · · ◦ ζs−1 from R

Tr,s
+ to R

Rr,s
+ .

Example 4.2. Figure 6 shows the result of applying ζ = ζ1 ◦ ζ2 to a labeling x ∈ RT
+

when T = T3,3. Note that x13 = c = ζ2(x)12 as this label lies below M2. Similarly
ζ2(x)j+1,3 = ζ(x)j3 for j = 1, 2, 3 as these labels lie above M1.

The key property of ζ that we will need to prove is that ζ preserves the total weight
of all maximal chains. However, this does not hold for the maps ζk unless we restrict to
a certain special class of polygonal chains.

Definition 4.3. A maximal chain C ⊆ Ik ⊆ RTr,s is polygonal if C intersects L (the left
border of RTr,s) or if (k, 1) ∈ C.

Note that all chains in the trapezoid and rectangle are polygonal (when k = s or 1).
The following result relates the weights of polygonal chains under ζk. Since the only

complicated part of ζk occurs inside Mk, it follows readily from Lemmas 3.7 and 3.9.

Proposition 4.4. Let Pk be the collection of polygonal chains in Ik. For x ∈ R
Ik+1
+ , let z = ζk(x).

Then wPk+1(x) = wPk(z).

It is now simple to deduce the following theorem.

Theorem 4.5. Let C and C ′ be the sets of all maximal chains in Tr,s and Rr,s, respectively. Then
for all x ∈ R

Tr,s
+ , wC (x) = wC ′(ζ(x)).
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Figure 7: Example calculation of ζ for r = 5 and s = 4. The top row shows the labelings
of the intermediate posets obtained from x when applying ζ3, ζ2, and ζ1 with entries
in Mk highlighted. The vertical maps show applications of (‡) and (†) on Mk.

4.1 Polytopes and plane partitions

We now examine the consequences of Proposition 4.4 and Theorem 4.5 in the piecewise-
linear case. In this section, we will take all maps to be their piecewise-linear counterparts.
In particular, the definition of ζk inside Mk utilizes the map ρ̃−1 on Mk. By tropicalizing
Proposition 2.4, we can compute z = ρ̃−1(x) via

zp = −max
q⋗p

{yp − yq} = min
q⋗p

{yq} − yp, where (†)

yp = ψ(x)p = max
0̂⋖q1⋖···⋖qn=p

∑
i

xqi . (‡)

Example 4.6. An example calculation of ζ when r = 5 and s = 4 is given in Figure 7. Each
ζk can be computed by applying (‡) and then (†) on Mk. (The minimum element of Mk
is arbitrarily given the label 0, and the label of the maximum element of Mk is discarded
after ζk is applied.) The entries outside of Mk are shifted downward appropriately.

To each intermediate poset Ik ⊆ RTr,s, we can associate a polygonal chain polytope. This
coincides with the chain polytope (as defined by Stanley [21]) when k = 1 or k = s.

Definition 4.7. The polygonal chain polytope C̃(Ik) ⊆ RIk is the set of all R-labelings x =
(xp)p∈Ik such that xp ≥ 0 for all p ∈ Ik, and ∑p∈C xp ≤ 1 for all polygonal chains C ⊆ Ik.

Although C̃(Ik) is a lattice polytope when k = 1 or k = s (when it is an ordinary chain
polytope), this is not true in general. Nevertheless, for fixed r and s, these polytopes all
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Figure 8: Example of the bijection ψ ◦ ζ ◦ ψ−1 obtained by applying ψ to the labelings
in Figure 7. Note that both plane partitions have the same height.

have the same volume and Ehrhart polynomial. In particular, if C̃(Ik) is not a lattice
polytope, then it exhibits period collapse of its Ehrhart quasi-polynomial.

Theorem 4.8. The map ζk : RIk+1 → RIk defines a continuous, piecewise-linear, and lattice-
preserving bijection from ℓ · C̃(Ik+1) to ℓ · C̃(Ik) for all ℓ ∈ Z≥0. Hence, for fixed r and s, the
rational polytopes C̃(Ik) share the same Ehrhart polynomial for all k.

The following corollary then gives a bijective proof of the result of Proctor [19].

Corollary 4.9. The continuous, piecewise-linear map ψ ◦ ζ ◦ ψ−1 : RTr,s → RRr,s defines a bijec-
tion between plane partitions of Tr,s and Rr,s of height ℓ for all ℓ ∈ Z≥0.

Example 4.10. An example application of ψ ◦ ζ ◦ ψ−1 is given in Figure 8 (obtained by
applying ψ to Figure 7). As required, both plane partitions have the same height.

5 Rowmotion equivariance

To prove that the map ζ defined in the previous section is equivariant with respect to
the action of rowmotion ρ̃ (or, equivalently, that ψ ◦ ζ ◦ ψ−1 is equivariant with respect
to ρ), we define a modified version of rowmotion on the intermediate posets Ik that is
respected by the maps ζk.

As above, let k ≤ s ≤ r and consider Ik ⊆ RTr,s. Let Pk denote the set of polygonal
chains in Ik, and let Pk(p) denote the subset of those chains that contain p.

Definition 5.1. For any p ∈ Ik, the (birational) polygonal toggle τ′
p : R

Ik
+ → R

Ik
+ is the

map that changes the p-coordinate of x ∈ R
Ik
+ by xp 7→ wPk(p)(x)−1 while keeping all

other coordinates fixed. The (birational) polygonal rowmotion map ϱ̃k : R
Ik
+ → R

Ik
+ is the

composition ϱ̃k = τ′
L−1(|Ik|)

◦ · · · ◦ τ′
L−1(1) for any linear extension L of Ik.

When k = 1 or s (that is, on the rectangle or trapezoid), the set of polygonal chains is
just the set of all maximal chains, and so ϱ̃k = ρ̃k as shown by Joseph and Roby [15].

We then prove the following theorem.
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Theorem 5.2. The maps ζk : R
Ik+1
+ → R

Ik
+ are equivariant with respect to polygonal rowmotion:

ζk ◦ ϱ̃k+1 = ϱ̃k ◦ ζk.

The proof involves categorizing the possible bottom and top parts of polygonal chains
and expressing their weights using “partial transfer maps”. We then use the bijection ℵ
to formulate and apply chain shifting results for these maps. (This proof requires the
use of subtraction.) The following corollary follows immediately.

Corollary 5.3. Let T = Tr,s and R = Rr,s be the rectangle and trapezoid poset. Then the map
ζ : RT

+ → RR
+ is equivariant with respect to birational (antichain) rowmotion:

ζ ◦ ρ̃T = ρ̃R ◦ ζ.

In particular, birational rowmotion on the trapezoid (ρ̃T or ρT) has order r + s.
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