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Abstract.

For each integer partition λ ⊢ n we give a simple combinatorial expression for the sum
of the Jack character θλ

α over the integer partitions of n with no singleton parts. For
α = 1, 2 this gives closed forms for the eigenvalues of the permutation and perfect
matching derangement graphs, resolving an open question in algebraic graph theory.
A byproduct of the latter is a simple combinatorial formula for the immanants of the
matrix J − I where J is the all-ones matrix, which might be of independent interest.
Our proofs center around a Jack analogue of a hook product related to Cayley’s Ω–
process in classical invariant theory, which we call the principal lower hook product.

Keywords: Symmetric Functions, Jack Polynomials, Derangements, Algebraic Graph
Theory, Young Tableaux, Umbral Calculus.

1 Introduction

Let λ ⊢ n be an integer partition and consider the power sum expansion of the Jack
polynomials, i.e., Jλ = ∑µ⊢n θλ

α (µ)pµ [32]. The θλ
α ’s are often called the Jack characters

because they are a deformation of a normalization of the irreducible characters χλ of the
symmetric group Sn. In particular, the Jack polynomials at α = 1, 2 recover the integral
forms of the Schur and Zonal polynomials respectively. These specializations have been
widely studied in algebraic combinatorics due to their connections with Sn and the set
M2n of perfect matchings of the complete graph K2n, but for arbitrary α ∈ R many open
questions remain [2, 32, 22]. This state of affairs has led to an investigation of the
Jack characters since they provide dual information about Jack polynomials that may
shed light on these open questions; however, the dual path towards understanding Jack
polynomials is paved with its own conjectures [10, 16, 17]. We make some progress in
this vein by taking sums of θλ

α (µ)’s rather than single θλ
α (µ)’s.

Let fp(µ) be the number of singleton parts of µ. Define the λ-Jack derangement sum

ηλ
α := ∑

µ⊢n
fp(µ)=0

θλ
α (µ)
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to be the sum of the Jack character θλ
α over the derangements, i.e., partitions µ ⊢ n with

no singleton parts. To motivate this definition, recall that if λ ⊢ n is the cycle type of a
permutation π ∈ Sn, then π is a derangement if and only if fp(λ) = 0. Let Dn ⊆ Sn be the
set of derangements of Sn. One can show that ηλ

1 is a scaled character sum over Dn, i.e.,

ηλ
1 = ∑

µ⊢n
fp(µ)=0

θλ
1 (µ) = ∑

µ⊢n
fp(µ)=0

|Cµ|
χλ(1)

χλ(µ) =
1

χλ(1) ∑
π∈Dn

χλ(π)

where Cµ ⊆ Sn is the conjugacy class corresponding to µ ⊢ n. For α = 2, an analogous
result holds for the so-called perfect matching derangements of M2n (see [18], for example).
We are unaware of combinatorial models for α ̸= 1, 2, but it is natural to view ηλ

α as the
α-analogue of the character sum over derangements, which is our main focus.

While little is known about the Jack derangement sums for arbitrary α ∈ R, the α =
1, 2 cases have received special attention in algebraic graph theory because they are in
fact the eigenvalues of the so-called derangement graphs. The set {ηλ

1 }λ⊢n is the spectrum
of the permutation derangement graph: Γn,1 := (Sn, E) where πσ ∈ E ⇔ σπ−1 ∈ Dn, i.e.,
the normal Cayley graph of Sn generated by Dn. See [7, Ch. 14] or [29] for more details
on the permutation derangement graph. The set {ηλ

2 }λ⊢n is the spectrum of the perfect
matching derangement graph: Γn,2 := (M2n, E) where mm′ ∈ E ⇔ m ∩ m′ = ∅. For more
details on the perfect matching derangement graph, see [7, Ch. 15] or [18].

These graphs made their debut in Erdős–Ko–Rado combinatorics, a branch of extremal
combinatorics that studies how large families of combinatorial objects can be subject to
the restriction that any two of its members intersect. By design, the independent sets (sets
of vertices that are pairwise non-adjacent) of Γn,α are in one-to-one correspondence with
the so-called intersecting families of permutations and perfect matchings for α = 1, 2, and
the spectra of these graphs have been used to give tight upper bounds and characteriza-
tions of the largest intersecting families of Sn and M2n. We refer the reader to [7] for a
comprehensive account of algebraic techniques in Erdős–Ko–Rado combinatorics.

The derangement graphs are interesting in their own right since they are natural
analogues of the celebrated Kneser graph, a cornerstone of algebraic graph theory [9].
Because the algebraic combinatorics of permutations and perfect matchings are more
baroque than that of subsets, the eigenvalues of the derangement graphs have proven to
be far more challenging to understand. We briefly overview the results in this area.

The first non-trivial recursion for the eigenvalues of the permutation derangement
graph was derived by Renteln [29] using determinantal formulas for the shifted Schur
functions [26], which he used to calculate the minimum eigenvalue of the permutation
derangement graph. Using different techniques, Ellis [5] later computed the minimum
eigenvalue of the permutation derangement graph. Deng and Zhang [4] determined the
second largest eigenvalue. In [13], Ku and Wales investigated some interesting properties
of the eigenvalues of the permutation derangement graph. In particular, they proved
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The Alternating Sign Theorem, namely, that sgn ηλ
1 = (−1)|λ|−λ1 for all λ, and they offered

a conjecture on the magnitudes of the eigenvalues known as the Ku–Wales Conjecture.
In [14], Ku and Wong proved this conjecture by deriving another recursive formula using
shifted Schur functions that led to a simpler proof of the Alternating Sign Theorem.

It was soon noticed that the algebraic properties of the perfect matching derangement
graph parallel those of the permutation derangement graph. The minimum eigenvalue
of the perfect matching derangement graph was computed by Godsil and Meagher [8]
and later by Lindzey [19, 20]. An analogue of the Alternating Sign Theorem was conjec-
tured in [18, 7] which was recently proven by both Renteln [30] and Koh et al [12]. In
an earlier effort to prove this conjecture, Ku and Wong [15] give recursive formulas for
ηλ

2 and a few closed forms for select shapes. In [31], Srinivasan gives more computation-
ally efficient formulas for the eigenvalues of the perfect matching derangement graph.
Godsil and Meagher ask whether an analogue of the Ku–Wales conjecture holds for the
perfect matching derangement graph [7, pg. 316]. The latter has remained open since
the eigenvalues of the perfect matching derangement graph have defied nice recursive
expressions akin to permutation derangement graph. This is because the aforemen-
tioned determinantal formulas for shifted Schur functions do not exist for shifted Zonal
polynomials or shifted Jack polynomials.

The main shortcoming of the known eigenvalue formulas for the derangement graphs
is that they cannot be evaluated efficiently, i.e., they lack “good formulas". Indeed,
finding closed forms was deemed a difficult open problem [7, pg. 316], perhaps due to
the formal hardness of evaluating the irreducible characters of the symmetric group [28,
11, 27]. Our results show that good formulas do in fact exist.

To state our main results we need a few definitions. Let hλ
∗ (i, j) := αaλ(i, j) + lλ(i, j) +

1 be the lower hook length of the cell (i, j) ∈ λ where aλ(i, j) and lλ(i, j) denote arm length
and leg length respectively. We define H1

∗(λ) := hλ
∗ (1, 1)hλ

∗ (1, 2) · · · hλ
∗ (1, λ1) to be the

principal lower hook product of the integer partition λ. For α = 1, the lower hook length
is just the usual notion of hook length, in which case we call H1

∗(λ) the principal hook
product. Note that the principal hook product for λ = (n) is simply n!.

It turns out that the principal hook product for arbitrary λ arises naturally in classical
invariant theory, namely, in the evaluation of a differential operator known as Cayley’s Ω–
process (see [3]). Independently, Filmus and Lindzey [6] observe a similar phenomenon
in their study of harmonic polynomials on perfect matchings, wherein they show that
the principal lower hook product appears in the evaluation of a family of differential
operators acting polynomial spaces associated with perfect matchings. From the results
of [6], we show in Section 3 that the principal hook product H1

∗(λ) counts an interesting
class of colored permutations Sλ, defined as follows.

For each i ∈ [n] := {1, 2, . . . , n}, we assign a list of colors L(i) ⊆ [m] for some m ∈ N.
We define a colored permutation (c, σ) to be an assignment of colors c = c1, c2, . . . , cn such
that ci ∈ L(i) and a permutation σ ∈ Sym([n]) such that σ(i) = j ⇒ ci = cj, i.e., each
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cycle of the permutation is monochromatic. Any partition λ defines a color list on each
element i of the symbol set [λ1] by setting L(i) := [λ′

i] where λ′ denotes the transpose
or conjugate partition of λ. We define Sλ to be the set of all such colored permutations,
formally, Sλ := {(c ∈ [λ′

1]× · · · × [λ′
λ1
], σ ∈ Sλ1) : σ(i) = j ⇒ ci = cj for all i ∈ [λ1]}.

We say that a colored permutation (c, σ) ∈ Sλ is a derangement if σ(i) = i ⇒ ci ̸= 1
for all 1 ≤ i ≤ λ1. In other words, these are the colored permutations that have no
colored cycles in common with (1, . . . , 1, ()) ∈ Sλ. Let Dλ be the set of derangements
of Sλ, and let Dλ

k be the set of derangements of Sλ with exactly k disjoint cycles. We
define Dλ := |Dλ| and dλ

k := |Dλ
k |, so that Dλ = dλ

1 + dλ
2 + · · ·+ dλ

λ1
. For any α ∈ R, let

Dλ
α := ∑λ1

k=1 dλ
k αλ1−k be the λ-Jack derangement number. Our first main result is Theorem 1,

that the Jack derangement sums equal the Jack derangement numbers (up to sign).

Theorem 1. For all α ∈ R, we have ηλ
α = (−1)|λ|−λ1 Dλ

α

Theorem 1 gives cleaner and more general proofs of all the previous results on the
derangement graphs.

Corollary 1 (Alternating Sign Theorem). For all α ≥ 0, we have sgn ηλ
α = (−1)|λ|−λ1 .

Corollary 2 (Ku–Wales Theorem). For all µ, λ ⊢ n such that µ1 = λ1 and α ≥ 0, we have
µ ⊴ λ ⇒ |ηµ

α | ≤ |ηλ
α |.

Setting α = 2 in Corollary 2 answers Godsil and Meagher’s question on the Ku–Wales
conjecture for the perfect matching derangement graph [7, pg. 316].

Corollary 3. For all α ≥ 1 and n ≥ 6, we have (n) = arg maxλ⊢n ηλ
α , (n − 1, 1) =

arg minλ⊢n ηλ
α , and (n − 1, 1) = arg max λ⊢n

λ ̸=(n)
|ηλ

α |.

Our second main result is a closed-form expression for the eigenvalues of Γn,1 and Γn,2.

This work can be seen as a companion paper to [21], where less explicit but more general
formulas for a variety of different "disjointness" and derangement graphs are given.

2 Shifted Jack Polynomials

We overview standard terminology associated with Jack polynomials. For any cell
(i, j) ∈ λ, the leg length lλ(i, j) of (i, j) is the number of cells below (i, j) in the same col-
umn of λ, and the arm length aλ(i, j) of (i, j) is the number of cells to the right of (i, j) in
the same row of λ, i.e., aλ(i, j) = |{(i, k) ∈ λ : k > j}| and lλ(i, j) = |{(k, j) ∈ λ : k > i}|.
Note that arm length and leg length remain well-defined even when λ is replaced by a
set of cells that does not form an integer partition. Let hλ

∗ (i, j) := αaλ(i, j) + lλ(i, j) + 1
and h∗λ(i, j) := α(aλ(i, j) + 1) + lλ(i, j) be the lower hook length and upper hook length of
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Figure 1: Let µ = (4, 3, 2) ⊢ 9. The colored cells S = {(2, 1), (1, 2), (2, 3), (1, 4)} on
the left is a 4-transversal of µ with α-weight wα(S) = (α + 1)2. The colored cells
S′ = {(1, 1), (3, 2)} on the right is a 2-transversal of µ with α-weight wα(S′) = 1. Each
colored cell is labeled with its lower hook length with respect to S and S′.

(i, j) ∈ λ, respectively. Let Hλ
∗ = ∏(i,j)∈λ hλ

∗ (i, j) and H∗
λ = ∏(i,j)∈λ h∗λ(i, j) be the lower

hook product and upper hook product of λ, respectively. Note that the lower and upper
hook product remain well-defined even when λ is replaced by a set of cells that does not
form an integer partition.

Theorem 2 is a simple but opaque expression for ηλ
α in terms of the (integral form)

shifted Jack polynomials J⋆λ(x; α) (see [25], for example). These expressions are already
known for ηλ

1 and ηλ
2 in terms of the determinantal formula for the shifted Schur poly-

nomials [29] and more recently for the shifted Zonal polynomials [30]. Theorem 2 is
simply the Jack analogue of these results.

Theorem 2. For all λ and α ∈ R, we have ηλ
α = ∑|λ|

k=0(−1)|λ|−k J⋆k (λ)/k!.

3 Tableau Transversals and Principal Hook Products

We now leverage some combinatorial results of [1, 6] to give a more tractable combina-
torial formulation of Theorem 2, which we use to prove Theorem 1 for α = 1, 2.

A k-transversal T of λ is a set of k cells of T which forms a partial transversal of
the columns of λ, that is, no two cells of T lie in the same column of λ. Define the
α-weight of a k-transversal T to be the lower hook product of T, i.e., wα(T) = HT

∗ , with
the convention that wα(∅) = 1 (see Figure 1 for examples). Let T k

λ be the collection of
k-transversals of λ.

In [1, Theorem 5.12], Alexandersson and Féray show that J⋆k (λ)/k! = ∑T∈T k
λ

wα(T).
Independently, Filmus and Lindzey [6] prove the following identity: J⋆λ1

(λ)/λ1! =

∑T∈T λ1
λ

wα(T) = H1
∗(λ). For α = 1, we note that this identity can be deduced from

Naruse’s hook-length formula for standard skew-tableaux [23]. We write µ ⪯k λ if µ is
a subshape λ obtained by removing k columns of λ. There are (λ1

k ) such subshapes, and
we let the sigma notation ∑µ⪯kλ denote the sum over all (λ1

k ) subshapes µ of λ obtained
by removing k columns.
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Theorem 3. For any shape λ and α ∈ R, we have ηλ
α = (−1)|λ|−λ1 ∑λ1

k=0(−1)k ∑µ⪯kλ H1
∗(µ).

Theorem 3 and Theorem 4 can now already be used to give an elementary combinatorial
proof of Theorem 1 for α = 1, 2 via the principle of inclusion-exclusion. This is because
λ-colored permutations Sλ (see Section 1) and λ-colored perfect matchings Mλ (see full
version) are bona fide combinatorial objects, and their sizes are counted by the principal
hook product H1

∗(λ).

Theorem 4. [6] For any shape λ, we have |Sλ|, |Mλ| = H1
∗(λ) for α = 1, 2, respectively.

In Section 5 we generalize this proof of Theorem 1 to all α ∈ R, but along the way we
collect several results concerning principal lower hook products, perhaps of independent
interest, that allow us to give more explicit expressions of Theorem 1. Specializing these
expressions to α = 1, 2 yields closed-form expressions for the eigenvalues of derange-
ment graphs, our second main result.

4 Minors of the Principal Hook Product

In this section we prove a few technical lemmas concerning the principal hook product
that are needed for closed-form expressions of Theorem 1. Let λ−i be the shape obtained
by removing the ith column of λ. Let λ−i1−i2−···−ik be the shape obtained by removing
(distinct) columns i1, i2, . . . , ik of λ. It is useful to think of the H1

∗(λ
−i)’s as the first minors

of λ, and the H1
∗(λ

−i1−···−ik)’s as k-minors of λ. The ordering of the ij’s is immaterial,
i.e., λ−i1−i2−···−ik = λ−iσ(1)−iσ(2)−···−iσ(k) for all σ ∈ Sk. Let λk be the shape obtained by
removing the last k columns of λ. We adopt the shorthand hj := hλ

∗ (1, j) henceforth.
Lemma 1 gives a Laplace-like expansion that relates the principal lower hook product to
its first minors.

Lemma 1 (Laplace Expansion). We have ∑λ1
i=1 H1

∗(λ
−i) = 1

α

(
H1
∗(λ) + (α − hλ1)H1

∗(λ
1)
)
,

equivalently, H1
∗(λ) = ∑λ1−1

i=1 αH1
∗(λ

−i) + hλ1 H1
∗(λ

−λ1).

For α ≥ 1, we are now in a position to give a short proof of both the Alternating Sign
Theorem and a useful upper bound on the magnitudes of the Jack derangement sums.

Proposition 1. For all α ≥ 1, we have sgn ηλ
α = (−1)|λ|−λ1 . Moreover, |ηλ

α | ≤ H1
∗(λ).

For any λ and integer 0 ≤ j ≤ λ1 − 1, let f ∗λ(j) := ∏
j
i=0((j + 1)α − hλ1−i), and define

f ∗λ(j) := 1 for all negative integers j. Lemma 2 is a generalization of Lemma 1 that we
will be needed in order to give a more explicit version of [1, Theorem 5.12].

Lemma 2. For all shapes λ and 0 ≤ j ≤ λ1 − 1, we have ∑λ1
i=1 f ∗

λ−i(j − 1) H1
∗((λ

−i)j) =
1
α

(
f ∗λ(j − 1) H1

∗(λ
j) + f ∗λ(j) H1

∗(λ
j+1)

)
.
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Theorem 5 is a more explicit form for [1, Theorem 5.12], perhaps of independent interest.

Theorem 5. For all α ∈ R, we have
J⋆λ1−k(λ)

(λ1−k)! = ∑µ⪯kλ H1
∗(µ) = 1

αk ∑k
j=0(−1)j ∏

λ1
i=1(hi−jα)
(k−j)!j! ,

equivalently, H∗
k

(λ1−k)! J⋆λ1−k(λ) = ∑k
j=0(−1)j(k

j)∏λ1
i=1(hi − jα).

Those familiar with the umbral calculus or the calculus of finite differences may recog-
nize the right-hand side of the second equation in Theorem 5 as essentially the kth-order
forward difference ∆k of the univariate degree-λ1 polynomial H1

∗(λ, x) := ∏λ1
i=1(hi − xα)

in x at the origin, i.e., H∗
(k) J⋆λ1−k(λ)/(λ1 − k)! = (−1)k∆k[H1

∗(λ, x)](0) where we de-

fine ∆k[ f ](x) := ∑k
i=0(−1)k−i(k

i) f (x + i) for any function f (x). Forward differences
of this kind are connected to polynomial interpolation in the falling factorial basis
xk := x(x − 1)(x − 2) · · · (x − k + 1), in particular, the Newton (interpolation) polynomial
N(x) of a set of points S = {(xi, p(xi))}d

i=0:

N(x) := [p(x0)]x0 + [p(x0), p(x1)]x1 + · · ·+ [p(x0), p(x1), . . . , p(xd)]xd

where [p(x0), . . . , p(xj)] is the notation for the so-called jth divided difference. Note that if
p(x) is a degree-d polynomial and |S| > d + 1, then [p(x0), . . . , p(xj)] = 0 for all j > d.

Finally, we recall the fact that if xi = i for all 0 ≤ i ≤ d, then [p(x0), p(x1), . . . , p(xj)] =

∆j[p](0)/j!, and the Newton interpolation polynomial is of the form

N(x) =
p(0)
0!

x0 +
∆1[p](0)

1!
x1 + · · ·+ ∆d[p](0)

d!
xd. (4.1)

See Stanley [33, Ch. 1.9] for a more in-depth discussion of the calculus of finite differ-
ences and its connections to combinatorics. In the next section, we show that each Jack
derangement number is the sum of the coefficients of a Newton polynomial (Theorem 6).

5 Proof of Theorem 1

Building off the results of the previous sections, we sketch a proof of Theorem 1 in this
section. For all j > 0, define H1

∗(λ, j) := ∏λ1
i=1(hi − jα) to be the j-shifted principal lower

hook product. It will be convenient to think of the shifted principal lower hook product
as a univariate polynomial in x, i.e., H1

∗(λ, x) := ∏λ1
i=1(hi − xα). We let d(α)n,k denote the

α-generalization of the rencontres numbers, that is, d(α)n,k := αnn!
αkk! ∑n−k

i=0
(−1)i

αii! .

Theorem 6. For all λ, α ∈ R, and n ≥ λ1, we have ηλ
α = (−1)|λ|−λ1 1

αnn! ∑n
j=0 d(α)n,j H1

∗(λ, j).

Theorem 6 allows us to connect the Jack derangement sums to the Poisson distribution.
For all α ∈ R, a simple induction shows that ∑n

j=0 d(α)n,j /αnn! = 1, and moreover, that
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limn→∞ d(α)n,k /αnn! = e−1/α/αkk!. For α > 0, the limiting distribution is the Poisson
distribution with expected value 1/α. After taking limits, for all α ∈ R, we have

ηλ
α = (−1)|λ|−λ1e−1/α

∞

∑
x=0

H1
∗(λ, x)
αxx!

. (5.1)

For α > 0, we may interpret the Jack derangement sum as some type of “generalized fac-
torial moment" of the Poisson distribution (up to sign), i.e., ηλ

α = (−1)|λ|−λ1E[H1
∗(λ, x)].

A combinatorial interpretation of these moments will follow as a corollary of Theorem 1.
Recall that the factorial moments of the Poisson distribution have a remarkably simple
form, namely, for all α ∈ R, we have limx→∞ xkα /αxx! = e1/α where xkα := αkxk. In light
of Equation (5.1), the foregoing suggests that we should express the polynomial H1

∗(λ, x)
in the α-falling factorial basis {xkα}, which we determine below for λ such that λ1 = 1, 2, 3.
Let λ′ denote the transpose of λ. If λ1 = 1, then we have H1

∗(λ, x) = −x1α + λ′
1x0α . If

λ1 = 2, then we have H1
∗(λ, x) = x2α − (λ′

2 + λ′
1)x1α + λ′

2(α + λ′
1)x0α . If λ1 = 3, then we

may write H1
∗(λ, x) as

-x3α +(λ′
3 +λ′

2 +λ′
1)x2α-((α+λ′

1)λ
′
3 +(α+λ′

1)λ
′
2 +(α+λ′

2)λ
′
3)x1α +λ′

3(α+λ′
2)(2α+λ′

1).

Indeed, the following proposition shows that each coefficient of H1
∗(λ, x) expressed in the

α-falling factorial basis is a polynomial cλ
k (α) that admits a combinatorial interpretation.

Proposition 2. Let λ̂ be the partition obtained by removing the first column of λ, and let #cyc(σ)
denote the number of cycles of a permutation σ. For all shapes λ and α ∈ R, we have H1

∗(λ, x) =
∑λ1

k=0 cλ
k (α)xkα where cλ

k (α) = (α(λ1 − 1 − k) + λ′
1)c

λ̂
k (α)− cλ̂

k−1(α), cλ
k (α) := 0 if k > λ1,

cλ
−1(α) := 0. Moreover, we have

(−1)k[αλ1−k−j]cλ
k (α) = ∑

I⊆[λ1]
|I|=k

| {(c, σ) ∈ Sλ : #cyc(σ) = k + j and ci = 1, σ(i) = i ∀i ∈ I} |.

Upon expressing Equation (5.1) in the α-falling factorial basis via the Proposition 2, the
proof of Theorem 1 becomes straightforward (see the full version for more details).

6 Eigenvalues of the Permutation Derangement Graph

The known recursive expressions for the eigenvalues of the permutation derangement
graph originate from [34, Ex. 7.63a], where Stanley considers the sum dλ := ∑π∈Dn χλ(π)
and shows it can be written in terms of the complete homogeneous symmetric functions:

∑
λ⊢n

dλsλ =
n

∑
k=0

(−1)n−knkhn−k
1 hn−k.
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For hook shapes, both Stanley [34, Ex. 7.63b] and Okazaki [24, Corollary 1.3] prove that

d(j,1n−j) = (−1)n−j
(

n
j

)
|Dj|+ (−1)n−1

(
n − 1

j

)
= (−1)n−j

(
n − 1

j

)
((n − j)|Dj−1|+ |Dj|).

Recalling that ηλ
1 = dλ/ f λ where f λ := χλ(1) is the number of standard Young tableaux

of shape λ, the following generalizes Stanley and Okazaki’s results to all partitions λ.

Corollary 4. dλ = (−1)|λ|−λ1 f λDλ.

This suggests a natural combinatorial interpretation of |dλ| in terms of standard
Young tableaux t of shape λ and colored derangements (c, σ) ∈ Dλ. Indeed, the set
Dλ is in bijection with permutations σ′ defined on λ1 cells of a fixed Young diagram
t of shape λ that satisfy the following criteria: if σ′(i) = j, then the cells containing
i and j belong to the same row of t; no two cells involved in the permutation σ′ lie
in the same column of t; and if σ′(i) = i, then the cell containing i does not belong
to the first row of t. We obtain the desired count by letting t vary over all standard
Young tableaux of shape λ. For λ = (1n) this gives a notably different proof of the well-
known identity d1n = ∑π∈Dn sgn(π) = ∑π∈Dn(−1)inv(π) = (−1)n−1(n − 1), i.e., that the
number of odd derangements versus even derangements differ by ±(n − 1). More gen-
erally, for any integer partition λ ⊢ n, we define the immanant of a n × n matrix A to
be Immλ(A) := ∑π∈Sn χλ(π)Ai,π(i). If we consider the adjacency matrix of the complete
graph Kn = Jn − In where Jn is the n × n all-ones matrix, then we see that the immanants
of the complete graph admit an elegant combinatorial interpretation:

Immλ(Kn) = ∑
π∈Sn

χλ(π)
n

∏
i=1

(Kn)i,π(i) = ∑
π∈Dn

χλ(π) = dλ.

Recall that Theorem 1 gives an expression for the Jack derangement numbers as
a polynomial in α with non-negative coefficients Dλ

α = dλ
1 αλ1−1 + dλ

2 αλ1−2 + · · · + dλ
λ1

where dλ
k is the number of colored permutations of Dλ that have precisely k disjoint

cycles. One issue with this formula is that the dλ
k ’s are hard to compute for general

shapes λ, as they are at least as difficult as the associated Stirling numbers of the first
kind. Theorem 6 offers a more concrete but less combinatorial form, which for arbitrary
α seems to be as good as it gets; however, for α = 1, 2, we show that Theorem 6 can be
massaged into an explicit combinatorial closed form in terms of what we call extended
hook products. Before we begin, we require a few more tableau-theoretic definitions.

Let λc := (λ1 − λ1, λ1 − λ2, · · · , λ1 − λℓ(λ)) be the complement of λ. In other words,
the complement of λ is the subset of cells of the shape (λ1)

ℓ(λ) that do not lie in λ. For
λ = (10, 6, 3, 1), the complement λc = (0, 4, 7, 9) is the set of dots below:

0
◦ ◦ ◦ ◦ 4

◦ ◦ ◦ ◦ ◦ ◦ ◦ 7
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 9.
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Let rev(λc) be the partition obtained by reversing the order of the rows of λc. We also
let rev : λc → rev(λc) denote the natural bijection defined on their cells, e.g.,

rev

(
u t s r

q p o n m l k
j i h g f e d c b a

)
= a b c d e f g h i j

k l m n o p q
r s t u

.

For any cell □ ∈ λc, we define its upper hook length to be h∗λc(□) = h∗rev(λc)(rev(□)),
and similarly for lower hook lengths. For example, we have the following upper hook
lengths for α = 1 and µ = (10, 6, 3, 1):

13 11 10 8 7 6 4 3 2 1

8 6 5 3 2 1 1 2 3 4

4 2 1 1 2 3 5 6 7 8

1 1 2 4 5 6 8 9 10 11

.

Let H∗
i (λ) be the ith principal upper hook product, i.e., the product of the upper hook

lengths along the ith row of λ. We define the extended ith principal upper hook product
to be H+

i (λ) := H∗
i (λ)H∗

i (λ
c). Continuing the example above, we see that H+

3 (µ) =
4 · 2 · 1 · 8!/4 = 80640. Note that H∗

1 (λ) = H+
1 (λ) for all λ since (λc)1 = 0.

Let dn,k be the kth rencontres number, i.e., the number of permutations of Sn with
precisely k fixed points. Let pn,k = dn,k/n! be the probability of drawing a permutation
(uniformly at random) from Sn with precisely k fixed points. The Frobenius coordinates
of λ are given by λ = (a1, . . . , ad | b1, . . . , bd) where ai := λi − i is the number of boxes
to the right of the diagonal in row i, and bi := λ′

i − i is the number of boxes below the
diagonal in column i. By default, we define ad+1 := −1. We are finally in a position to
state our second main result, namely, good closed forms for the eigenvalues of Γn,1.

Theorem 7 (Eigenvalues of Γn,1). For all λ = (λ1, . . . , λℓ) = (a1, . . . , ad | b1, . . . , bd) ⊢ n,
we have ηλ

1 = (−1)n ∑i≤λi+1(−1)λi pλ1,a1−ai H+
i (λ).

Explicit closed-form expressions for the eigenvalues of the perfect matching derange-
ment graph Γn,2 can be derived in a similar manner, which we defer to the full version.
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