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Abstract. We produce the first regular unimodular triangulation of an arbitrary ma-
troid base polytope. We then extend our triangulation to integral generalized per-
mutahedra. Prior to this work it was unknown whether each matroid base polytope
admitted a unimodular cover.
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1 Introduction

Despite considerable interest, very little is known about triangulations of matroid base
polytopes. There are a few motivations for wanting to have nice triangulations of ma-
troid base polytopes. The first motivation comes from White’s conjecture whose weakest
version states that the toric ideal of a matroid base polytope is quadratically generated
[34][26]. Herzog and Hibi asked whether the toric ideal of every matroid base polytope
has a quadratic Gröbner basis [20]. It follows by a result of Sturmfels [33] combined
with an observation of Ohsugi and Hibi [27] that the existence of a quadratic Gröbner
basis is equivalent to the existence of a quadratic triangulation, i.e. a regular unimodular
flag triangulation. The existence of a quadratic triangulation is known for base sortable
matroids, e.g. positroids [31, 33, 6, 24, 25]. For transversal matroids, a result of Conca
[9] establishes that the toric ring is Koszul, which is stronger than quadratic generation
of the toric ideal but weaker than a quadratic triangulation.

The second motivation comes from Ehrhart theory. A formula for the volume of a
matroid base polytope was calculated by Ardila–Doker–Benedetti [1], but no formula is
currently known which is cancellation free, i.e. involves no subtraction. If a polytope
P admits a unimodular triangulation T , then the volume of P is equal to the number
of maximal simplices in T . The volume of a polytope occurs as the leading coefficient
of the Ehrhart polynomial. Several researchers have investigated Ehrhart polynomials
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for matroid base polytopes [8][21] [16] largely motivated by the conjecture of De Loera–
Haws–Köppe [11] that matroid base polytopes are Ehrhart positive—this conjecture was
recently disproven by Ferroni [13], but various other questions about these polynomials
remain open. The volume of a polytope P is also given by the evaluation of the h∗-
polynomial at 1. Another conjecture by De Loera–Haws–Köppe, which remains open, is
that the h∗-vectors of matroid base polytopes are unimodal [11]. Ferroni further conjec-
tures that the h∗-polynomial of a matroid polytope (more generally an integral general-
ized permutahedron) is real-rooted [16, 14]. It has been conjectured that if a polytope P
has the integer decomposition property (is IDP), then P has a unimodal h∗-vector [30],
and it is known that every matroid base polytope is IDP [20]. We note that the property
of admitting a unimodular triangulation is strictly stronger than the property of being
IDP [7]. We refer the reader to [15] for a comprehensive survey of results in this area. It
is known that the h∗-vector of a polytope is equal to the h-vector of any unimodular tri-
angulation of the polytope [32][5], thus one might hope that such a triangulation could
shed some light on this conjecture.

A natural question which sits in between these various results and conjectures is
whether each matroid base polytope admits a (not necessarily flag) regular unimodular
triangulation. That the matroid base polytope admits a (not necessarily regular) uni-
modular triangulation was conjectured by Haws in their 2009 thesis [19]. In this paper
we give an affirmative answer to this question by providing a regular unimodular tri-
angulation of an arbitrary matroid base polytope. We then apply this result to produce
a regular unimodular triangulation of an arbitrary integral generalized permutahedron,
and explain how this gives a regular unimodular triangulation of the matroid indepen-
dence polytope. We emphasize that prior to this work it was unknown whether every
matroid base polytope admitted a unimodular cover (this was also conjectured by Haws
[19]) let alone a unimodular triangulation. Our construction produces many different
triangulations, but at the time of writing we do not know if any of them are flag. We in-
vite other researchers to try their hand at applying our triangulation to the topics above.
See Remark 3.6.

2 Preliminaries

We recommend the following texts for an introduction to matroids [28], polytope theory
[35], and triangulations [10][18]. Let [n] denote the set of integers {1, . . . , n}. Given
S ⊆ [n] we will employ the notation xS := ∑i∈S xi. We identify {0, 1}n with the collection
of all subsets of [n]. We denote the standard basis vectors for Rn by ei for 1 ≤ i ≤ n.

Definition 2.1. A matroid is a pair M = (E,B) where E is a finite set called the ground
set, and B is a nonempty collection of subsets of E called the bases which satisfy the
following basis exchange condition:
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• For any B1, B2 ∈ B and x ∈ B1 \ B2, there exists some y ∈ B2 \ B1 such that
(B1 \ {x}) ∪ {y} ∈ B.

A set I ⊆ E is independent if there exists some basis B ∈ B such that I ⊆ B. The
collection of independent sets is denoted I . The rank of a set S ⊆ E, written r(S), is the
maximum cardinality of an independent set contained in S.

Matroid independence polytopes and the matroid base polytopes were introduced
by Edmonds [12].

Definition 2.2. Given a matroid M on ground set E = [n], the matroid base polytope PM is
the convex hull of the indicator vectors for the bases of M, and the matroid independence
polytope PI is the convex hull of the indicator vectors of the independent sets. More
explicitly, given S ⊆ E, we define the indicator vector χS ∈ Rn by

χS(i) =

{
1 i ∈ S
0 i /∈ S

Thus PM = conv{χB : B ∈ B} and PI = conv{χI : I ∈ I}.

The matroid base polytope is the distinguished face of the matroid independence
polytope where the sum of the coordinates is maximized. The matroid independence
polytope will be discussed at the end of this article (see Corollary 3.4).

Gelfand–Goresky–MacPherson–Serganova uncovered a connection between matroid
base polytopes and the geometry of the Grassmannian [17]. They showed that torus orbit
closure of a linear space L in the Grassmannian is a normal toric variety whose weight
polytope is the matroid base polytope PM(L), where M(L) is the matroid determined
by L. See Katz [22] for an overview of this story. By standard toric theory, our regular
unimodular triangulation of PM gives a projective Crepant resolution of the toric variety
associated to the cone over a matroid base polytope.

Matroid bases polytopes allow for a polytopal characterization of matroids.

Theorem 2.3. [12][17] A polytope P is a matroid base polytope for some matroid M if and only
if P is a 0-1 polytope whose edge directions are of the form ei − ej.

Polymatroids are a generalization of matroids described by monotonic submodular
fuctions taking values in the nonnegative reals. Their base polytopes are equivalent
by translation to the generalized permutahedra of Postnikov [29]. See [2] for a careful
treatment of the following definition.

Definition 2.4. A generalized permutahedron P ⊆ Rn is a polytope defined by any one of
the following equivalent conditions:

1. The edge directions for P are all of the form ei − ej,
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2. The normal fan of P is a coarsening of the braid arrangement,

3. P is defined by inequalities xS ≤ f (S) where f : {0, 1}n → R is a submodular
function, together with a single equation x[n] = f ([n]).

An integral generalized permutahedron P is a generalized permutahedron whose vertices
have integer coordinates. The following is well-known, and follows from the unimodu-
larity of the set of primitive ray generators of each chamber in the braid arrangement.

Lemma 2.5. Let P be a generalized permutahedron determined by a submodular function f as in
condition (3) of Definition 2.4. If f is an integer-valued function then P is an integral generalized
permutahedron. Moreover, if P is an integral generalized permutahedron then f may be chosen
to be integer-valued.

In our proof, we will use condition (2) from Definition 2.4 as this allows us to describe
the affine span of a face of a matroid base polytope.

Lemma 2.6. Let P be an integral generalized permutahedron and aff(P) its affine span. Then

aff(P) =
j⋂

i=1

{xSi = bi}

for some flag of subsets ∅ = S0 ⊊ S1 ⊊ · · · ⊊ Sj = [n] and some bi ∈ Z.

We note that when P is a matroid base polytope, the bi in the lemma above is equal
to the rank of the set Si viewed as a subset of the ground set of the matroid.

Definition 2.7. A subdivision of a polytope P is a collection of polytopes S = {P1, . . . , Pk}
such that

1.
⋃k

i=1 Pi = P

2. for each Pi ∈ S and F a face of Pi, there exists some j such that F = Pj

3. for any i and j with 1 ≤ i, j ≤ k, the intersection Pi ∩ Pj is a face of both Pi and Pj.

A maximal polytope in S is a cell of S .

Definition 2.8. A triangulation of a polytope P is a subdivision T = {T1, . . . , Tk} of P
such that each polytope Ti is a simplex.

Definition 2.9. Let P ⊂ Rn be a polytope and S a finite subset of P containing the vertices
of P. Given a function f : S → R, the subdivision induced by f is the subdivision of P
formed by projecting the lower faces of the polytope

conv{(x, f (x)) : x ∈ S} ⊂ Rn+1.

A subdivision is regular if it is induced by some function f .
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Given a set S ⊆ Rn, let aff(S) denote the affine span of S. Let lin(S) denote the linear
subspace of Rn with the same dimension and parallel to aff(S).

Definition 2.10. A lattice simplex T is unimodular if it has normalized volume 1. Equiv-
alently, if T has vertices v0, . . . , vn ∈ Zn, then T is unimodular whenever a maximal
linearly independent set of edge vectors {vi − vj} form a lattice basis for lin(T) ∩ Zn.

Definition 2.11. The resonance arrangement An is the hyperplane arrangement in Rn con-
sisting of all hyperplanes HS = {x ∈ Rn : xS = 0} where ∅ ⊊ S ⊆ [n].

For an introduction to the resonance arrangement (also called the all subsets arrange-
ment) we refer the reader to [23]. A flat of a hyperplane arrangement H is an intersection
of hyperplanes in H.

Definition 2.12. We say that an affine functional ℓ : Rn → R is generic if it is non constant
on each positive dimensional flat of the resonance arrangement.

We note that a generic point p on the n-th moment curve

Cn = {(t, t2, . . . , tn) : t ∈ R}

produces a generic linear functional x 7→ ⟨x, p⟩.

3 A deletion-contraction triangulation

In this section we establish the main result of this paper.

Theorem 3.1. Every matroid base polytope has a regular unimodular triangulation.

Before providing a proof, we briefly give some context for our construction. Two
fundamental operations on a matroid are the deletion and contraction of an element,
and many important constructions in matroid theory proceed by an inductive appeal to
these operations. If e is a loop or coloop, then the matroid base polytope PM is translation
equivalent to PM/e and PM\e. If e is neither a loop nor a coloop then PM is the convex
hull of PM/e and PM\e. In this way, our recursive construction fits into the paradigm of
deletion-contraction.

Let M = (E,B) be a matroid with ground set E = [n], and PM ⊂ Rn its matroid
base polytope. We will use verti(PM) to denote the vertices of PM. We show PM has a
unimodular triangulation by induction on n. If n = 1, then PM is a point and we are
done.

Assume n ≥ 2. Let P0 and P1 be the polytopes in Rn−1 such that P0 × {0} = PM ∩
{x1 = 0} and P1 × {1} = PM ∩ {x1 = 1}. Note that P0 or P1 may be empty, which occurs
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if 1 is a loop or coloop. If P0 is nonempty then it is the matroid base polytope of M \ 1,
and if P1 is nonempty then it is the matroid base polytope of M/1.

By the inductive hypothesis, P0 and P1 have regular unimodular triangulations. (We
assume an empty polytope has a regular unimodular triangulation induced by a function
with empty domain.) Let f0 : verti(P0) → R and f1 : verti(P1) → R be functions which
induce these triangulations. Let ℓ0, ℓ1 : Rn−1 → R be affine functionals such that ℓ0 − ℓ1
is generic. Let ϵ > 0 be sufficiently small, and define f : verti(PM) → R to be the
function

f (x) =

{
ℓ0(x2, . . . , xn) + ϵ f0(x2, . . . , xn) if x1 = 0
ℓ1(x2, . . . , xn) + ϵ f1(x2, . . . , xn) if x1 = 1.

In our full paper [4], we prove that f induces a unimodular triangulation of PM.
The following theorem is more explicit version of Theorem 3.1.

Theorem 3.2. Let P ∈ Rn be a matroid base polytope. For each string s ∈ ⊔n−1
k=1{0, 1}k, let ℓs :

Rn−|s| → R be an affine functional, where |s| is the length of s. Assume that ℓs′0 − ℓs′1 is generic
for all strings s′. Then for 1 ≫ ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵn−1 > 0, the function f : verti(P) → R

defined by

f (x) =
n−1

∑
k=1

ϵkℓx1...xk(xk+1, . . . , xn)

induces a regular unimodular triangulation on PM.

Proof. This is obtained by unwinding the induction in the proof of Theorem 3.1.

We now explain how to extend our triangulation to all integral generalized permuta-
hedra.

Corollary 3.3. Every integral generalized permutahedron has a regular unimodular triangula-
tion.

Proof. Let P ∈ Rn be an integral generalized permutahedron. By translating P if nec-
essary, we may assume without loss of generality that there is some positive integer R
such that P ⊂ {x : 0 ≤ xk ≤ R for all 1 ≤ k ≤ n}. It is known that dicing P by the
hyperplanes {xk = c} where c and k are integers with 1 ≤ k ≤ n and 0 ≤ c ≤ R gives a
regular integral subdivision X of P, and every cell of the subdivision is a translation of
a matroid base polytope1. Let g : P ∩ Zn → R be a function which induces X .

For each s ∈ ⊔n−1
k=1{0, . . . , R}k, choose an affine functional ℓs : Rn−|s| → R so that

ℓs′i − ℓs′(i+1) is generic for all strings s′ and integers i. For 1 ≫ ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵn−1 >
0, define the function f : P ∩ Zn → R by

f (x) = g(x) +
n−1

∑
k=1

ϵkℓx1...xk(xk+1, . . . , xn).

1 This can be verified by appealing to the submodularity description of generalized permutahedra,
Lemma 2.5, and Theorem 2.3.
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Then f induces a subdivision of P which refines X . Moreover, by Theorem 3.2, the
restriction of f to each cell of X induces a unimodular triangulation.

Corollary 3.4. Every matroid independence polytope has a regular unimodular triangulation.

Proof. Each matroid independence polytope PI is unimodularily equivalent to an in-
tegral generalized permutahedron: given a point v = (v1, . . . vn) ∈ PI , let ψ(v) =
(v0, v1, . . . vn) ∈ Rn+1, where v0 = r(E) − ∑n

i=1 vi. The map ψ is unimodular and its
image is an integral generalized permutahedron2. We can apply our triangulation to
ψ(PI) and then map this triangulation back to PI to obtain a regular unimodular trian-
gulation of the latter.

Example 3.5. We provide an example of our triangulation for the cycle matroid of the
complete graph K4. Let verti(K4) = {v0, v1, v2, v3}. To simplify notation we denote the
edges of K4 by integers:

v0v1 = 0, v1v2 = 1, v0v1 = 2, v1v3 = 3, v0v3 = 4, v2v3 = 5.

The bases are in the following order:

0. {0 1 3}

1. {1 2 3}

2. {1 3 4}

3. {0 1 4}

4. {0 1 5}

5. {1 2 5}

6. {1 4 5}

7. {1 2 4}

8. {0 2 4}

9. {2 3 4}

10. {0 2 3}

11. {0 2 5}

12. {2 3 5}

13. {0 3 5}

14. {3 4 5}

15. {0 4 5}

We take the height function described in Theorem 3.2 as follows: if s is a string ending
is 0, the function ℓs is 0. If a string ends in 1, and the string has length k, the function
ℓs = (−3n−k−1,−3n−k−2, . . . , 1). The cells of the associated triangulation are

{3 7 8 9 12 14}
{3 5 7 8 12 14}
{3 5 6 7 8 14}
{3 5 8 11 12 14}
{3 5 6 8 11 14}
{3 4 6 11 14 15}

{3 4 5 6 11 14}
{3 4 5 11 12 14}
{3 6 8 11 14 15}
{0 3 8 11 14 15}
{0 3 4 5 11 12}
{0 3 4 5 12 14}

{0 3 4 11 12 14}
{0 3 4 5 6 14}
{0 3 4 11 14 15}
{0 4 11 12 13 14}
{0 4 11 13 14 15}
{0 3 5 8 11 12}

2 It is implicit in [3] that the independence polytope is unimodularily equivalent to a generalized per-
mutahedron.
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{0 3 8 11 12 14}
{0 3 5 6 7 14}
{0 10 11 12 13 14}
{0 8 10 11 14 15}
{0 8 10 11 12 14}
{0 8 9 10 12 14}
{0 10 11 13 14 15}
{0 3 5 7 12 14}

{0 3 5 7 8 12}
{0 2 3 6 7 14}
{0 2 3 7 9 14}
{0 1 7 9 10 12}
{0 1 5 7 10 12}
{0 5 8 10 11 12}
{0 7 8 9 10 12}
{0 5 7 8 10 12}

{0 1 2 6 7 14}
{0 1 2 7 9 14}
{0 1 7 9 12 14}
{0 1 5 7 12 14}
{0 1 5 6 7 14}
{0 3 7 9 12 14}
{0 3 8 9 12 14}
{0 3 7 8 9 12}.

Remark 3.6. The authors, Matt Larson, and Sam Payne attempted to apply the construc-
tion of this article to produce quadratic triangulations of graphic matroid base polytopes,
i.e. spanning tree polytopes. We convinced ourselves that it not possible to do so us-
ing only ℓs above which are exponential. We welcome others to attempt to apply our
triangulation to White’s conjecture.
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