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Abstract. We consider the moments of statistics on conjugacy classes of colored per-
mutation groups Sn,r = Zr ≀Sn. We first show that any fixed moment of a statistic
coincides on all conjugacy classes when all cycle lengths are sufficiently long. For per-
mutation statistics that can be realized via a process called symmetric extension, we
show that for fixed r, this moment on these conjugacy classes is a polynomial in n.
Hamaker and Rhoades (arXiv, 2022) established analogous results for the symmetric
group as part of their far-reaching representation-theoretic framework. Independently,
Campion Loth, Levet, Liu, Stucky, Sundaram, and Yin (arXiv, 2023) arrived at indepen-
dence and polynomiality results for the symmetric group using instead an elementary
combinatorial framework. Our techniques in this paper build on this latter elementary
approach. Finally, we extend the work of Fulman (J. Comb. Theory Ser. A., 1998), to es-
tablish a central limit theorem for descents in conjugacy classes of the hyperoctahedral
group with sufficiently long cycles.

Keywords: colored permutation, Coxeter group, hyperoctahedral group, moment, per-
mutation constraint, permutation statistic

1 Introduction

For a finite group G, a statistic is a map X : G → R. The distribution of X is the
function (xk), where xk is the number of elements g ∈ G such that X(g) = k (i.e.,
xk := |X−1(k)|). When G is the symmetric group G = Sn, we refer to the statistics as
permutation statistics. The study of permutation statistics is a classical topic in algebraic
combinatorics; Stanley’s texts [16, 17] serve as a key reference in this area.
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In this paper, we build on the elementary methods in [4] to investigate the distribu-
tion of colored permutation statistics by conjugacy class. In contrast to the vast literature
on permutation statistics in Sn, there has been considerably less work on statistics for
arbitrary Coxeter groups or the colored permutation groups Sn,r, i.e., the wreath prod-
uct Zr ≀Sn. We are in particular not aware of work considering colored permutation
statistics on individual conjugacy classes.

When r = 2, the colored permutation group Sn,2 coincides with the hyperoctahedral
group Bn, which is the type B Coxeter group. A study of statistics over the entire Coxeter
group for types B and D was initiated by Reiner, see e.g. [15], and carried further by
Adin and Roichman, see e.g. [1], and Brenti and Carnevale [3]. There is also work on
colored permutation statistics and their distribution, again over the whole group, by
Steingrímsson [18], Fire [7], and Moustakas [13].

Recently, Hamaker and Rhoades [11] established a representation-theoretic frame-
work for permutation statistics on Sn by conjugacy class Cλ. They introduced so-called
local permutation statistics; using representation-theoretic methods, they established that
the moments of these statistics depend only on n and the number of short cycles in λ.
In particular, these moments are independent of the conjugacy class when the cycles in
λ are all sufficiently large.

Independently, and subsequent to the paper [11], Campion Loth, Levet, Liu, Stucky,
Sundaram, and Yin [4] established similar independence and polynomiality results for
conjugacy classes in Sn, using only elementary combinatorial techniques. The present
paper builds on the framework in [4]. The full version of this paper appears in [5].

Main Results. Fix r ≥ 1, and let λ be an r-partition of n. For a statistic X on Sn,r, denote
by Eλ[X] the expected value of X taken over the conjugacy class of Sn,r indexed by λ.
Our main results are as follows:

• Theorem 12 in Section 3.2 shows that for any statistic X, its kth moment coincides
on all conjugacy classes Cλ of Sn,r that do not have "short" cycles. For each statistic
X, making this notion of "short" precise is done through colored permutation con-
straints as given in Definition 4.

• Theorem 20 in Section 3.3 concerns sequences of statistics (Xn)n≥1 on (Sn,r)n≥1 that
can be constructed using symmetric extensions, as described in Definition 19. This
theorem shows that a single polynomial in n gives Eλn [X

k
n] on conjugacy classes

Cλn of Sn,r without "short" cycles. Note that this result applies to many statistics,
including the inversion statistic on Bn defined in (2.2).

• Finally, Theorem 28 in Section 4 establishes asymptotic normality of the descent
statistic on Bn for conjugacy classes with no "short" cycles. Our proof leverages a
generating function of Reiner [15, Theorem 4.1] for the joint distribution of descent
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and major index by cycle type, an analogue of the corresponding generating func-
tion for the symmetric group [10]. The arguments then follow Fulman’s analogous
result for descents on conjugacy classes of Sn [8, Theorem 1 and proof of Theorem
2], but the technical details are nontrivial and require care to execute.

Remark 1. One essential insight in our work was in developing the notion of colored
permutation constraints (see Definition 4). It took considerable effort to arrive at this
definition, and we discuss these technical difficulties in the full version [5, Remark 3.3].
The fact that Theorem 12 and Theorem 20 generalize analogous results on the symmetric
group [11, 4] so cleanly suggests that Definition 4 might in fact be the right notion of
colored permutation constraints.

2 Preliminaries

We recall preliminary notions of colored permutation groups. The colored permutation
group Sn,r is the wreath product [12, Chapter 4] Zr ≀Sn, where Sn is the symmetric
group on n elements and Zr is the cyclic group on r elements. A colored permutation
(ω, τ) ∈ Sn,r can be expressed as an ordered pair consisting of a permutation ω ∈ Sn
along with a function τ : [n] → Zr, where the representative elements of Zr are taken
in {0, . . . , r − 1}. The value τ(j) is called the color of the symbol j, and τ(j) + τ′(j) is
defined as a sum of elements in Zr.

The colored permutation group Sn,r has a canonical embedding as a subgroup of the
symmetric group Srn, which we describe explicitly as follows. Writing [n]r for the set
of rn elements {ij|i ∈ [n], j ∈ {0, 1, . . . , r − 1}} where the exponent indicates the color
of an element in [n], we can also think of the colored permutation (ω, τ) as a bijection
f : [n]r → [n]r defined by f (ij) = ω(i)τ(ω(i))+j for all i, j, where τ(ω(i)) + j is taken
modulo r. In this sense, the coloring of the symbols τ and the underlying permutation
ω are independently specified.

We now turn to discussing the conjugacy class structure of Sn,r. An r-partition of
n ∈ N is an r-tuple of partitions λ = (λj)r−1

j=0 where each λj is a partition of some nj such

that ∑r−1
j=0 nj = n. When r = 2, we also call this a bi-partition. For a cycle in a permutation

in Sn,r, the length of this cycle is the number of elements in it, and the color of this cycle
is the sum of the colors in the cycle, taken modulo r. The cycle type of (ω, τ) ∈ Sn,r is the
r-partition λ = (λj)0≤j≤r−1, where each λj consists of the cycles of color j. Then mi(λ

j)

denotes the number of cycles in λj of length i, and Cλ denotes the elements in Sn,r with
cycle type λ.

Example 2. Let ω ∈ S5 be the permutation specified by ω = [45132] = (143)(25) in one-
line and cycle notation. Let τ = (3, 0, 1, 1, 3). The colored permutation (ω, τ) ∈ S5,4 is
completely specified by the function f : [5]4 → [5]4 satisfying f (i0) = ω(i)τ(ω(i)). Hence
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in two-line, one-line, and cycle notations we have:

(ω, τ) =

(
10 20 30 40 50

41 53 13 31 20

)
= [4153133120] = (134131)(2053).

It has a 3-cycle of color 1 and a 2-cycle of color 3. Its cycle type is thus (∅, (3), ∅, (2)).

The conjugacy classes of Sn,r are well understood in terms of cycle type.

Proposition 3. [12, Theorem 4.2.8, Lemmas 4.2.9-4.2.10] The conjugacy classes of Sn,r are
given by Cλ, where λ is an r-partition of n.

In the special case r = 2, the hyperoctahedral group Sn,2 = Bn can be viewed as the
group of signed permutations, i.e., bijections on [±n] = {±1,±2, . . . ,±n} where positive
and negative elements respectively correspond to colors 0 and 1. In this case, we will
denote bipartitions as (λ, µ) and the corresponding conjugacy class as Cλ,µ.

The type B descent statistic, whose distribution is the subject of Section 4, is then
given by the following definition, with the convention that ω(0) = 0. See [2, Proposition
8.1.2]:

desB(ω) = |{i ∈ {0} ∪ [n − 1] | ω(i) > ω(i + 1)}|. (2.1)

Two other Bn-statistics that will be useful for illustrative purposes are inv and negsum,
defined by (see [2, Equation 8.1 and page 308])

inv= |{(i, j) ∈ [n]× [n] | i < j and ω(i) > ω(j)}|, negsum(ω)= ∑
i∈[n],ω(i)<0

ω(i). (2.2)

Also, the Coxeter length statistic invB is given by the formula [2, Proposition 8.1.1]

invB(ω) = inv(ω)− negsum(ω) (2.3)

We will use the des, inv, and negsum statistics as running examples to illustrate our
work. Results on inv and negsum naturally lead to statements about invB, illustrating
the more general fact that our results behave nicely with statistics that are defined as
linear combinations of other statistics.

Throughout this paper, we will use PrSn,r and Prλ to denote the probabilities in Sn,r
and Cλ (with respect to the uniform measure). We similarly use ESn,r and Eλ for the
expected values on the corresponding probability spaces.

3 Moments of colored permutation statistics

In this section, we will discuss the techniques involved in establishing the independence
result, Theorem 12, and the polynomiality result, Theorem 20.
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3.1 Colored permutation constraints

In this section, we will extend the notion of a permutation constraint from the setting
of the symmetric group to the setting of colored permutations. We compare this to [4,
Definition 7.1] as well as to the work of Hamaker and Rhoades [11], where permutation
constraints are called partial permutations. A colored permutation constraint will have
two components (K, κ). The first, K, will constrain a permutation ω by specifying a
subset of its values. The second component, κ, will assign colors to these values.

Definition 4. Let K = {(i1, j1), . . . , (im, jm)} consist of distinct ordered pairs, where
ih, jh ∈ [n]. Let κ : {j1, . . . , jm} → Zr. We call the pair (K, κ) a colored permutation
constraint, and we call m the size of the constraint. For (ω, τ) ∈ Sn,r, we say that ω

satisfies K if ω(ih) = jh for all h ∈ [m], and we say τ satisfies κ if τ(x) = κ(x) for all
x ∈ {j1, . . . , jm}. Finally we say that (ω, τ) ∈ Sn,r satisfies (K, κ) if ω satisfies K and τ

satisfies κ. We will sometimes denote a constraint as a set of ordered pairs

(K, κ) =
{(

i0
h, jκ(jh)

h

)}m

h=1

recording these conditions, and we sometimes omit set braces for brevity.

Recall from Section 2 that we view the hyperoctahedral group Sn,2 = Bn as the group
of signed permutations. In this case, a constraint is of the form (K, κ) = {(ih, κ(jh)jh)}m

h=1,
where κ(jh) = ±1.

Definition 5. Let C be a set of colored permutation constraints. The size of C is defined
as the maximum size over all constraints contained in C, namely,

size(C) = max
(K,κ)∈C

|K|.

Recall that a colored permutation statistic is simply a map X : Sn,r → R. We now in-
troduce decompositions of colored permutation statistics as weighted sums of indicator
functions corresponding to colored permutation constraints.

Definition 6. A colored permutation statistic X is realizable over a constraint set of size
m if there exists a set of constraints C of size m and weights wt(K, κ) ∈ R such that X =

∑(K,κ)∈C wt(K, κ)I(K,κ), where I(K,κ) is the indicator function that a permutation satisfies
the constraint (K, κ). Note that in general, the decomposition ∑(K,κ)∈C wt(K, κ)I(K,κ) is
not unique.

Example 7. Many statistics have a natural decomposition in terms of constraints. For the
statistics defined on Bn given in Section 2, we have

desB = ∑
j∈[n]

I(1,−j) + ∑
i∈[n−1]

∑
j1,j2∈[±n]

j1<j2

I(i,j2),(i+1,j1),
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inv = ∑
i1,i2∈[n]

i1<i2

∑
j1,j2∈[±n]

j1<j2

I(i1,j2),(i2,j1),

negsum = ∑
i∈[n]

∑
j∈[n]

(−j)I(i,−j).

This shows that desB and inv are realizable over constraint sets of size 2, and negsum is
realizable over a constraint set of size 1. Since invB is the difference of inv and negsum,
we also see that invB is realizable over a constraint set of size 2.

Remark 8. We say that (K, κ) is well-defined if all of the ih ∈ [n] are distinct, and all of the
jh ∈ [n] are distinct. Observe that if (K, κ) is not well-defined, then I(K,κ) is identically 0
on Sn,r, and hence can be omitted from any set realizing a given statistic. Consequently,
we are only interested in well-defined constraints.

3.2 Independence of moments

In this section, we outline the steps leading to the proof of our independence result,
Theorem 12. Our methods follow the strategy of [4, Section 7]. Proofs appear in [5].

Definition 9. A colored permutation constraint (K, κ) is acyclic if K is well-defined and
the graph G(K, κ), with vertex set V = [n] and directed edge set K, does not contain any
cycles. Observe that in this case, G(K, κ) consists of a set of paths.

As a non-example, the size one constraint induced by I(i,−i) from Example 7 is not
acyclic.

Lemma 10. (Compare to Sn, cf. [4, Lemma 7.15]) Consider the group of all r-colored permuta-
tions Sn,r. Let Cλ be a conjugacy class of Sn,r. Let (K, κ) be a well-defined colored permutation
constraint of size m ≤ n, and suppose that each partition in λ has all parts of size at least m + 1.
If K is acyclic, then

Prλ[(ω, τ) satisfies (K, κ)] = 1
(n−1)(n−2)···(n−m)

· 1
rm .

If K is not acyclic, then Prλ[(ω, τ) satisfies (K, κ)] = 0.

One essential observation in proving Lemma 10 is that the permutation and the col-
oring can be treated independently.

Lemma 10 can be used to analyze the first moment of a statistic Eλ[X] by expressing
X in terms of constraints. We need one final lemma to accommodate arbitrary moments
Eλ[Xk] in the main result of this section, Theorem 12.

Lemma 11. Let X1, X2 : Sn,r → R be realizable over constraint sets of size m1, m2 respectively.
Then X1X2 is realizable over a constraint set of size m1 + m2. In particular, for any integer
k ≥ 1, we have that Xk

1 is realizable over a constraint set of size km1.
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This leads to the main theorem of this section.

Theorem 12. Suppose X : Sn,r → R is realizable over a constraint set of size m. For any
k ≥ 1, the kth moment Eλ[Xk] coincides on all conjugacy classes Cλ with no cycles of length
1, 2, . . . , mk.

Note that the above theorem makes precise the notion of “short" cycles. In particular,
if we are considering the kth moment of a statistic X realizable over a constraint set of
size m, then the “short" cycles are the ones of length at most mk.

Remark 13. Note that a colored permutation (ω, τ) is itself a colored permutation con-
straint of size n. Hence, we can express any statistic X using size n constraints. Addi-
tionally, one can show that if X is realizable over a constraint set of size m, then it is also
realizable over a constraint set of size m′ for m ≤ m′ ≤ n. For the full strength of our
results, we are primarily interested in minimizing m, and we call this minimum possible
value the size of X.

Remark 14. The arguments leading to the proof of Theorem 12 have practical appli-
cations for computing moments of statistics on those conjugacy classes. For example,
consider negsum on Bn, which can be expressed as negsum = ∑i∈[n] ∑j∈[n](−j)I(i,−j).
Note that here all constraints are acyclic except for (i,−i). One can then show that for
any bi-partition (λ, µ) of n where all the parts have size at least 2,

Eλ,µ[negsum] = − ∑
i∈[n]

i · Eλ,µ[I(i,−i)]− ∑
i∈[n]

∑
j∈[n]\i

j · Eλ,µ[I(i,−j)]

= − 1
(n − 1) · 2

· ∑
i∈[n]

∑
j∈[n]\i

j = −1
2

(
n + 1

2

)
.

More generally, one can use negsum = ∑i∈[n] ∑j∈[n](−j)I(i,−j) to express negsumk using
constraints of size at most k. On conjugacy classes where all parts have size at least k + 1,
a similar approach as the one above can be used to calculate Eλ,µ[negsumk].

3.3 Symmetric colored permutation statistics

We now turn to extending the notion of a symmetric permutation statistic from [4] to the
colored setting. We begin with some definitions.

Definition 15. The support of a colored permutation constraint (K, κ) = {(i0
r , jκ(jr)

r )}m
r=1

is supp(K, κ) = {i1, . . . , im, j1, . . . , jm}. We emphasize that supp(K, κ) is a set and not a
multiset.
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Definition 16. Consider any colored permutation constraint (K, κ) with support given
by a1 < · · · < as. For any order-preserving injection f : {a1, . . . , as} → [n], define f (K, κ)
to be the constraint

f (K, κ) = ( {( f (i1), f (j1)), . . . , ( f (im), f (jm))}, {κ( f (j1)) = k1, . . . , κ( f (jm)) = km} ).

Definition 17. A set of colored permutation constraints C is symmetric if for all (K, κ) ∈ C
and any order-preserving injection f : supp(K, κ) → [n], we have f (K, κ) ∈ C. A statistic
X is symmetric if it has the form X = ∑(K,κ)∈C I(K,κ) for some symmetric C.

Many statistics naturally satisfy this condition.

Example 18. Consider the statistic inv on Bn that can be realized as

inv = ∑
i,j∈[n]

i<j

∑
k,ℓ∈[±n]

k<ℓ

I{(i,ℓ),(j,k)}.

We denote the constraint set C. If k, ℓ > 0, then for any order preserving f : {i, j, k, ℓ} →
[n], we see that {( f (i), f (ℓ)), ( f (j), f (k))} ∈ C. Note that the set {i, j, k, ℓ} need not
consist of four distinct elements. If k < 0 and ℓ > 0, we see that for any order-preserving
f : {i, j, |k|, ℓ} → [n], we have {( f (i), f (ℓ)), ( f (j),− f (|k|))} ∈ C. The same argument
holds for the case when k, ℓ < 0.

Definition 19. Fix n0 ≥ 2. Let X = ∑(K,κ)∈C I(K,κ) be a symmetric statistic defined on
Sn0,r. Define the r-colored symmetric extensions of X to be the statistics Xn = ∑(K,κ)∈Cn I(K,κ)
on Sn,r with Cn defined as follows:

• If n ≤ n0, then Cn contains all (K, κ) ∈ C with support contained in [n].

• If n ≥ n0, then Cn is the set of all f (K, κ) where (K, κ) ∈ C and f : [n0] → [n] is
order-preserving.

Observe that by construction, each Xn is a symmetric statistic. We emphasize here that r
is kept constant throughout this construction.

Many statistics can be constructed in this manner. For example, if C is the set of
constraints for inv on B4, then this results in the inv statistics on all Bn. In general, the
moments of these statistics satisfy the following polynomial property.

Theorem 20. Fix r ≥ 1. Let (Xn) be the symmetric extensions of a symmetric statistic X = Xn0

on Sn,r induced by a constraint set C of size m. There exists a polynomial pX(n) of degree at
most mk depending only on X such that pX(n) = Eλn [X

k
n] for any r-partition λn of n where all

λ
(j)
n have parts of size at least mk + 1.

Note that one can show this polynomiality property for other statistics that are not
symmetric extensions. The key requirement is that the weights for the various IK be-
have in a way that allows us to divide by the denominators that result from applying
Lemma 10.
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4 Descents in conjugacy classes of hyperoctahedral groups

In this section we discuss the techniques involved in establishing our central limit the-
orem for descents in conjugacy classes of Bn that do not have short cycles. The descent
statistic on Bn was defined in Eqn. (2.1). Let (λ(ω), µ(ω)) denote the cycle type of
ω ∈ Bn, and let mi(λ) denote the number of parts of λ equal to i. While Reiner [15] uses
a different notion of descents, the generating function [9, Theorem 5.3]

∑
ω∈Bn

tdesB(ω) ∏
i

xmi(λ(ω))
i ymi(µ(ω))

i (4.1)

is unaffected.
Following Fulman [8], our approach involves examining the generating function

given in (4.1), which allows us to analyze the generating function for desB on a con-
jugacy class. We then relate this with the generating function for descents on all of Bn.
In the case where there are no short cycles in Cλ,µ, we will ultimately conclude that
certain moments of desB agree on Cλ,µ and Bn, and this in turn enables us to use the
method of moments with a known central limit theorem of Chow and Mansour for desB
on Bn given below.

Proposition 21. [6, Thm 3.4] Let Xn be desB defined on Bn. Then Xn has mean n/2 and vari-
ance (n + 1)/12, and as n → ∞, the standardized random variable (Xn − n/2)/

√
(n + 1)/12

converges to a standard normal distribution.

We will need the well-known generating function of desB over all of Bn.

Proposition 22. [14, Eqn. (13.3)] Let Bn(t) = ∑ω∈Bn tdesB(ω)+1. Then

Bn(t)
(1 − t)n+1 = ∑

k≥1
(2k − 1)ntk.

We now analyze (4.1), which will allow us to derive an expression for the generating
function of desB on a conjugacy class Cλ,µ. The following expression features promi-
nently in our analysis.

Definition 23. [15] Let µ(d) be the number-theoretic Möbius function. Define, for non-
negative integers r and m,

N(r, 2m) =
1

2m ∑
d|m

d odd

µ(d)
(

rm/d − 1
)

.

Reiner [15, Theorem 4.1, Theorem 4.2] shows that N(2k − 1, 2m) must be a nonnega-
tive integer for all k, m ≥ 1.

For a fixed bi-partition (λ, µ) of n, we use the special case of [15, Theorem 4.1] appear-
ing in [9, Theorem 5.3] to derive the following expressions for the generating function
Bλ,µ(t) = ∑ω∈Cλ,µ

tdesB(ω)+1 of descents over the conjugacy class Cλ,µ.
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Proposition 24. Let λ = (1m1(λ), 2m2(λ), . . .) and µ = (1m1(µ), 2m2(µ), . . .). Then the following
are equal to Bλ,µ(t)/(1 − t)n+1:

tδ((1n),∅) + ∑k≥2 tk
(

∏i≥1 (
N(2k−1,2i)

mi(µ)
) ∏i≥2 (

N(2k−1,2i)+mi(λ)−1
mi(λ)

)
)
(N(2k−1,2)+m1(λ)

m1(λ)
)

= tδ((1n),∅) + ∑k≥2 tk m1(λ)+k−1
k−1 ∏i≥1 (

N(2k−1,2i)−1+mi(λ)
mi(λ)

)(N(2k−1,2i)
mi(µ)

).

Here δ((1n),∅) is the Kronecker delta which is 1 for the conjugacy class λ, µ = ((1n), ∅), and zero
otherwise.

By solving for Bλ,µ and extracting the coefficient of td, we also obtain the following
corollary.

Corollary 25. The number of permutations ω ∈ Bn that are of cycle type (λ, µ) and have d − 1
descents is

∑d
k=1(−1)d−k(n+1

d−k)(
m1(λ)+k−1

m1(λ)
)∏i≥2 (

N(2k−1,2i)+mi(λ)−1
mi(λ)

)∏i≥1 (
N(2k−1,2i)

mi(µ)
).

We now give an elegant analogue of a result of Fulman [8, Proof of Theorem 2], which
will relate Bλ,µ(t) and Bn(t).

Theorem 26. Let Cλ,µ be the conjugacy class of Bn indexed by the bi-partition (λ, µ) of n, let
Bn(t) = ∑ω∈Bn tdesB(ω)+1, and let Bλ,µ(t) = ∑ω∈Cλ,µ

tdesB(ω)+1. Then

Bλ,µ(t)
|Cλ,µ|

=
Bn(t)
2nn!

+
1 − t

2n
Bn−1(t)

2n−1(n − 1)!
[m1(λ)

2 − m1(µ)
2] + (1 − t)2g(t),

where g(t) is some polynomial in t. Furthermore, when all cycles in Cλ,µ have length larger than
2k,

Bλ,µ(t)
|Cλ,µ|

=
Bn(t)
2nn!

+ (1 − t)k+1h(t),

where h(t) is some polynomial in t.

The latter case allows us to obtain the following result involving moments of desB on
Bn and Cλ,µ.

Corollary 27. Let Cλ,µ be the conjugacy class of Bn indexed by the bi-partition (λ, µ) of n. The
kth moment of desB in Cλ,µ is equal to the kth moment of desB in Bn if all cycles in Cλ,µ have
length greater than 2k.

The main result of this section, Theorem 28, now follows by applying Corollary 27,
the method of moments, and the asymptotic normality theorem for descents in Bn given
in Proposition 21.
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Theorem 28. For every n ≥ 1, pick a conjugacy class Cλn,µn in Bn indexed by the bi-partition
(λn, µn) of n, where λn = (1m1(λn), 2m2(λn), . . .) and µn = (1m1(µn), 2m2(µn), . . .). Define Xn
to be desB on Cλn,µn . Suppose that for all i, mi(λn) → 0 and mi(µn) → 0 as n → ∞. For
sufficiently large n, Xn has mean n/2 and variance (n + 1)/12. Furthermore, as n → ∞, the
random variable (Xn − n/2)/

√
(n + 1)/12 converges to a standard normal distribution.

5 Conclusion

In this paper, we have introduced a notion of constraints and size for any colored per-
mutation statistic X : Sn,r → R, and we have used this framework to study the moments
of X on conjugacy classes Cλ. In particular, we have established that for a statistic of
size m, the kth moment on Cλ is independent of conjugacy class Cλ when all parts of the
partitions in λ have length at least mk + 1. For statistics on Sn,r that can be expressed as
symmetric extensions, these moments are polynomials in n. Our results directly gener-
alize those in [4] on Sn. Given the numerous connections to [11], one natural problem is
the following.

Problem 29. Use the representation theory of Bn and Sn,r to establish analogues of the
results in [11].

Finally, we note that Sn and Bn are respectively the type A and type B Coxeter
groups. The following is a natural problem to consider next.

Problem 30. Establish analogues of the results in this paper for the type D Coxeter
groups.

It would also be of interest to establish analogous results for (irreducible) complex
reflection groups.
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