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Abstract. We study the asymptotics of bounded lecture hall tableaux. Limit shapes
form when the bounds of the lecture hall tableaux go to infinity linearly in the lengths
of the partitions describing the large-scale shapes of these tableaux. We prove Con-
jecture 6.1 in [8], stating that the slopes of the rescaled height functions in the scaling
limit satisfy a complex Burgers equation. We also show that the fluctuations of the
unrescaled height functions converge to the Gaussian free field. The proof is based
on new construction and analysis of Schur generating functions for the lecture hall
tableaux, whose corresponding particle configurations do not form a Gelfand-Tsetlin
scheme; and the corresponding dimer models are not doubly periodic.

Résumé. Nous étudions l’asymptotique des tableaux de la salle de cours bornés. Les
formes limites se forment lorsque les bornes des tableaux de la salle de cours tendent
vers l’infini linéairement par rapport aux longueurs des partitions décrivant les formes
à grande échelle de ces tableaux. Nous démontrons la Conjecture 6.1 dans [8], affir-
mant que les pentes des fonctions de hauteur mises à l’échelle dans la limite d’échelle
satisfont une équation de Burgers complexe. Nous montrons également que les fluc-
tuations des fonctions de hauteur non mises à l’échelle convergent vers le champ libre
gaussien. La preuve repose sur une nouvelle construction et une analyse des fonctions
génératrices de Schur pour les tableaux de la salle de cours, dont les configurations
de particules correspondantes ne forment pas un schéma de Gelfand-Tsetlin; et les
modèles de dimères correspondants ne sont pas doublement périodiques.

Keywords: lecture hall tableaux, limit shape, Gaussian free field

1 Introduction

Lecture hall tableaux were introduced in [10] as fillings of Young tableaux satisfying
certain conditions, which generalize both lecture hall partitions ([2, 3]) and anti-lecture
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hall compositions ([11]), and also contain reverse semistandard Young tableaux as a limit
case. Lecture hall partitions and anti-lecture hall compositions have attracted consider-
able interest among combinatorists in the last two decades; see the recent survey [21]
and references therein.

We now define the lecture hall tableaux. Recall that a partition λ = (λ1, . . . , λk) is a
sequence of nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0. Each integer λi is called a
part of λ. The length l(λ) of λ is the number of parts. A partition λ = (λ1, . . . , λk) can
be identified with its Young diagram, which consists of unit squares (cells) with integer
coordinates (i, j) satisfying 1 ≤ i ≤ k and 1 ≤ j ≤ λi. For two partitions λ and µ we
write µ ⊂ λ to mean that the Young diagram of µ is contained in that of λ as a set.
In this case, a skew shape λ/µ is defined to be the set-theoretic difference λ/µ of their
Young diagrams. We denote by |λ/µ| the number of cells in λ/µ. A partition λ is also
considered as a skew shape by λ/∅; where ∅ represents the empty partition.

A tableau of shape λ/µ is a filling of the cells in λ/µ with nonnegative integers.
In other words, a tableau is a map T : λ/µ → N, where N is the set of nonnegative
integers.

An n-lecture hall tableau of shape λ/µ is a tableau L of shape λ/µ satisfying the
following conditions

L(i, j)
n + c(i, j)

≥ L(i, j + 1)
n + c(i, j + 1)

,
L(i, j)

n + c(i, j)
>

L(i + 1, j)
n + c(i + 1, j)

.

where c(i, j) = j − i is the content of the cell (i, j). The set of n-lecture hall tableaux
is denoted by LHTn(λ/µ). For L ∈ LHTn(λ/µ), let ⌊L⌋ be the tableaux of shape λ/µ

whose (i, j)th entry is ⌊ L(i,j)
(n−i+j)⌋.

See the left graph of Figure 1 for an example of a lecture hall tableaux.
We shall study lecture hall tableaux with an extra condition as follows:

L(i, j) < t(n + j − i)

We say these tableaux are bounded by t > 0. These tableaux are called bounded lecture
hall tableaux and are enumerated in [9].

The main aim to study the asymptotics of bounded n-lecture hall tableaux as n →
∞. We shall first recall a bijection between lecture hall tableaux and non-intersecting
path configurations in [9], and then investigate the asymptotics (limit shape and height
fluctuations) of the corresponding non-intersecting path configurations. Now we define
the graph on which the non-intersecting path configurations correspond to the lecture
hall tableaux.

1. Given a positive integer t, the lecture hall graph is a graph Gt = (Vt, Et). This graph
can be described through an embedding in the plane with vertex set Vt given by
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•
(

i, j
i+1

)
for i ≥ 0 and 0 ≤ j < t(i + 1).

and the directed edges given by

• from
(
i, k + r

i+1

)
to

(
i + 1, k + r

i+2

)
for i ≥ 0, 0 ≤ r ≤ i and 0 ≤ k < t

• from
(

i, k + r+1
i+1

)
to

(
i, k + r

i+1

)
for i ≥ 0 and 0 ≤ r ≤ i and 0 ≤ k < t − 1 or

for i ≥ 0 and 0 ≤ r < i and k = t − 1.

2. Given a positive integer t and a partition λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥
λn ≥ 0, a non-intersecting path configuration is a system of n paths on the graph
Gt. For each integer i satisfying 1 ≤ i ≤ n, the ith path starts at

(
n − i, t − 1

n−i+1

)
,

ends at (n − i + λi, 0) and moves only downwards and rightwards. The paths are
said to be not intersecting if they do not share a vertex.

See the middle graph of 1 for an example of G3 and a configuration of non-intersecting
paths on G3.

Given a positive integer t and a partition λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn ≥ 0, the
non-intersecting path system is a system of n paths on the graph Gt. The ith path starts
at

(
n − i, t − 1

n−i+1

)
and ends at (λi + n − i, 0). The paths are called non-intersection if

they do not share a vertex.

Theorem 1. ([9])There is a bijection between the bounded lecture hall tableaux of shape λ and
bounded by t and non-intersecting paths on Gt starting at

(
n − i, t − 1

n−i+1

)
and ending at

(n − i + λi, 0) for i = 1, 2, . . . , n.
More precisely, there are exactly |λ| non-vertical edges present in the non-intersecting path

configuration in Gt corresponding to a lecture-hall tableaux of shape λ. These edges have left
endpoints located at

(
n + j − i − 1, L(i,j)

n+j−i

)
. The non-intersecting path configuration corre-

sponding to the lecture hall tableaux is the unique non-intersecting path configuration joining(
n − i, t − 1

n−i+1

)
and (n − i + λi, 0) for i = 1, 2, . . . , n obtained by adding only vertical edges

to these present non-vertical edges.

One can see that for an n-lecture hall tableaux bounded by t, t is also the height of
the corresponding lecture hall graph Gt, and n is also the total number of paths in the
corresponding non-intersecting path configuration on Gt. See Figure 1 for an example of
such a correspondence.

We shall investigate the asymptotics of bounded lecture hall tableaux as n, t → ∞
by studying the asymptotics of the corresponding non-intersecting paths. These asymp-
totics were studied in [8] using the (not fully rigorous) tangent method; here we attack
this problem by analyzing Schur polynomials. The tangent method gives the frozen
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ARCTIC CURVES PHENOMENA FOR BOUNDED LECTURE HALL TABLEAUX

SYLVIE CORTEEL, DAVID KEATING, AND MATTHEW NICOLETTI

Abstract. Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of
multivariate little q-Jacobi polynomials. They then enumerated bounded lecture hall tableaux and showed

that their enumeration is closely related to standard and semistandard Young tableaux. In this paper we
study the asymptotic behavior of these bounded tableaux thanks to two other combinatorial models: non-
intersecting paths on a graph whose faces are squares and pentagons and dimer models on a lattice whose

faces are hexagons and octagons. We use the tangent method to investigate the arctic curve in the model
of non-intersecting lattice paths with fixed starting points and ending points distributed according to some

arbitrary piecewise di↵erentiable function. We then study the dimer model and use an ansatz to guess

the asymptotics of the inverse of the Kasteleyn, which confirm the arctic curve computed with the tangent
method for two examples.

1. Introduction

Recently the first author and Jang Soo Kim introduced lecture hall tableaux in their study of multivariate
little q-Jacobi polynomials [10]. They then enumerated bounded lecture hall tableaux and showed that their
enumeration is closely related to standard and semistandard Young tableaux [9].

Given a positive integer t and a partition � = (�1, . . . ,�n) with �1 � . . . � �n � 0, the bounded lecture
hall tableaux are fillings of the diagram of � with integers Ti,j such that

(1) Ti,j < t(n � i + j)
(2) Ti,j/(n � i + j) � Ti,j+1/(n � i + j + 1)
(3) Ti,j/(n � i + j) > Ti+1,j/(n � i � 1 + j)

We call them bounded lecture hall tableaux (BLHT) of shape � and bounded by t. On the left of Figure
1, we give an example of such a tableau for t = 3 and � = (2, 2). In this paper we study the asymptotic
behavior of these bounded tableaux thanks to two other combinatorial models: the non-intersecting paths on
a graph whose faces are squares and pentagons and the dimer models on a lattice whose faces are hexagons
and octagons. An example of the path model and the dimer model is given on the middle and the right of
Figure 1. Detailed definitions will be given in Section 2.

One special quality of this model is that the number of configurations is relatively easy to compute [9].
Given t, n and � = (�1, . . . ,�n), the number Z�(t) of bounded lecture hall tableaux of shape � bounded by
t is

Z�(t) = t|�| Y

1i<jn

�i � i � �j + j

j � i
,
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Figure 1. Tableau, non-intersecting paths, and dimers
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Figure 1: Tableau, non-intersecting paths, and dimers (Figure 1 in [8]). The left graph
represents a lecture hall tableaux L of shape λ = (2, 2) with L(1, 1) = 5, L(1, 2) = 6,
L(2, 1) = 2, L(2, 2) = 3 and n = 2. Then L(1,1)

n+1−1 = 5
2 ; L(2,1)

n+1−2 =2; L(1,2)
n+2−1 = 2; L(2,2)

n+2−2 = 3
2 .

The lecture hall tableaux is bounded by t = 3. The middle graph represents the
corresponding non-intersecting path configuration. The right graph represents a dimer
configuration on a graph which is not doubly-periodic.

boundary without the full limit shape; instead Conjecture 6.1 were made in [8], indi-
cating that the slopes of the rescaled height functions in the scaling limit satisfy the
complex Burgers equation. The complex Burgers equation was proved to be the gov-
erning equation of height functions in the scaling limit for uniform lozenge tilings and
for other doubly periodic dimer models [13]. This equation naturally arises through a
variational problem, we refer to [1] for a detailed study of the variational problem. Here
we note that for lecture hall tableaux no variational principle has been established and
although lecture hall tableaux naturally corresponds to non-interacting paths configu-
rations and dimer configurations on a hexagon-octagon lattice ([8]), the corresponding
hexagon-octagon lattice in this case is not doubly periodic as in the setting in [13]; see
the right graph of Figure 1.

The Schur generating function approach was applied to study uniform dimer model
on a hexagonal lattice in a trapezoid domain in [5, 6], and for uniform dimer model on
a rectangular square grid in [7]. A generalized version of the Schur generating function
was defined to study the non-uniform dimer model on rail-yard graphs in [4, 16, 15,
17, 19]. Schur processes are specializations of the Macdonald processes when q = t,
hence the asymptotics of Schur processes can also be obtained by investigating the more
general Macdonald processes; see [20, 18]. All the existing Schur-generating functions
seem to be defined in the setting of the Gelfand-Tsetlin scheme; however the lecture
hall tableaux are novel in the sense that on a skew shape they cannot be computed by
skew Schur functions; and the corresponding particle configurations induced by the non-
intersecting path configurations of the lecture hall tableaux do not satisfy the interlacing
conditions required by the Gelfand-Tsetlin scheme; see Figure 2 for an example.

By constructing a novel Schur generating function specifically for the lecture hall
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tableaux and analyzing its asymptotics, in this paper we obtain a full description of the
limit shape, including the moment formulas for the counting measures and the complex
Burgers equation; resolving Conjecture 6.1 in [8].

The Gaussian free field, as a high dimensional time analog of the Brownian motion,
was proved to be the rule of height fluctuations for dimer models on a large class of
graphs ([12, 14]). In this paper we show that the unrescaled height fluctuations of the
lecture hall tableaux converge to the Gaussian free field when t goes to infinity linearly
as n goes to infinity.

The main results (with exact statements given in later sections after a number of
precise definitions) are as follows.

• In Section 2, we discuss the moment formula for the limit counting when n → ∞,
t → ∞ and t

n → α ∈ (0, ∞) (Theorem 2); the equation of the boundary curve sep-
arating different phases (Theorem 3) and that the slopes of the (rescaled) height
function in the scaling limit satisfy the complex Burgers equation; confirming Con-
jecture 6.1 in [8] (Theorem 4).

• In Section 3, we prove the convergence of the (unrescaled) height fluctuation to the
Gaussian free field (GFF) n → ∞, t → ∞ and t

n → α ∈ (0, ∞) (Theorem 5)

2 Limit Shape when t → ∞ and Complex Burger’s Equa-
tion

Let M be a random non-intersecting path configuration on G = Gt. Let n be the total
number of non-intersecting paths. Let κ ≥ 0 be an integer. Let ϵ > 0 be sufficiently
small such that the region y ∈ (κ, κ + ϵ] does not intersect any non-vertical edge of G.
We associate a partition λ(κ) as follows:

• λ
(κ)
1 is the number of absent vertical edges of M intersecting y = κ + ϵ to the left

of the rightmost vertical edges present in M.

• for j ≥ 2, λ
(κ)
j is the number of absent vertical edges of M intersecting y = κ + ϵ

to the left of the jth rightmost vertical edges present in M.

See Figure 2 for an example.
For x = (x0, x1, . . .) Let sλ/µ(x) be the skew Schur function. For any tableaux T of

shape λ/µ, let

xT = ∏
(i,j)∈λ/µ

xT(i,j);
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0 1 2 3 4 5 6 7 8
0

1

2

3

4

· · ·

· · ·

Figure 2: Non-intersecting lattice paths on G4 for n = 5. We have λ(3) = (1, 0, 0, 0, 0),
λ(2) = (1, 1, 1, 0, 0), λ(1) = (3, 3, 1, 0, 0) and λ(0) = (4, 3, 1, 0, 0). The sequence of parti-
tions (λ(0), λ(1), λ(2), λ(3)) do not form a Gelfand-Tsetlin scheme.

we define

Ln
λ/µ(x) = ∑

T∈LHTn(λ/µ)

x⌊T⌋

Let ρκ be the probability distribution of λ(κ). Define the Schur generating function
for ρκ as follows:

Sρκ(|x|, u) = ∑
λ∈Y

ρκ(λ)
sλ(|x|+ u)

sλ(|x|)
(2.1)

where

u = (u1, u2, . . . , un); x = (x1, x2, . . . , xt); |x| = x1 + x2 + . . . + xt

and

sλ(|x|+ u) := sλ(|x|+ u1, |x|+ u2, . . . , |x|+ un) (2.2)
sλ(|x|) := sλ(|x|, . . . , |x|) (2.3)

Let λ be a length-N partition. We define the counting measure m(λ) as a probability
measure on R as follows:

m(λ) =
1
N

N

∑
i=1

δ

(
λi + N − i

N

)
.

If λ is random, then we can define the corresponding random counting measure.
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let Sm(z) = z + ∑∞
k=1 Mk(m)zk+1 be the moment generating function of the measure

m, where Mk(m) =
∫

xkdm(x), and S(−1)
m be its inverse for the composition. Let Rm(z)

be the Voiculescu R-transform of m defined as

Rm(z) =
1

S(−1)
m (z)

− 1
z

.

Then

Hm(u) =
∫ ln u

0
Rm(t)dt + ln

(
ln u

u − 1

)
. (2.4)

In particular, Hm(1) = 0, and

H′
m(u) =

1

uS(−1)
m (ln u)

− 1
u − 1

. (2.5)

Assume as n → ∞, the rescaled graph 1
nG approximate a bounded simply-connected

region R ⊂ R2. Let L be the set of (χ, y) inside R such that the density dmy(
χ

1−y ) is not
equal to 0 or 1. Then L is called the liquid region. Its boundary ∂L is called the frozen
boundary. Let

L̃ := {(χ, s) : (χ, y) ∈ L}

where s, y are given as Theorem 2.

Theorem 2. Let n be the the total number of non-interacting paths in G, and let t be the height
of G. Let ρκ(n) be the probability distribution of λ(κ). Assume

y := lim
n→∞

κ

n
; s := lim

n→∞

|xκ|
|x| ; α := lim

n→∞

t
n

; (2.6)

such that

s ∈ (0, 1); y ∈ (0, α).

Then random measures mρκ(n) converge as n → ∞ in probability, in the sense of moments to a
deterministic measure my on R, whose moments are given by

∫

R
xjmy(dx) =

1
2(j + 1)πi

∮

1

dz
z − 1 + s

(
(z − 1 + s)H′

m0
(z) +

z − 1 + s
z − 1

)j+1

Here m0 is the limit counting measure for the boundary partition λ(0) ∈ Yn as n → ∞, and
Hm0 is defined as in (2.4).
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The main idea to prove Theorem 2 is to use a differential operator acting on the Schur
generating function defined by (2.1), which gives the moments of

∫
R

xjmρκ(n); by proving
that

lim
n→∞

E

[∫

R
xjmρκ(n)

]2

= lim
n→∞

[
E

∫

R
xjmρκ(n)

]2

;

it follows that the limit counting measure is deterministic. The explicit integral formula
for

∫
R

xjmρκ(n) follows from the Residue theorem.

Theorem 3. Let

Uy(z) := (z − 1 + s)H′
m0

(z) +
z − 1 + s

z − 1
(2.7)

Assume the liquid region is nonempty, and assume that for any x ∈ R, the equation Uy(z) = x
has at most one pair of complex conjugate roots. Then for any point (χ, y) lying on the frozen
boundary, the equation Uy(z) = χ has double roots.

The main idea to prove Theorem 3 is to compute the density of the measure dmy(x)
by the Stieljes transform

dmy(x)
dx

= − lim
ϵ→0+

1
π
ℑ(Stmy(x + iϵ)) (2.8)

where ℑ(·) represents the imaginary part of a complex number and Stmy is the Stieljes
transform of the measure my; and then find the boundary of the region where the density
is 0 or 1 (frozen region).

Example 1. Assume the bottom boundary partition is given by

λ(0)(n) := ((p − 1)n, (p − 1)(n − 1), . . . , p − 1) ∈ Yn

where p, n are positive integers. We have

Uy(z) =
pzp−1(z − 1 + s)

zp − 1

Assume p = 3. then for each χ ∈ R the equation Uy(z) = χ has at most one pair of nonreal
conjugate roots. The condition that Uy(z) = χ has double roots gives

{
Uy(z) = χ.
U′

y(z) = 0

which gives the parametric equation for (x, s) as follows.
{

χ = 3z3

z3+2
s = z3−3z+2

z3+2
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1

Figure 3: Frozen boundary for the scaling limit of weighted non-interaction paths. The
blue curve is for the uniform weight; the red curve is when the limit weight function s
satisfies y = (1 − s)2.

1. When x1 = x2 = . . . = xn, and α = 1, we have s = 1 − y. The frozen boundary is given
by the blue curve of Figure 3.

2. When α = 1, and y = (1 − s)2. The frozen boundary is given by the red curve of Figure 3.

On the lecture hall graph G, define a random height function h associated to a random
non-intersecting path configuration as follows. The height at the lower left corner is 0,
and the height increases by 1 whenever crossing a path from the left to the right. Define
the rescaled height function by

hn(χ, y) :=
1
n

h(nχ, ny)

Following similar computations before Lemma 8.1 of [4], we obtain that when (χ, y) is
in the liquid region,

lim
n→∞

dhn(χ, y)
dχ

=
1
π

Arg(z+(χ, y)− 1 + s).

where z+(χ, y) is the unique root in the upper half plane of the equation Uy(z) = χ.

Theorem 4. Assume G is uniformly weighted such that s = 1− y. Suppose that the assumptions
of Theorem 3 holds. Let

u =
1

z+(χ, y)S(−1)
m0 (ln z+(χ, y))

Then

∂h
∂x

=
1
π
(2 − Arg(u)) ;

∂h
∂y

=
1
π
ℑu (2.9)
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where Arg(·) is the branch of the argument function taking values in [0, 2π). Moreover, u
satisfies the complex Burgers equation

ux − uuy = 0. (2.10)

3 Height Fluctuations and Gaussian Free Field

Let C∞
0 be the space of smooth real-valued functions with compact support in the upper

half plane H. The Gaussian free field (GFF) Ξ on H with the zero boundary condition
is a collection of Gaussian random variables {ξ f } f∈C∞

0
indexed by functions in C∞

0 , such
that the covariance of two Gaussian random variables ξ f1 , ξ f2 is given by

Cov(ξ f1 , ξ f2) =
∫

H

∫

H
f1(z) f2(w)GH(z, w)dzdzdwdw,

where

GH(z, w) := − 1
2π

ln
∣∣∣∣
z − w
z − w

∣∣∣∣ , z, w ∈ H

is the Green’s function of the Dirichlet Laplacian operator on H. The Gaussian free field
Ξ can also be considered as a random distribution on C∞

0 of H, such that for any f ∈ C∞
0 ,

we have

Ξ( f ) =
∫

H
f (z)Ξ(z)dz := ξ f ;

where Ξ(z) is the generalized function corresponding to the linear functional Ξ. Note
that GFF is conformally invariant; in the sense that for any simply-connected domain
D ⊊ C, and let ϕ : D → H be a conformal map from D to H. Then the GFF on D is

ΞD(z) := Ξ(ϕ(z))

See [22] for more about GFF.
Let f be a function of r variables. Define the symmetrization of f as follows

Symx1,...,xr
f (x1, . . . , xr) :=

1
r! ∑

σ∈Sr

f (xσ(1), . . . , xσ(r)); (3.1)

Assumption 1. Let l be a fixed positive integer. Assume there exists

0 = a1 < b1 < a2 < b2 < . . . < al < bl
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such that m0, the limit counting measure corresponding to the partition on the bottom boundary
satisfies

dm0

dx
=

{
1 if ai < x < bi

0 if bj < x < aj+1

where i ∈ [l] and j ∈ [l − 1].

Theorem 5. Suppose that Assumption 1 holds. For each z ∈ H, let

∆n(z) := ∆n(nχL̃(z), nsL̃(z)) :=
√

π
∣∣∣{g ∈ [n] : λ

(n−ny(sL̃(z)))
g − n + g ≥ nχL̃(z)}

∣∣∣

Under the assumption of Theorem 2, ∆n(z)− E∆n(z) converge to GFF in the upper half plane
in the sense that for each s ∈ (0, 1)

lim
n→∞

∫ ∞

−∞
χj (∆n(nχ, ns)− E∆n(nχ, ns)) dχ =

∫

z∈H:sL̃(z)=s
χ

j
L̃(z)

dχL̃(z)
dz

Ξ(z)dz

The main idea to prove Theorem 5 is to first show that a collection of certain observ-
ables converge to a Gaussian vector in the scaling limit by applying the Wick’s moment
formula; then find an explicit diffeomorphism from the liquid region to the upper half
plane, which gives the convergence of the observables to the pull-back of GFF in H.
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